/* * Copyright (c) 2003 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU General Public * License along with this program; if not, write the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/NoticeExplan */ #include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/hdreg.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/ioport.h> #include <linux/blkdev.h> #include <linux/ioc4.h> #include <asm/io.h> #include <linux/ide.h> /* IOC4 Specific Definitions */ #define IOC4_CMD_OFFSET 0x100 #define IOC4_CTRL_OFFSET 0x120 #define IOC4_DMA_OFFSET 0x140 #define IOC4_INTR_OFFSET 0x0 #define IOC4_TIMING 0x00 #define IOC4_DMA_PTR_L 0x01 #define IOC4_DMA_PTR_H 0x02 #define IOC4_DMA_ADDR_L 0x03 #define IOC4_DMA_ADDR_H 0x04 #define IOC4_BC_DEV 0x05 #define IOC4_BC_MEM 0x06 #define IOC4_DMA_CTRL 0x07 #define IOC4_DMA_END_ADDR 0x08 /* Bits in the IOC4 Control/Status Register */ #define IOC4_S_DMA_START 0x01 #define IOC4_S_DMA_STOP 0x02 #define IOC4_S_DMA_DIR 0x04 #define IOC4_S_DMA_ACTIVE 0x08 #define IOC4_S_DMA_ERROR 0x10 #define IOC4_ATA_MEMERR 0x02 /* Read/Write Directions */ #define IOC4_DMA_WRITE 0x04 #define IOC4_DMA_READ 0x00 /* Interrupt Register Offsets */ #define IOC4_INTR_REG 0x03 #define IOC4_INTR_SET 0x05 #define IOC4_INTR_CLEAR 0x07 #define IOC4_IDE_CACHELINE_SIZE 128 #define IOC4_CMD_CTL_BLK_SIZE 0x20 #define IOC4_SUPPORTED_FIRMWARE_REV 46 typedef struct { u32 timing_reg0; u32 timing_reg1; u32 low_mem_ptr; u32 high_mem_ptr; u32 low_mem_addr; u32 high_mem_addr; u32 dev_byte_count; u32 mem_byte_count; u32 status; } ioc4_dma_regs_t; /* Each Physical Region Descriptor Entry size is 16 bytes (2 * 64 bits) */ /* IOC4 has only 1 IDE channel */ #define IOC4_PRD_BYTES 16 #define IOC4_PRD_ENTRIES (PAGE_SIZE /(4*IOC4_PRD_BYTES)) static void sgiioc4_init_hwif_ports(hw_regs_t * hw, unsigned long data_port, unsigned long ctrl_port, unsigned long irq_port) { unsigned long reg = data_port; int i; /* Registers are word (32 bit) aligned */ for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++) hw->io_ports[i] = reg + i * 4; if (ctrl_port) hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port; if (irq_port) hw->io_ports[IDE_IRQ_OFFSET] = irq_port; } static void sgiioc4_maskproc(ide_drive_t * drive, int mask) { ide_hwif_t *hwif = HWIF(drive); hwif->OUTB(mask ? (drive->ctl | 2) : (drive->ctl & ~2), IDE_CONTROL_REG); } static int sgiioc4_checkirq(ide_hwif_t * hwif) { u8 intr_reg = hwif->INL(hwif->io_ports[IDE_IRQ_OFFSET] + IOC4_INTR_REG * 4); if (intr_reg & 0x03) return 1; return 0; } static int sgiioc4_clearirq(ide_drive_t * drive) { u32 intr_reg; ide_hwif_t *hwif = HWIF(drive); unsigned long other_ir = hwif->io_ports[IDE_IRQ_OFFSET] + (IOC4_INTR_REG << 2); /* Code to check for PCI error conditions */ intr_reg = hwif->INL(other_ir); if (intr_reg & 0x03) { /* Valid IOC4-IDE interrupt */ /* * Using hwif->INB to read the IDE_STATUS_REG has a