/* * Copyright (C) 2011 Samsung Electronics Co.Ltd * Authors: * Seung-Woo Kim * Inki Dae * Joonyoung Shim * * Based on drivers/media/video/s5p-tv/mixer_reg.c * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include #include "regs-mixer.h" #include "regs-vp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "exynos_drm_drv.h" #include "exynos_drm_crtc.h" #include "exynos_drm_hdmi.h" #include "exynos_drm_iommu.h" #define get_mixer_context(dev) platform_get_drvdata(to_platform_device(dev)) struct hdmi_win_data { dma_addr_t dma_addr; dma_addr_t chroma_dma_addr; uint32_t pixel_format; unsigned int bpp; unsigned int crtc_x; unsigned int crtc_y; unsigned int crtc_width; unsigned int crtc_height; unsigned int fb_x; unsigned int fb_y; unsigned int fb_width; unsigned int fb_height; unsigned int src_width; unsigned int src_height; unsigned int mode_width; unsigned int mode_height; unsigned int scan_flags; bool enabled; bool resume; }; struct mixer_resources { int irq; void __iomem *mixer_regs; void __iomem *vp_regs; spinlock_t reg_slock; struct clk *mixer; struct clk *vp; struct clk *sclk_mixer; struct clk *sclk_hdmi; struct clk *sclk_dac; }; enum mixer_version_id { MXR_VER_0_0_0_16, MXR_VER_16_0_33_0, }; struct mixer_context { struct device *dev; struct drm_device *drm_dev; int pipe; bool interlace; bool powered; bool vp_enabled; u32 int_en; struct mutex mixer_mutex; struct mixer_resources mixer_res; struct hdmi_win_data win_data[MIXER_WIN_NR]; enum mixer_version_id mxr_ver; void *parent_ctx; wait_queue_head_t wait_vsync_queue; atomic_t wait_vsync_event; }; struct mixer_drv_data { enum mixer_version_id version; bool is_vp_enabled; }; static const u8 filter_y_horiz_tap8[] = { 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 2, 4, 5, 6, 6, 6, 6, 6, 5, 5, 4, 3, 2, 1, 1, 0, -6, -12, -16, -18, -20, -21, -20, -20, -18, -16, -13, -10, -8, -5, -2, 127, 126, 125, 121, 114, 107, 99, 89, 79, 68, 57, 46, 35, 25, 16, 8, }; static const u8 filter_y_vert_tap4[] = { 0, -3, -6, -8, -8, -8, -8, -7, -6, -5, -4, -3, -2, -1, -1, 0, 127, 126, 124, 118, 111, 102, 92, 81, 70, 59, 48, 37, 27, 19, 11, 5, 0, 5, 11, 19, 27, 37, 48, 59, 70, 81, 92, 102, 111, 118, 124, 126, 0, 0, -1, -1, -2, -3, -4, -5, -6, -7, -8, -8, -8, -8, -6, -3, }; static const u8 filter_cr_horiz_tap4[] = { 0, -3, -6, -8, -8, -8, -8, -7, -6, -5, -4, -3, -2, -1, -1, 0, 127, 126, 124, 118, 111, 102, 92, 81, 70, 59, 48, 37, 27, 19, 11, 5, }; static inline u32 vp_reg_read(struct mixer_resources *res, u32 reg_id) { return readl(res->vp_regs + reg_id); } static inline void vp_reg_write(struct mixer_resources *res, u32 reg_id, u32 val) { writel(val, res->vp_regs + reg_id); } static inline void vp_reg_writemask(struct mixer_resources *res, u32 reg_id, u32 val, u32 mask) { u32 old = vp_reg_read(res, reg_id); val = (val & mask) | (old & ~mask); writel(val, res->vp_regs + reg_id); } static inline u32 mixer_reg_read(struct mixer_resources *res, u32 reg_id) { return readl(res->mixer_regs + reg_id); } static inline void mixer_reg_write(struct mixer_resources *res, u32 reg_id, u32 val) { writel(val, res->mixer_regs + reg_id); } static inline void mixer_reg_writemask(struct mixer_resources *res, u32 