/* Copyright (c) 2001,2002 Christer Weinigel <wingel@nano-system.com> National Semiconductor SCx200 ACCESS.bus support Also supports the AMD CS5535 and AMD CS5536 Based on i2c-keywest.c which is: Copyright (c) 2001 Benjamin Herrenschmidt <benh@kernel.crashing.org> Copyright (c) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/mutex.h> #include <asm/io.h> #include <linux/scx200.h> #define NAME "scx200_acb" MODULE_AUTHOR("Christer Weinigel <wingel@nano-system.com>"); MODULE_DESCRIPTION("NatSemi SCx200 ACCESS.bus Driver"); MODULE_LICENSE("GPL"); #define MAX_DEVICES 4 static int base[MAX_DEVICES] = { 0x820, 0x840 }; module_param_array(base, int, NULL, 0); MODULE_PARM_DESC(base, "Base addresses for the ACCESS.bus controllers"); #define POLL_TIMEOUT (HZ/5) enum scx200_acb_state { state_idle, state_address, state_command, state_repeat_start, state_quick, state_read, state_write, }; static const char *scx200_acb_state_name[] = { "idle", "address", "command", "repeat_start", "quick", "read", "write", }; /* Physical interface */ struct scx200_acb_iface { struct scx200_acb_iface *next; struct i2c_adapter adapter; unsigned base; struct mutex mutex; /* State machine data */ enum scx200_acb_state state; int result; u8 address_byte; u8 command; u8 *ptr; char needs_reset; unsigned len; /* PCI device info */ struct pci_dev *pdev; int bar; }; /* Register Definitions */ #define ACBSDA (iface->base + 0) #define ACBST (iface->base + 1) #define ACBST_SDAST 0x40 /* SDA Status */ #define ACBST_BER 0x20 #define ACBST_NEGACK 0x10 /* Negative Acknowledge */ #define ACBST_STASTR 0x08 /* Stall After Start */ #define ACBST_MASTER 0x02 #define ACBCST (iface->base + 2) #define ACBCST_BB 0x02 #define ACBCTL1 (iface->base + 3) #define ACBCTL1_STASTRE 0x80 #define ACBCTL1_NMINTE 0x40 #define ACBCTL1_ACK 0x10 #define ACBCTL1_STOP 0x02 #define ACBCTL1_START 0x01 #define ACBADDR (iface->base + 4) #define ACBCTL2 (iface->base + 5) #define ACBCTL2_ENABLE 0x01 /************************************************************************/ static void scx200_acb_machine(struct scx200_acb_iface *iface, u8 status) { const char *errmsg; dev_dbg(&iface->adapter.dev, "state %s, status = 0x%02x\n", scx200_acb_state_name[iface->state], status); if (status & ACBST_BER) { errmsg = "bus error"; goto error; } if (!(status & ACBST_MASTER)) { errmsg = "not master"; goto error; } if (status & ACBST_NEGACK) { dev_dbg(&iface->adapter.dev, "negative ack in state %s\n", scx200_acb_state_name[iface->state]); iface->state = state_idle; iface->result = -ENXIO; outb(inb(ACBCTL1) | ACBCTL1_STOP, ACBCTL1); outb(ACBST_STASTR | ACBST_NEGACK, ACBST); /* Reset the status register */ outb(0, ACBST); return; } switch (iface->state) { case state_idle: dev_warn(&iface->adapter.dev, "interrupt in idle state\n"); break; case state_address: /* Do a pointer write first */ outb(iface->address_byte & ~1, ACBSDA); iface->state = state_command; break; case state_command: outb(iface->command, ACBSDA); if (iface->address_byte & 1) iface->state = state_repeat_start; else iface->state = state_write; break; case state_repeat_start: outb(inb(ACBCTL1) | ACBCTL1_START, ACBCTL1); /* fallthrough */ case state_quick: if (iface->address_byte & 1) { if (iface->len == 1) outb(inb(ACBCTL1) | ACBCTL1_ACK, ACBCTL1); else outb(inb(ACBCTL1) & ~ACBCTL1_ACK, ACBCTL1); outb(iface->address_byte, ACBSDA); iface->state = state_read; } else { outb(iface->address_byte, ACBSDA); iface->state = state_write; } break; case state_read: /* Set ACK if _next_ byte will be the last one */ if (iface->len == 2) outb(inb(ACBCTL1) | ACBCTL1_ACK, ACBCTL1); else outb(inb(ACBCTL1) & ~ACBCTL1_ACK, ACBCTL1); if (iface->len == 1) { iface->result = 0; iface->state = state_idle; outb(inb(ACBCTL1) | ACBCTL1_STOP, ACBCTL1); } *iface->ptr++ = inb(ACBSDA); --iface->len; break; case state_write: if (iface->len == 0) { iface->result = 0; iface->state = state_idle; outb(inb(ACBCTL1) | ACBCTL1_STOP, ACBCTL1); break; } outb(*iface->ptr++, ACBSDA); --iface->len; break; } return; error: dev_err(&iface->adapter.dev, "%s in state %s\n", errmsg, scx200_acb_state_name[iface->state]); iface->state = state_idle; iface->result = -EIO; iface->needs_reset = 1; } static void scx200_acb_poll(struct scx200_acb_iface *iface) { u8 status; unsigned long timeout; timeout = jiffies + POLL_TIMEOUT; while (1) { status = inb(ACBST); /* Reset the status register to avoid the hang */ outb(0, ACBST); if ((status & (ACBST_SDAST|ACBST_BER|ACBST_NEGACK)) != 0) { scx200_acb_machine(iface, status); return; } if (time_after(jiffies, timeout)) break; cpu_relax(); cond_resched(); } dev_err(&iface->adapter.dev, "timeout in state %s\n", scx200_acb_state_name[iface->state]); iface->state = state_idle; iface->result = -EIO; iface->needs_reset = 1; } static void scx200_acb_reset(struct scx200_acb_iface *iface) { /* Disable the ACCESS.bus device and Configure the SCL frequency: 16 clock cycles */ outb(0x70, ACBCTL2); /* Polling mode */ outb(0, ACBCTL1); /* Disable slave address */ outb(0, ACBADDR); /* Enable the ACCESS.bus device */ outb(inb(ACBCTL2) | ACBCTL2_ENABLE, ACBCTL2); /* Free STALL after START */ outb(inb(ACBCTL1) & ~(ACBCTL1_STASTRE | ACBCTL1_NMINTE), ACBCTL1); /* Send a STOP */ outb(inb(ACBCTL1) | ACBCTL1_STOP, ACBCTL1); /* Clear BER, NEGACK and STASTR bits */ outb(ACBST_BER | ACBST_NEGACK | ACBST_STASTR, ACBST); /* Clear BB bit */ outb(inb(ACBCST) | ACBCST_BB, ACBCST); } static s32 scx200_acb_smbus_xfer(struct i2c_adapter *adapter, u16 address, unsigned short flags, char rw, u8 command, int size, union i2c_smbus_data *data) { struct scx200_acb_iface *iface = i2c_get_adapdata(adapter); int len; u8 *buffer; u16 cur_word; int rc; switch (size) { case I2C_SMBUS_QUICK: len = 0; buffer = NULL; break; case I2C_SMBUS_BYTE: len = 1; buffer = rw ? &data->byte : &command; break; case I2C_SMBUS_BYTE_DATA: len = 1; buffer = &data->byte; break; case I2C_SMBUS_WORD_DATA: len = 2; cur_word = cpu_to_le16(data->word); buffer = (u8 *)&cur_word; break; case I2C_SMBUS_I2C_BLOCK_DATA: len = data->block[0]; if (len == 0 || len > I2C_SMBUS_BLOCK_MAX) return -EINVAL; buffer = &data->block[1]; break; default: return -EINVAL; } dev_dbg(&adapter->dev, "size=%d, address=0x%x, command=0x%x, len=%d, read=%d\n", size, address, command, len, rw); if (!len && rw == I2C_SMBUS_READ) { dev_dbg(&adapter->dev, "zero length read\n"); return -EINVAL; } mutex_lock(&iface->mutex); iface->address_byte = (address << 1) | rw; iface->command = command; iface->ptr = buffer; iface->len = len; iface->result = -EINVAL; iface->needs_reset = 0; outb(inb(ACBCTL1) | ACBCTL1_START, ACBCTL1); if (size == I2C_SMBUS_QUICK || size == I2C_SMBUS_BYTE) iface->state = state_quick; else iface->state = state_address; while (iface->state != state_idle) scx200_acb_poll(iface); if (iface->needs_reset) scx200_acb_reset(iface); rc = iface->result; mutex_unlock(&iface->mutex); if (rc == 0 && size == I2C_SMBUS_WORD_DATA && rw == I2C_SMBUS_READ) data->word = le16_to_cpu(cur_word); #ifdef DEBUG dev_dbg(&adapter->dev, "transfer done, result: %d", rc); if (buffer) { int i; printk(" data:"); for (i = 0; i < len; ++i) printk(" %02x", buffer[i]); } printk("\n"); #endif return rc; } static u32 scx200_acb_func(struct i2c_adapter *adapter) { return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK; } /* For now, we only handle combined mode (smbus) */ static const struct i2c_algorithm scx200_acb_algorithm = { .smbus_xfer = scx200_acb_smbus_xfer, .functionality = scx200_acb_func, }; static struct scx200_acb_iface *scx200_acb_list; static DEFINE_MUTEX(scx200_acb_list_mutex); static __init int scx200_acb_probe(struct scx200_acb_iface *iface) { u8 val; /* Disable the ACCESS.bus device and Configure the SCL frequency: 16 clock cycles */ outb(0x70, ACBCTL2); if (inb(ACBCTL2) != 0x70) { pr_debug(NAME ": ACBCTL2 readback failed\n"); return -ENXIO; } outb(inb(ACBCTL1) | ACBCTL1_NMINTE, ACBCTL1); val = inb(ACBCTL1); if (val) { pr_debug(NAME ": disabled, but ACBCTL1=0x%02x\n", val); return -ENXIO; } outb(inb(ACBCTL2) | ACBCTL2_ENABLE, ACBCTL2); outb(inb(ACBCTL1) | ACBCTL1_NMINTE, ACBCTL1); val = inb(ACBCTL1); if ((val & ACBCTL1_NMINTE) != ACBCTL1_NMINTE) { pr_debug(NAME ": enabled, but NMINTE won't be set, " "ACBCTL1=0x%02x\n", val); return -ENXIO; } return 0; } static __init struct scx200_acb_iface *scx200_create_iface(const char *text, struct device *dev, int index) { struct scx200_acb_iface *iface; struct i2c_adapter *adapter; iface = kzalloc(sizeof(*iface), GFP_KERNEL); if (!iface) { printk(KERN_ERR NAME ": can't allocate memory\n"); return NULL; } adapter = &iface->adapter; i2c_set_adapdata(adapter, iface); snprintf(adapter->name, sizeof(adapter->name), "%s ACB%d", text, index); adapter->owner = THIS_MODULE; adapter->id = I2C_HW_SMBUS_SCX200; adapter->algo = &scx200_acb_algorithm; adapter->class = I2C_CLASS_HWMON; adapter->dev.parent = dev; mutex_init(&iface->mutex); return iface; } static int __init scx200_acb_create(struct scx200_acb_iface *iface) { struct i2c_adapter *adapter; int rc; adapter = &iface->adapter; rc = scx200_acb_probe(iface); if (rc) { printk(KERN_WARNING NAME ": probe failed\n"); return rc; } scx200_acb_reset(iface); if (i2c_add_adapter(adapter) < 0) { printk(KERN_ERR NAME ": failed to register\n"); return -ENODEV; } mutex_lock(&scx200_acb_list_mutex); iface->next = scx200_acb_list; scx200_acb_list = iface; mutex_unlock(&scx200_acb_list_mutex); return 0; } static __init int scx200_create_pci(const char *text, struct pci_dev *pdev, int bar) { struct scx200_acb_iface *iface; int rc; iface = scx200_create_iface(text, &pdev->dev, 0); if (iface == NULL) return -ENOMEM; iface->pdev = pdev; iface->bar = bar; rc = pci_enable_device_bars(iface->pdev, 1 << iface->bar); if (rc) goto errout_free; rc = pci_request_region(iface->pdev, iface->bar, iface->adapter.name); if (rc) { printk(KERN_ERR NAME ": can't allocate PCI BAR %d\n", iface->bar); goto errout_free; } iface->base = pci_resource_start(iface->pdev, iface->bar); rc = scx200_acb_create(iface); if (rc == 0) return 0; pci_release_region(iface->pdev, iface->bar); pci_dev_put(iface->pdev); errout_free: kfree(iface); return rc; } static int __init scx200_create_isa(const char *text, unsigned long base, int index) { struct scx200_acb_iface *iface; int rc; iface = scx200_create_iface(text, NULL, index); if (iface == NULL) return -ENOMEM; if (request_region(base, 8, iface->adapter.name) == 0) { printk(KERN_ERR NAME ": can't allocate io 0x%lx-0x%lx\n", base, base + 8 - 1); rc = -EBUSY; goto errout_free; } iface->base = base; rc = scx200_acb_create(iface); if (rc == 0) return 0; release_region(base, 8); errout_free: kfree(iface); return rc; } /* Driver data is an index into the scx200_data array that indicates * the name and the BAR where the I/O address resource is located. ISA * devices are flagged with a bar value of -1 */ static struct pci_device_id scx200_pci[] = { { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SCx200_BRIDGE), .driver_data = 0 }, { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SC1100_BRIDGE), .driver_data = 0 }, { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_CS5535_ISA), .driver_data = 1 }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_ISA), .driver_data = 2 } }; static struct { const char *name; int bar; } scx200_data[] = { { "SCx200", -1 }, { "CS5535", 0 }, { "CS5536", 0 } }; static __init int scx200_scan_pci(void) { int data, dev; int rc = -ENODEV; struct pci_dev *pdev; for(dev = 0; dev < ARRAY_SIZE(scx200_pci); dev++) { pdev = pci_get_device(scx200_pci[dev].vendor, scx200_pci[dev].device, NULL); if (pdev == NULL) continue; data = scx200_pci[dev].driver_data; /* if .bar is greater or equal to zero, this is a * PCI device - otherwise, we assume that the ports are ISA based */ if (scx200_data[data].bar >= 0) rc = scx200_create_pci(scx200_data[data].name, pdev, scx200_data[data].bar); else { int i; pci_dev_put(pdev); for (i = 0; i < MAX_DEVICES; ++i) { if (base[i] == 0) continue; rc = scx200_create_isa(scx200_data[data].name, base[i], i); } } break; } return rc; } static int __init scx200_acb_init(void) { int rc; pr_debug(NAME ": NatSemi SCx200 ACCESS.bus Driver\n"); rc = scx200_scan_pci(); /* If at least one bus was created, init must succeed */ if (scx200_acb_list) return 0; return rc; } static void __exit scx200_acb_cleanup(void) { struct scx200_acb_iface *iface; mutex_lock(&scx200_acb_list_mutex); while ((iface = scx200_acb_list) != NULL) { scx200_acb_list = iface->next; mutex_unlock(&scx200_acb_list_mutex); i2c_del_adapter(&iface->adapter); if (iface->pdev) { pci_release_region(iface->pdev, iface->bar); pci_dev_put(iface->pdev); } else release_region(iface->base, 8); kfree(iface); mutex_lock(&scx200_acb_list_mutex); } mutex_unlock(&scx200_acb_list_mutex); } module_init(scx200_acb_init); module_exit(scx200_acb_cleanup);