side effect * of clearing the interrupt. The first read should clear it * if it is set. The second read should return a "clear" status * if it got cleared. If not, then spin for a bit trying to * clear it. */ u8 stat = hwif->INB(IDE_STATUS_REG); int count = 0; stat = hwif->INB(IDE_STATUS_REG); while ((stat & 0x80) && (count++ < 100)) { udelay(1); stat = hwif->INB(IDE_STATUS_REG); } if (intr_reg & 0x02) { /* Error when transferring DMA data on PCI bus */ u32 pci_err_addr_low, pci_err_addr_high, pci_stat_cmd_reg; pci_err_addr_low = hwif->INL(hwif->io_ports[IDE_IRQ_OFFSET]); pci_err_addr_high = hwif->INL(hwif->io_ports[IDE_IRQ_OFFSET] + 4); pci_read_config_dword(hwif->pci_dev, PCI_COMMAND, &pci_stat_cmd_reg); printk(KERN_ERR "%s(%s) : PCI Bus Error when doing DMA:" " status-cmd reg is 0x%x\n", __FUNCTION__, drive->name, pci_stat_cmd_reg); printk(KERN_ERR "%s(%s) : PCI Error Address is 0x%x%x\n", __FUNCTION__, drive->name, pci_err_addr_high, pci_err_addr_low); /* Clear the PCI Error indicator */ pci_write_config_dword(hwif->pci_dev, PCI_COMMAND, 0x00000146); } /* Clear the Interrupt, Error bits on the IOC4 */ hwif->OUTL(0x03, other_ir); intr_reg = hwif->INL(other_ir); } return intr_reg & 3; } static void sgiioc4_ide_dma_start(ide_drive_t * drive) { ide_hwif_t *hwif = HWIF(drive); unsigned int reg = hwif->INL(hwif->dma_base + IOC4_DMA_CTRL * 4); unsigned int temp_reg = reg | IOC4_S_DMA_START; hwif->OUTL(temp_reg, hwif->dma_base + IOC4_DMA_CTRL * 4); } static u32 sgiioc4_ide_dma_stop(ide_hwif_t *hwif, u64 dma_base) { u32 ioc4_dma; int count; count = 0; ioc4_dma = hwif->INL(dma_base + IOC4_DMA_CTRL * 4); while ((ioc4_dma & IOC4_S_DMA_STOP) && (count++ < 200)) { udelay(1); ioc4_dma = hwif->INL(dma_base + IOC4_DMA_CTRL * 4); } return ioc4_dma; } /* Stops the IOC4 DMA Engine */ static int sgiioc4_ide_dma_end(ide_drive_t * drive) { u32 ioc4_dma, bc_dev, bc_mem, num, valid = 0, cnt = 0; ide_hwif_t *hwif = HWIF(drive); u64 dma_base = hwif->dma_base; int dma_stat = 0; unsigned long *ending_dma = (unsigned long *) hwif->dma_base2; hwif->OUTL(IOC4_S_DMA_STOP, dma_base + IOC4_DMA_CTRL * 4); ioc4_dma = sgiioc4_ide_dma_stop(hwif, dma_base); if (ioc4_dma & IOC4_S_DMA_STOP) { printk(KERN_ERR "%s(%s): IOC4 DMA STOP bit is still 1 :" "ioc4_dma_reg 0x%x\n", __FUNCTION__, drive->name, ioc4_dma); dma_stat = 1; } /* * The IOC4 will DMA 1's to the ending dma area to indicate that * previous data DMA is complete. This is necessary because of relaxed * ordering between register reads and DMA writes on the Altix. */ while ((cnt++ < 200) && (!valid)) { for (num = 0; num < 16; num++) { if (ending_dma[num]) { valid = 1; break; } } udelay(1); } if (!valid) { printk(KERN_ERR "%s(%s) : DMA incomplete\n", __FUNCTION__, drive->name); dma_stat = 1; } bc_dev = hwif->INL(dma_base + IOC4_BC_DEV * 4); bc_mem = hwif->INL(dma_base + IOC4_BC_MEM * 4); if ((bc_dev & 0x01FF) || (bc_mem & 0x1FF)) { if (bc_dev > bc_mem + 8) { printk(KERN_ERR "%s(%s): WARNING!! byte_count_dev %d " "!