reg_id, u32 val, u32 mask) { u32 old = mixer_reg_read(res, reg_id); val = (val & mask) | (old & ~mask); writel(val, res->mixer_regs + reg_id); } static void mixer_regs_dump(struct mixer_context *ctx) { #define DUMPREG(reg_id) \ do { \ DRM_DEBUG_KMS(#reg_id " = %08x\n", \ (u32)readl(ctx->mixer_res.mixer_regs + reg_id)); \ } while (0) DUMPREG(MXR_STATUS); DUMPREG(MXR_CFG); DUMPREG(MXR_INT_EN); DUMPREG(MXR_INT_STATUS); DUMPREG(MXR_LAYER_CFG); DUMPREG(MXR_VIDEO_CFG); DUMPREG(MXR_GRAPHIC0_CFG); DUMPREG(MXR_GRAPHIC0_BASE); DUMPREG(MXR_GRAPHIC0_SPAN); DUMPREG(MXR_GRAPHIC0_WH); DUMPREG(MXR_GRAPHIC0_SXY); DUMPREG(MXR_GRAPHIC0_DXY); DUMPREG(MXR_GRAPHIC1_CFG); DUMPREG(MXR_GRAPHIC1_BASE); DUMPREG(MXR_GRAPHIC1_SPAN); DUMPREG(MXR_GRAPHIC1_WH); DUMPREG(MXR_GRAPHIC1_SXY); DUMPREG(MXR_GRAPHIC1_DXY); #undef DUMPREG } static void vp_regs_dump(struct mixer_context *ctx) { #define DUMPREG(reg_id) \ do { \ DRM_DEBUG_KMS(#reg_id " = %08x\n", \ (u32) readl(ctx->mixer_res.vp_regs + reg_id)); \ } while (0) DUMPREG(VP_ENABLE); DUMPREG(VP_SRESET); DUMPREG(VP_SHADOW_UPDATE); DUMPREG(VP_FIELD_ID); DUMPREG(VP_MODE); DUMPREG(VP_IMG_SIZE_Y); DUMPREG(VP_IMG_SIZE_C); DUMPREG(VP_PER_RATE_CTRL); DUMPREG(VP_TOP_Y_PTR); DUMPREG(VP_BOT_Y_PTR); DUMPREG(VP_TOP_C_PTR); DUMPREG(VP_BOT_C_PTR); DUMPREG(VP_ENDIAN_MODE); DUMPREG(VP_SRC_H_POSITION); DUMPREG(VP_SRC_V_POSITION); DUMPREG(VP_SRC_WIDTH); DUMPREG(VP_SRC_HEIGHT); DUMPREG(VP_DST_H_POSITION); DUMPREG(VP_DST_V_POSITION); DUMPREG(VP_DST_WIDTH); DUMPREG(VP_DST_HEIGHT); DUMPREG(VP_H_RATIO); DUMPREG(VP_V_RATIO); #undef DUMPREG } static inline void vp_filter_set(struct mixer_resources *res, int reg_id, const u8 *data, unsigned int size) { /* assure 4-byte align */ BUG_ON(size & 3); for (; size; size -= 4, reg_id += 4, data += 4) { u32 val = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; vp_reg_write(res, reg_id, val); } } static void vp_default_filter(struct mixer_resources *res) { vp_filter_set(res, VP_POLY8_Y0_LL, filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8)); vp_filter_set(res, VP_POLY4_Y0_LL, filter_y_vert_tap4, sizeof(filter_y_vert_tap4)); vp_filter_set(res, VP_POLY4_C0_LL, filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4)); } static void mixer_vsync_set_update(struct mixer_context *ctx, bool enable) { struct mixer_resources *res = &ctx->mixer_res; /* block update on vsync */ mixer_reg_writemask(res, MXR_STATUS, enable ? MXR_STATUS_SYNC_ENABLE : 0, MXR_STATUS_SYNC_ENABLE); if (ctx->vp_enabled) vp_reg_write(res, VP_SHADOW_UPDATE, enable ? VP_SHADOW_UPDATE_ENABLE : 0); } static void mixer_cfg_scan(struct mixer_context *ctx, unsigned int height) { struct mixer_resources *res = &ctx->mixer_res; u32 val; /* choosing between interlace and progressive mode */ val = (ctx->interlace ? MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRASSIVE); /* choosing between porper HD and SD mode */ if (height <= 480) val |= MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD; else if (height <= 576) val |= MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD; else if (height <= 720) val |= MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD; else if (height <= 1080) val |= MXR_CFG_SCAN_HD_1080 | MXR_CFG_SCAN_HD; else val |= MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD; mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_SCAN_MASK); } static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, unsigned int height) { struct mixer_resources *res = &ctx->mixer_res; u32 val; if (height == 480) { val = MXR_CFG_RGB601_0_255; } else if (height == 576) { val = MXR_CFG_RGB601_0_255; } else if (height == 720) { val = MXR_CFG_RGB709_16_235; mixer_reg_write(res, MXR_CM_COEFF_Y, (1 << 30) | (94 << 20) | (314 << 10) | (32 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CB, (972 << 20) | (851 << 10) | (225 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CR, (225 << 20) | (820 << 10) | (1004 << 0)); } else if (height == 1080) { val = MXR_CFG_RGB709_16_235; mixer_reg_write(res, MXR_CM_COEFF_Y, (1 << 30) | (94 << 20) | (314 << 10) | (32 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CB, (972 << 20) | (851 << 10) | (225 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CR, (225 << 20) | (820 << 10) | (1004 << 0)); } else { val = MXR_CFG_RGB709_16_235; mixer_reg_write(res, MXR_CM_COEFF_Y, (1 << 30) | (94 << 20) | (314 << 10) | (32 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CB, (972 << 20) | (851 << 10) | (225 << 0)); mixer_reg_write(res, MXR_CM_COEFF_CR, (225 << 20) | (820 << 10) | (1004 << 0)); } mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK); } static void mixer_cfg_layer(struct mixer_context *ctx, int win, bool enable) { struct mixer_resources *res = &ctx->mixer_res; u32 val = enable ? ~0 : 0; switch (win) { case 0: mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_GRP0_ENABLE); break; case 1: mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_GRP1_ENABLE); break; case 2: if (ctx->vp_enabled) { vp_reg_writemask(res, VP_ENABLE, val, VP_ENABLE_ON); mixer_reg_writemask(res, MXR_CFG, val, MXR_CFG_VP_ENABLE); } break; } } static void mixer_run(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; mixer_reg_writemask(res, MXR_STATUS, ~0, MXR_STATUS_REG_RUN); mixer_regs_dump(ctx); } static void vp_video_buffer(struct mixer_context *ctx, int win) { struct mixer_resources *res = &ctx->mixer_res; unsigned long flags; struct hdmi_win_data *win_data; unsigned int x_ratio, y_ratio; unsigned int buf_num; dma_addr_t luma_addr[2], chroma_addr[2]; bool tiled_mode = false; bool crcb_mode = false; u32 val; win_data = &ctx->win_data[win]; switch (win_data->pixel_format) { case DRM_FORMAT_NV12MT: tiled_mode = true; case DRM_FORMAT_NV12: crcb_mode = false; buf_num = 2; break; /* TODO: single buffer format NV12, NV21 */ default: /* ignore pixel format at disable time */ if (!win_data->dma_addr) break; DRM_ERROR("pixel format for vp is wrong [%d].