/* * sht15.c - support for the SHT15 Temperature and Humidity Sensor * * Copyright (c) 2009 Jonathan Cameron * * Copyright (c) 2007 Wouter Horre * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Currently ignoring checksum on readings. * Default resolution only (14bit temp, 12bit humidity) * Ignoring battery status. * Heater not enabled. * Timings are all conservative. * * Data sheet available (1/2009) at * http://www.sensirion.ch/en/pdf/product_information/Datasheet-humidity-sensor-SHT1x.pdf * * Regulator supply name = vcc */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/gpio.h> #include <linux/module.h> #include <linux/init.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/err.h> #include <linux/sht15.h> #include <linux/regulator/consumer.h> #include <asm/atomic.h> #define SHT15_MEASURE_TEMP 3 #define SHT15_MEASURE_RH 5 #define SHT15_READING_NOTHING 0 #define SHT15_READING_TEMP 1 #define SHT15_READING_HUMID 2 /* Min timings in nsecs */ #define SHT15_TSCKL 100 /* clock low */ #define SHT15_TSCKH 100 /* clock high */ #define SHT15_TSU 150 /* data setup time */ /** * struct sht15_temppair - elements of voltage dependant temp calc * @vdd: supply voltage in microvolts * @d1: see data sheet */ struct sht15_temppair { int vdd; /* microvolts */ int d1; }; /* Table 9 from data sheet - relates temperature calculation * to supply voltage. */ static const struct sht15_temppair temppoints[] = { { 2500000, -39400 }, { 3000000, -39600 }, { 3500000, -39700 }, { 4000000, -39800 }, { 5000000, -40100 }, }; /** * struct sht15_data - device instance specific data * @pdata: platform data (gpio's etc) * @read_work: bh of interrupt handler * @wait_queue: wait queue for getting values from device * @val_temp: last temperature value read from device * @val_humid: last humidity value read from device * @flag: status flag used to identify what the last request was * @valid: are the current stored values valid (start condition) * @last_updat: time of last update * @read_lock: mutex to ensure only one read in progress * at a time. * @dev: associate device structure * @hwmon_dev: device associated with hwmon subsystem * @reg: associated regulator (if specified) * @nb: notifier block to handle notifications of voltage changes * @supply_uV: local copy of supply voltage used to allow * use of regulator consumer if available * @supply_uV_valid: indicates that an updated value has not yet * been obtained from the regulator and so any calculations * based upon it will be invalid. * @update_supply_work: work struct that is used to update the supply_uV * @interrupt_handled: flag used to indicate a hander has been scheduled */ struct sht15_data { struct sht15_platform_data *pdata; struct work_struct read_work; wait_queue_head_t wait_queue; uint16_t val_temp; uint16_t val_humid; u8 flag; u8 valid; unsigned long last_updat; struct mutex read_lock; struct device *dev; struct device *hwmon_dev; struct regulator *reg; struct notifier_block nb; int supply_uV; int supply_uV_valid; struct work_struct update_supply_work; atomic_t interrupt_handled; }; /** * sht15_connection_reset() - reset the comms interface * @data: sht15 specific data * * This implements section 3.4 of the data sheet */ static void sht15_connection_reset(struct sht15_data *data) { int i; gpio_direction_output(data->pdata->gpio_data, 1); ndelay(SHT15_TSCKL); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); for (i = 0; i < 9; ++i) { gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); } } /** * sht15_send_bit() - send an individual bit to the device * @data: device state data * @val: value of bit to be sent **/ static inline void sht15_send_bit(struct sht15_data *data, int val) { gpio_set_value(data->pdata->gpio_data, val); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); /* clock low time */ } /** * sht15_transmission_start() - specific sequence for new transmission * * @data: device state data * Timings for this are not documented on the data sheet, so very * conservative ones used in implementation. This implements * figure 12 on the data sheet. **/ static void sht15_transmission_start(struct sht15_data *data) { /* ensure data is high and output */ gpio_direction_output(data->pdata->gpio_data, 1); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); gpio_set_value(data->pdata->gpio_data, 0); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); gpio_set_value(data->pdata->gpio_data, 1); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); } /** * sht15_send_byte() - send a single byte to the device * @data: device state * @byte: value to be sent **/ static void sht15_send_byte(struct sht15_data *data, u8 byte) { int i; for (i = 0; i < 8; i++) { sht15_send_bit(data, !!