= byte_count_mem %d\n", __FUNCTION__, drive->name, bc_dev, bc_mem); } } drive->waiting_for_dma = 0; ide_destroy_dmatable(drive); return dma_stat; } static int sgiioc4_ide_dma_check(ide_drive_t * drive) { if (ide_config_drive_speed(drive, XFER_MW_DMA_2) != 0) { printk(KERN_INFO "Couldnot set %s in Multimode-2 DMA mode | " "Drive %s using PIO instead\n", drive->name, drive->name); drive->using_dma = 0; } else drive->using_dma = 1; return 0; } static int sgiioc4_ide_dma_on(ide_drive_t * drive) { drive->using_dma = 1; return HWIF(drive)->ide_dma_host_on(drive); } static int sgiioc4_ide_dma_off_quietly(ide_drive_t * drive) { drive->using_dma = 0; return HWIF(drive)->ide_dma_host_off(drive); } /* returns 1 if dma irq issued, 0 otherwise */ static int sgiioc4_ide_dma_test_irq(ide_drive_t * drive) { return sgiioc4_checkirq(HWIF(drive)); } static int sgiioc4_ide_dma_host_on(ide_drive_t * drive) { if (drive->using_dma) return 0; return 1; } static int sgiioc4_ide_dma_host_off(ide_drive_t * drive) { sgiioc4_clearirq(drive); return 0; } static int sgiioc4_ide_dma_lostirq(ide_drive_t * drive) { HWIF(drive)->resetproc(drive); return __ide_dma_lostirq(drive); } static void sgiioc4_resetproc(ide_drive_t * drive) { sgiioc4_ide_dma_end(drive); sgiioc4_clearirq(drive); } static u8 sgiioc4_INB(unsigned long port) { u8 reg = (u8) inb(port); if ((port & 0xFFF) == 0x11C) { /* Status register of IOC4 */ if (reg & 0x51) { /* Not busy...check for interrupt */ unsigned long other_ir = port - 0x110; unsigned int intr_reg = (u32) inl(other_ir); /* Clear the Interrupt, Error bits on the IOC4 */ if (intr_reg & 0x03) { outl(0x03, other_ir); intr_reg = (u32) inl(other_ir); } } } return reg; } /* Creates a dma map for the scatter-gather list entries */ static void __devinit ide_dma_sgiioc4(ide_hwif_t * hwif, unsigned long dma_base) { int num_ports = sizeof (ioc4_dma_regs_t); printk(KERN_INFO "%s: BM-DMA at 0x%04lx-0x%04lx\n", hwif->name, dma_base, dma_base + num_ports - 1); if (!request_region(dma_base, num_ports, hwif->name)) { printk(KERN_ERR "%s(%s) -- ERROR, Addresses 0x%p to 0x%p " "ALREADY in use\n", __FUNCTION__, hwif->name, (void *) dma_base, (void *) dma_base + num_ports - 1); goto dma_alloc_failure; } hwif->dma_base = dma_base; hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev, IOC4_PRD_ENTRIES * IOC4_PRD_BYTES, &hwif->dmatable_dma); if (!hwif->dmatable_cpu) goto dma_alloc_failure; hwif->sg_max_nents = IOC4_PRD_ENTRIES; hwif->dma_base2 = (unsigned long) pci_alloc_consistent(hwif->pci_dev, IOC4_IDE_CACHELINE_SIZE, (dma_addr_t *) &(hwif->dma_status)); if (!hwif->dma_base2) goto dma_base2alloc_failure; return; dma_base2alloc_failure: pci_free_consistent(hwif->pci_dev, IOC4_PRD_ENTRIES * IOC4_PRD_BYTES, hwif->dmatable_cpu, hwif->dmatable_dma); printk(KERN_INFO "%s() -- Error! Unable to allocate DMA Maps for drive %s\n", __FUNCTION__, hwif->name); printk(KERN_INFO "Changing from DMA to PIO mode for Drive %s\n", hwif->name); dma_alloc_failure: /* Disable DMA because we couldnot allocate any DMA maps */ hwif->autodma = 0; hwif->atapi_dma = 0; } /* Initializes the IOC4 DMA Engine */ static void sgiioc4_configure_for_dma(int dma_direction, ide_drive_t * drive) { u32 ioc4_dma; ide_hwif_t *hwif = HWIF(drive); u64 dma_base = hwif->dma_base; u32 dma_addr, ending_dma_addr; ioc4_dma = hwif->INL(dma_base + IOC4_DMA_CTRL * 4); if (ioc4_dma & IOC4_S_DMA_ACTIVE) { printk(KERN_WARNING "%s(%s):Warning!! DMA from previous transfer was still active\n", __FUNCTION__, drive->name); hwif->OUTL(IOC4_S_DMA_STOP, dma_base + IOC4_DMA_CTRL * 4); ioc4_dma = sgiioc4_ide_dma_stop(hwif, dma_base); if (ioc4_dma & IOC4_S_DMA_STOP) printk(KERN_ERR "%s(%s) : IOC4 Dma STOP bit is still 1\n", __FUNCTION__, drive->name); } ioc4_dma = hwif->INL(dma_base + IOC4_DMA_CTRL * 4); if (ioc4_dma & IOC4_S_DMA_ERROR) { printk(KERN_WARNING "%s(%s) : Warning!! - DMA Error during Previous" " transfer | status 0x%x\n", __FUNCTION__, drive->name, ioc4_dma); hwif->OUTL(IOC4_S_DMA_STOP, dma_base + IOC4_DMA_CTRL * 4); ioc4_dma = sgiioc4_ide_dma_stop(hwif, dma_base); if (ioc4_dma & IOC4_S_DMA_STOP) printk(KERN_ERR "%s(%s) : IOC4 DMA STOP bit is still 1\n", __FUNCTION__, drive->name); } /* Address of the Scatter Gather List */ dma_addr = cpu_to_le32(hwif->dmatable_dma); hwif->OUTL(dma_addr, dma_base + IOC4_DMA_PTR_L * 4); /* Address of the Ending DMA */ memset((unsigned int *) hwif->dma_base2, 0, IOC4_IDE_CACHELINE_SIZE); ending_dma_addr = cpu_to_le32(hwif->dma_status); hwif->OUTL(ending_dma_addr, dma_base + IOC4_DMA_END_ADDR * 4); hwif->OUTL(dma_direction, dma_base + IOC4_DMA_CTRL * 4); drive->waiting_for_dma = 1; } /* IOC4 Scatter Gather list Format */ /* 128 Bit entries to support 64 bit addresses in the future */ /* The Scatter Gather list Entry should be in the BIG-ENDIAN Format */ /* --------------------------------------------------------------------- */ /* | Upper 32 bits - Zero | Lower 32 bits- address | */ /* --------------------------------------------------------------------- */ /* | Upper 32 bits - Zero |EOL| 15 unused | 16 Bit Length| */ /* --------------------------------------------------------------------- */ /* Creates the scatter gather list, DMA Table */ static unsigned int sgiioc4_build_dma_table(ide_drive_t * drive, struct request *rq, int ddir) { ide_hwif_t *hwif = HWIF(drive); unsigned int *table = hwif->dmatable_cpu; unsigned int count = 0, i = 1; struct scatterlist *sg; hwif->sg_nents = i = ide_build_sglist(drive, rq); if (!i) return 0; /* sglist of length Zero */ sg = hwif->sg_table; while (i && sg_dma_len(sg)) { dma_addr_t cur_addr; int cur_len; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); while (cur_len) { if (count++ >= IOC4_PRD_ENTRIES) { printk(KERN_WARNING "%s: DMA table too small\n", drive->name); goto use_pio_instead; } else { u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; /* put the addr, length in * the IOC4 dma-table format */ *table = 0x0; table++; *table = cpu_to_be32(cur_addr); table++; *table = 0x0; table++; xcount = bcount & 0xffff; *table = cpu_to_be32(xcount); table++; cur_addr += bcount; cur_len -= bcount; } } sg++; i--; } if (count) { table--; *table |= cpu_to_be32(0x80000000); return count; } use_pio_instead: pci_unmap_sg(hwif->pci_dev, hwif->sg_table, hwif->sg_nents, hwif->sg_dma_direction); return 0; /* revert to PIO for this request */ } static int sgiioc4_ide_dma_setup(ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; unsigned int count = 0; int ddir; if (rq_data_dir(rq)) ddir = PCI_DMA_TODEVICE; else ddir = PCI_DMA_FROMDEVICE; if (!(count = sgiioc4_build_dma_table(drive, rq, ddir))) { /* try PIO instead of DMA */ ide_map_sg(drive, rq); return 1; } if (rq_data_dir(rq)) /* Writes TO the IOC4 FROM Main Memory */ ddir = IOC4_DMA_READ; else /* Writes FROM the IOC4 TO Main Memory */ ddir = IOC4_DMA_WRITE; sgiioc4_configure_for_dma(ddir, drive); return 0; } static void __devinit ide_init_sgiioc4(ide_hwif_t * hwif) { hwif->mmio = 2; hwif->autodma = 1; hwif->atapi_dma = 1; hwif->ultra_mask = 0x0; /* Disable Ultra DMA */ hwif->mwdma_mask = 0x2; /* Multimode-2 DMA */ hwif->swdma_mask = 0x2; hwif->tuneproc = NULL; /* Sets timing for PIO mode */ hwif->speedproc = NULL; /* Sets timing for DMA &/or PIO modes */ hwif->selectproc = NULL;/* Use the default routine to select drive */ hwif->reset_poll = NULL;/* No HBA specific reset_poll needed */ hwif->pre_reset = NULL; /* No HBA specific pre_set needed */ hwif->resetproc = &sgiioc4_resetproc;/* Reset DMA engine, clear interrupts */ hwif->intrproc = NULL; /* Enable or Disable interrupt from drive */ hwif->maskproc = &sgiioc4_maskproc; /* Mask on/off NIEN register */ hwif->quirkproc = NULL; hwif->busproc = NULL; hwif->dma_setup = &sgiioc4_ide_dma_setup; hwif->dma_start = &sgiioc4_ide_dma_start; hwif->ide_dma_end = &sgiioc4_ide_dma_end; hwif->ide_dma_check = &sgiioc4_ide_dma_check; hwif->ide_dma_on = &sgiioc4_ide_dma_on; hwif->ide_dma_off_quietly = &sgiioc4_ide_dma_off_quietly; hwif->ide_dma_test_irq = &sgiioc4_ide_dma_test_irq; hwif->ide_dma_host_on = &sgiioc4_ide_dma_host_on; hwif->ide_dma_host_off = &sgiioc4_ide_dma_host_off; hwif->ide_dma_lostirq = &sgiioc4_ide_dma_lostirq; hwif->ide_dma_timeout = &__ide_dma_timeout; hwif->INB = &sgiioc4_INB; } static int __devinit sgiioc4_ide_setup_pci_device(struct pci_dev *dev, ide_pci_device_t * d) { unsigned long base, ctl, dma_base, irqport; ide_hwif_t *hwif; int h; for (h = 0; h < MAX_HWIFS; ++h) { hwif = &ide_hwifs[h]; /* Find an empty HWIF */ if (hwif->chipset == ide_unknown) break; } /* Get the CmdBlk and CtrlBlk Base Registers */ base = pci_resource_start(dev, 