\n", win_data->pixel_format); return; } /* scaling feature: (src << 16) / dst */ x_ratio = (win_data->src_width << 16) / win_data->crtc_width; y_ratio = (win_data->src_height << 16) / win_data->crtc_height; if (buf_num == 2) { luma_addr[0] = win_data->dma_addr; chroma_addr[0] = win_data->chroma_dma_addr; } else { luma_addr[0] = win_data->dma_addr; chroma_addr[0] = win_data->dma_addr + (win_data->fb_width * win_data->fb_height); } if (win_data->scan_flags & DRM_MODE_FLAG_INTERLACE) { ctx->interlace = true; if (tiled_mode) { luma_addr[1] = luma_addr[0] + 0x40; chroma_addr[1] = chroma_addr[0] + 0x40; } else { luma_addr[1] = luma_addr[0] + win_data->fb_width; chroma_addr[1] = chroma_addr[0] + win_data->fb_width; } } else { ctx->interlace = false; luma_addr[1] = 0; chroma_addr[1] = 0; } spin_lock_irqsave(&res->reg_slock, flags); mixer_vsync_set_update(ctx, false); /* interlace or progressive scan mode */ val = (ctx->interlace ? ~0 : 0); vp_reg_writemask(res, VP_MODE, val, VP_MODE_LINE_SKIP); /* setup format */ val = (crcb_mode ? VP_MODE_NV21 : VP_MODE_NV12); val |= (tiled_mode ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR); vp_reg_writemask(res, VP_MODE, val, VP_MODE_FMT_MASK); /* setting size of input image */ vp_reg_write(res, VP_IMG_SIZE_Y, VP_IMG_HSIZE(win_data->fb_width) | VP_IMG_VSIZE(win_data->fb_height)); /* chroma height has to reduced by 2 to avoid chroma distorions */ vp_reg_write(res, VP_IMG_SIZE_C, VP_IMG_HSIZE(win_data->fb_width) | VP_IMG_VSIZE(win_data->fb_height / 2)); vp_reg_write(res, VP_SRC_WIDTH, win_data->src_width); vp_reg_write(res, VP_SRC_HEIGHT, win_data->src_height); vp_reg_write(res, VP_SRC_H_POSITION, VP_SRC_H_POSITION_VAL(win_data->fb_x)); vp_reg_write(res, VP_SRC_V_POSITION, win_data->fb_y); vp_reg_write(res, VP_DST_WIDTH, win_data->crtc_width); vp_reg_write(res, VP_DST_H_POSITION, win_data->crtc_x); if (ctx->interlace) { vp_reg_write(res, VP_DST_HEIGHT, win_data->crtc_height / 2); vp_reg_write(res, VP_DST_V_POSITION, win_data->crtc_y / 2); } else { vp_reg_write(res, VP_DST_HEIGHT, win_data->crtc_height); vp_reg_write(res, VP_DST_V_POSITION, win_data->crtc_y); } vp_reg_write(res, VP_H_RATIO, x_ratio); vp_reg_write(res, VP_V_RATIO, y_ratio); vp_reg_write(res, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE); /* set buffer address to vp */ vp_reg_write(res, VP_TOP_Y_PTR, luma_addr[0]); vp_reg_write(res, VP_BOT_Y_PTR, luma_addr[1]); vp_reg_write(res, VP_TOP_C_PTR, chroma_addr[0]); vp_reg_write(res, VP_BOT_C_PTR, chroma_addr[1]); mixer_cfg_scan(ctx, win_data->mode_height); mixer_cfg_rgb_fmt(ctx, win_data->mode_height); mixer_cfg_layer(ctx, win, true); mixer_run(ctx); mixer_vsync_set_update(ctx, true); spin_unlock_irqrestore(&res->reg_slock, flags); vp_regs_dump(ctx); } static void mixer_layer_update(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; u32 val; val = mixer_reg_read(res, MXR_CFG); /* allow one update per vsync only */ if (!(val & MXR_CFG_LAYER_UPDATE_COUNT_MASK)) mixer_reg_writemask(res, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE); } static void mixer_graph_buffer(struct mixer_context *ctx, int win) { struct mixer_resources *res = &ctx->mixer_res; unsigned long flags; struct hdmi_win_data *win_data; unsigned int x_ratio, y_ratio; unsigned int src_x_offset, src_y_offset, dst_x_offset, dst_y_offset; dma_addr_t dma_addr; unsigned int fmt; u32 val; win_data = &ctx->win_data[win]; #define RGB565 4 #define ARGB1555 5 #define ARGB4444 6 #define ARGB8888 7 switch (win_data->bpp) { case 16: fmt = ARGB4444; break; case 32: fmt = ARGB8888; break; default: fmt = ARGB8888; } /* 2x scaling feature */ x_ratio = 