(byte & 0x80)); byte <<= 1; } } /** * sht15_wait_for_response() - checks for ack from device * @data: device state **/ static int sht15_wait_for_response(struct sht15_data *data) { gpio_direction_input(data->pdata->gpio_data); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); if (gpio_get_value(data->pdata->gpio_data)) { gpio_set_value(data->pdata->gpio_sck, 0); dev_err(data->dev, "Command not acknowledged\n"); sht15_connection_reset(data); return -EIO; } gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); return 0; } /** * sht15_send_cmd() - Sends a command to the device. * @data: device state * @cmd: command byte to be sent * * On entry, sck is output low, data is output pull high * and the interrupt disabled. **/ static int sht15_send_cmd(struct sht15_data *data, u8 cmd) { int ret = 0; sht15_transmission_start(data); sht15_send_byte(data, cmd); ret = sht15_wait_for_response(data); return ret; } /** * sht15_update_single_val() - get a new value from device * @data: device instance specific data * @command: command sent to request value * @timeout_msecs: timeout after which comms are assumed * to have failed are reset. **/ static inline int sht15_update_single_val(struct sht15_data *data, int command, int timeout_msecs) { int ret; ret = sht15_send_cmd(data, command); if (ret) return ret; gpio_direction_input(data->pdata->gpio_data); atomic_set(&data->interrupt_handled, 0); enable_irq(gpio_to_irq(data->pdata->gpio_data)); if (gpio_get_value(data->pdata->gpio_data) == 0) { disable_irq_nosync(gpio_to_irq(data->pdata->gpio_data)); /* Only relevant if the interrupt hasn't occured. */ if (!atomic_read(&data->interrupt_handled)) schedule_work(&data->read_work); } ret = wait_event_timeout(data->wait_queue, (data->flag == SHT15_READING_NOTHING), msecs_to_jiffies(timeout_msecs)); if (ret == 0) {/* timeout occurred */ disable_irq_nosync(gpio_to_irq(data->pdata->gpio_data)); sht15_connection_reset(data); return -ETIME; } return 0; } /** * sht15_update_vals() - get updated readings from device if too old * @data: device state **/ static int sht15_update_vals(struct sht15_data *data) { int ret = 0; int timeout = HZ; mutex_lock(&data->read_lock); if (time_after(jiffies, data->last_updat + timeout) || !data->valid) { data->flag = SHT15_READING_HUMID; ret = sht15_update_single_val(data, SHT15_MEASURE_RH, 160); if (ret) goto error_ret; data->flag = SHT15_READING_TEMP; ret = sht15_update_single_val(data, SHT15_MEASURE_TEMP, 400); if (ret) goto error_ret; data->valid = 1; data->last_updat = jiffies; } error_ret: mutex_unlock(&data->read_lock); return ret; } /** * sht15_calc_temp() - convert the raw reading to a temperature * @data: device state * * As per section 4.3 of the data sheet. **/ static inline int sht15_calc_temp(struct sht15_data *data) { int d1 = 0; int i; for (i = 1; i < ARRAY_SIZE(temppoints) - 1; i++) /* Find pointer to interpolate */ if (data->supply_uV > temppoints[i - 1].vdd) { d1 = (data->supply_uV/1000 - temppoints[i - 1].vdd) * (temppoints[i].d1 - temppoints[i - 1].d1) / (temppoints[i].vdd - temppoints[i - 1].vdd) + temppoints[i - 1].d1; break; } return data->val_temp*10 + d1; } /** * sht15_calc_humid() - using last temperature convert raw to humid * @data: device state * * This is the temperature compensated version as per section 4.2 of * the data sheet. **/ static inline int sht15_calc_humid(struct sht15_data *data) { int RHlinear; /* milli percent */ int temp = sht15_calc_temp(data); const int c1 = -4; const int c2 = 40500; /* x 10 ^ -6 */ const int c3 = 2800; /* x10 ^ -9 */ RHlinear = c1*1000 + c2 * data->val_humid/1000 + (data->val_humid * data->val_humid * c3)/1000000; return (temp - 25000) * (10000 + 800 * data->val_humid) / 1000000 + RHlinear; } static ssize_t sht15_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct sht15_data *data = dev_get_drvdata(dev); /* Technically no need to read humidity as well */ ret = sht15_update_vals(data); return ret ? ret : sprintf(buf, "%d\n", sht15_calc_temp(data)); } static ssize_t sht15_show_humidity(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct sht15_data *data = dev_get_drvdata(dev); ret = sht15_update_vals(data); return ret ? ret : sprintf(buf, "%d\n", sht15_calc_humid(data)); }; static ssize_t show_name(struct device *dev, struct device_attribute *attr, char *buf) { struct platform_device *pdev = to_platform_device(dev); return sprintf(buf, "%s\n", pdev->name); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, sht15_show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(humidity1_input, S_IRUGO, sht15_show_humidity, NULL, 0); static DEVICE_ATTR(name, S_IRUGO, show_name, NULL); static struct attribute *sht15_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_humidity1_input.dev_attr.attr, &dev_attr_name.attr, NULL, }; static const struct attribute_group sht15_attr_group = { .attrs = sht15_attrs, }; static irqreturn_t sht15_interrupt_fired(int irq, void *d) { struct sht15_data *data = d; /* First disable the interrupt */ disable_irq_nosync(irq); atomic_inc(&data->interrupt_handled); /* Then schedule a reading work struct */ if (data->flag != SHT15_READING_NOTHING) schedule_work(&data->read_work); return IRQ_HANDLED; } /* Each byte of data is acknowledged by pulling the data line * low for one clock pulse. */ static void sht15_ack(struct sht15_data *data) { gpio_direction_output(data->pdata->gpio_data, 0); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_data, 1); gpio_direction_input(data->pdata->gpio_data); } /** * sht15_end_transmission() - notify device of end of transmission * @data: device state * * This is basically a NAK. (single clock pulse, data high) **/ static void sht15_end_transmission(struct sht15_data *data) { gpio_direction_output(data->pdata->gpio_data, 1); ndelay(SHT15_TSU); gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); } static void sht15_bh_read_data(struct work_struct *work_s) { int i; uint16_t val = 0; struct sht15_data *data = container_of(work_s, struct sht15_data, read_work); /* Firstly, verify the line is low */ if (gpio_get_value(data->pdata->gpio_data)) { /* If not, then start the interrupt again - care here as could have gone low in meantime so verify it hasn't! */ atomic_set(&data->interrupt_handled, 0); enable_irq(gpio_to_irq(data->pdata->gpio_data)); /* If still not occured or another handler has been scheduled */ if (gpio_get_value(data->pdata->gpio_data) || atomic_read(&data->interrupt_handled)) return; } /* Read the data back from the device */ for (i = 0; i < 16; ++i) { val <<= 1; gpio_set_value(data->pdata->gpio_sck, 1); ndelay(SHT15_TSCKH); val |= !!gpio_get_value(data->pdata->gpio_data); gpio_set_value(data->pdata->gpio_sck, 0); ndelay(SHT15_TSCKL); if (i == 7) sht15_ack(data); } /* Tell the device we are done */ sht15_end_transmission(data); switch (data->flag) { case SHT15_READING_TEMP: data->val_temp = val; break; case SHT15_READING_HUMID: data->val_humid = val; break; } data->flag = SHT15_READING_NOTHING; wake_up(&data->wait_queue); } static void sht15_update_voltage(struct work_struct *work_s) { struct sht15_data *data = container_of(work_s, struct sht15_data, update_supply_work); data->supply_uV = regulator_get_voltage(data->reg); } /** * sht15_invalidate_voltage() - mark supply voltage invalid when notified by reg * @nb: associated notification structure * @event: voltage regulator state change event code * @ignored: function parameter - ignored here * * Note that as the notification code holds the regulator lock, we have * to schedule an update of the supply voltage rather than getting it directly. **/ static int sht15_invalidate_voltage(struct notifier_block *nb, unsigned long event, void *ignored) { struct sht15_data *data = container_of(nb, struct sht15_data, nb); if (event == REGULATOR_EVENT_VOLTAGE_CHANGE) data->supply_uV_valid = false; schedule_work(&data->update_supply_work); return NOTIFY_OK; } static int __devinit sht15_probe(struct platform_device *pdev) { int ret = 0; struct sht15_data *data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { ret = -ENOMEM; dev_err(&pdev->dev, "kzalloc failed"); goto error_ret; } INIT_WORK(&data->read_work, sht15_bh_read_data); INIT_WORK(&data->update_supply_work, sht15_update_voltage); platform_set_drvdata(pdev, data); mutex_init(&data->read_lock); data->dev = &pdev->dev; init_waitqueue_head(&data->wait_queue); if (pdev->dev.platform_data == NULL) { dev_err(&pdev->dev, "no platform data supplied"); goto err_free_data; } data->pdata = pdev->dev.platform_data; data->supply_uV = data->pdata->supply_mv*1000; /* If a regulator is available, query what the supply voltage actually is!*/ data->reg = regulator_get(data->dev, "vcc"); if (!IS_ERR(data->reg)) { data->supply_uV = regulator_get_voltage(data->reg); regulator_enable(data->reg); /* setup a notifier block to update this if another device * causes the voltage to change */ data->nb.notifier_call = &sht15_invalidate_voltage; ret = regulator_register_notifier(data->reg, &data->nb); } /* Try requesting the GPIOs */ ret = gpio_request(data->pdata->gpio_sck, "SHT15 sck"); if (ret) { dev_err(&pdev->dev, "gpio request failed"); goto err_free_data; } gpio_direction_output(data->pdata->gpio_sck, 0); ret = gpio_request(data->pdata->gpio_data, "SHT15 data"); if (ret) { dev_err(&pdev->dev, "gpio request failed"); goto err_release_gpio_sck; } ret = sysfs_create_group(&pdev->dev.kobj, &sht15_attr_group); if (ret) { dev_err(&pdev->dev, "sysfs create failed"); goto err_free_data; } ret = request_irq(gpio_to_irq(data->pdata->gpio_data), sht15_interrupt_fired, IRQF_TRIGGER_FALLING, "sht15 data", data); if (ret) { dev_err(&pdev->dev, "failed to get irq for data line"); goto err_release_gpio_data; } disable_irq_nosync(gpio_to_irq(data->pdata->gpio_data)); sht15_connection_reset(data); sht15_send_cmd(data, 0x1E); data->hwmon_dev = hwmon_device_register(data->dev); if (IS_ERR(data->hwmon_dev)) { ret = PTR_ERR(data->hwmon_dev); goto err_release_gpio_data; } return 0; err_release_gpio_data: gpio_free(data->pdata->gpio_data); err_release_gpio_sck: gpio_free(data->pdata->gpio_sck); err_free_data: kfree(data); error_ret: return ret; } static int __devexit sht15_remove(struct platform_device *pdev) { struct sht15_data *data = platform_get_drvdata(pdev); /* Make sure any reads from the device are done and * prevent new ones beginnning */ mutex_lock(&data->read_lock); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&pdev->dev.kobj, &sht15_attr_group); if (!IS_ERR(data->reg)) { regulator_unregister_notifier(data->reg, &data->nb); regulator_disable(data->reg); regulator_put(data->reg); } free_irq(gpio_to_irq(data->pdata->gpio_data), data); gpio_free(data->pdata->gpio_data); gpio_free(data->pdata->gpio_sck); mutex_unlock(&data->read_lock); kfree(data); return 0; } static struct platform_driver sht_drivers[] = { { .driver = { .name = "sht10", .owner = THIS_MODULE, }, .probe = sht15_probe, .remove = __devexit_p(sht15_remove), }, { .driver = { .name = "sht11", .owner = THIS_MODULE, }, .probe = sht15_probe, .remove = __devexit_p(sht15_remove), }, { .driver = { .name = "sht15", .owner = THIS_MODULE, }, .probe = sht15_probe, .remove = __devexit_p(sht15_remove), }, { .driver = { .name = "sht71", .owner = THIS_MODULE, }, .probe = sht15_probe, .remove = __devexit_p(sht15_remove), }, { .driver = { .name = "sht75", .owner = THIS_MODULE, }, .probe = sht15_probe, .remove = __devexit_p(sht15_remove), }, }; static int __init sht15_init(void) { int ret; int i; for (i = 0; i < ARRAY_SIZE(sht_drivers); i++) { ret = platform_driver_register(&sht_drivers[i]); if (ret) goto error_unreg; } return 0; error_unreg: while (--i >= 0) platform_driver_unregister(&sht_drivers[i]); return ret; } module_init(sht15_init); static void __exit sht15_exit(void) { int i; for (i = ARRAY_SIZE(sht_drivers) - 1; i >= 0; i--) platform_driver_unregister(&sht_drivers[i]); } module_exit(sht15_exit); MODULE_LICENSE("GPL");