0) + IOC4_CMD_OFFSET; ctl = pci_resource_start(dev, 0) + IOC4_CTRL_OFFSET; irqport = pci_resource_start(dev, 0) + IOC4_INTR_OFFSET; dma_base = pci_resource_start(dev, 0) + IOC4_DMA_OFFSET; if (!request_region(base, IOC4_CMD_CTL_BLK_SIZE, hwif->name)) { printk(KERN_ERR "%s : %s -- ERROR, Port Addresses " "0x%p to 0x%p ALREADY in use\n", __FUNCTION__, hwif->name, (void *) base, (void *) base + IOC4_CMD_CTL_BLK_SIZE); return -ENOMEM; } if (hwif->io_ports[IDE_DATA_OFFSET] != base) { /* Initialize the IO registers */ sgiioc4_init_hwif_ports(&hwif->hw, base, ctl, irqport); memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof (hwif->io_ports)); hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET]; } hwif->irq = dev->irq; hwif->chipset = ide_pci; hwif->pci_dev = dev; hwif->channel = 0; /* Single Channel chip */ hwif->cds = (struct ide_pci_device_s *) d; hwif->gendev.parent = &dev->dev;/* setup proper ancestral information */ /* Initializing chipset IRQ Registers */ hwif->OUTL(0x03, irqport + IOC4_INTR_SET * 4); ide_init_sgiioc4(hwif); if (dma_base) ide_dma_sgiioc4(hwif, dma_base); else printk(KERN_INFO "%s: %s Bus-Master DMA disabled\n", hwif->name, d->name); if (probe_hwif_init(hwif)) return -EIO; /* Create /proc/ide entries */ create_proc_ide_interfaces(); return 0; } static unsigned int __devinit pci_init_sgiioc4(struct pci_dev *dev, ide_pci_device_t * d) { unsigned int class_rev; int ret; pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev); class_rev &= 0xff; printk(KERN_INFO "%s: IDE controller at PCI slot %s, revision %d\n", d->name, pci_name(dev), class_rev); if (class_rev < IOC4_SUPPORTED_FIRMWARE_REV) { printk(KERN_ERR "Skipping %s IDE controller in slot %s: " "firmware is obsolete - please upgrade to revision" "46 or higher\n", d->name, pci_name(dev)); ret = -EAGAIN; goto out; } ret = sgiioc4_ide_setup_pci_device(dev, d); out: return ret; } static ide_pci_device_t sgiioc4_chipsets[] __devinitdata = { { /* Channel 0 */ .name = "SGIIOC4", .init_hwif = ide_init_sgiioc4, .init_dma = ide_dma_sgiioc4, .channels = 1, .autodma = AUTODMA, /* SGI IOC4 doesn't have enablebits. */ .bootable = ON_BOARD, } }; int ioc4_ide_attach_one(struct ioc4_driver_data *idd) { return pci_init_sgiioc4(idd->idd_pdev, &sgiioc4_chipsets[idd->idd_pci_id->driver_data]); } static struct ioc4_submodule ioc4_ide_submodule = { .is_name = "IOC4_ide", .is_owner = THIS_MODULE, .is_probe = ioc4_ide_attach_one, /* .is_remove = ioc4_ide_remove_one, */ }; static int __devinit ioc4_ide_init(void) { return ioc4_register_submodule(&ioc4_ide_submodule); } static void __devexit ioc4_ide_exit(void) { ioc4_unregister_submodule(&ioc4_ide_submodule); } module_init(ioc4_ide_init); module_exit(ioc4_ide_exit); MODULE_AUTHOR("Aniket Malatpure - Silicon Graphics Inc. (SGI)"); MODULE_DESCRIPTION("IDE PCI driver module for SGI IOC4 Base-IO Card"); MODULE_LICENSE("GPL");