0; y_ratio = 0; dst_x_offset = win_data->crtc_x; dst_y_offset = win_data->crtc_y; /* converting dma address base and source offset */ dma_addr = win_data->dma_addr + (win_data->fb_x * win_data->bpp >> 3) + (win_data->fb_y * win_data->fb_width * win_data->bpp >> 3); src_x_offset = 0; src_y_offset = 0; if (win_data->scan_flags & DRM_MODE_FLAG_INTERLACE) ctx->interlace = true; else ctx->interlace = false; spin_lock_irqsave(&res->reg_slock, flags); mixer_vsync_set_update(ctx, false); /* setup format */ mixer_reg_writemask(res, MXR_GRAPHIC_CFG(win), MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK); /* setup geometry */ mixer_reg_write(res, MXR_GRAPHIC_SPAN(win), win_data->fb_width); val = MXR_GRP_WH_WIDTH(win_data->crtc_width); val |= MXR_GRP_WH_HEIGHT(win_data->crtc_height); val |= MXR_GRP_WH_H_SCALE(x_ratio); val |= MXR_GRP_WH_V_SCALE(y_ratio); mixer_reg_write(res, MXR_GRAPHIC_WH(win), val); /* setup offsets in source image */ val = MXR_GRP_SXY_SX(src_x_offset); val |= MXR_GRP_SXY_SY(src_y_offset); mixer_reg_write(res, MXR_GRAPHIC_SXY(win), val); /* setup offsets in display image */ val = MXR_GRP_DXY_DX(dst_x_offset); val |= MXR_GRP_DXY_DY(dst_y_offset); mixer_reg_write(res, MXR_GRAPHIC_DXY(win), val); /* set buffer address to mixer */ mixer_reg_write(res, MXR_GRAPHIC_BASE(win), dma_addr); mixer_cfg_scan(ctx, win_data->mode_height); mixer_cfg_rgb_fmt(ctx, win_data->mode_height); mixer_cfg_layer(ctx, win, true); /* layer update mandatory for mixer 16.0.33.0 */ if (ctx->mxr_ver == MXR_VER_16_0_33_0) mixer_layer_update(ctx); mixer_run(ctx); mixer_vsync_set_update(ctx, true); spin_unlock_irqrestore(&res->reg_slock, flags); } static void vp_win_reset(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; int tries = 100; vp_reg_write(res, VP_SRESET, VP_SRESET_PROCESSING); for (tries = 100; tries; --tries) { /* waiting until VP_SRESET_PROCESSING is 0 */ if (~vp_reg_read(res, VP_SRESET) & VP_SRESET_PROCESSING) break; usleep_range(10000, 12000); } WARN(tries == 0, "failed to reset Video Processor\n"); } static void mixer_win_reset(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; unsigned long flags; u32 val; /* value stored to register */ spin_lock_irqsave(&res->reg_slock, flags); mixer_vsync_set_update(ctx, false); mixer_reg_writemask(res, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK); /* set output in RGB888 mode */ mixer_reg_writemask(res, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK); /* 16 beat burst in DMA */ mixer_reg_writemask(res, MXR_STATUS, MXR_STATUS_16_BURST, MXR_STATUS_BURST_MASK); /* setting default layer priority: layer1 > layer0 > video * because typical usage scenario would be * layer1 - OSD * layer0 - framebuffer * video - video overlay */ val = MXR_LAYER_CFG_GRP1_VAL(3); val |= MXR_LAYER_CFG_GRP0_VAL(2); if (ctx->vp_enabled) val |= MXR_LAYER_CFG_VP_VAL(1); mixer_reg_write(res, MXR_LAYER_CFG, val); /* setting background color */ mixer_reg_write(res, MXR_BG_COLOR0, 0x008080); mixer_reg_write(res, MXR_BG_COLOR1, 0x008080); mixer_reg_write(res, MXR_BG_COLOR2, 0x008080); /* setting graphical layers */ val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */ val |= MXR_GRP_CFG_WIN_BLEND_EN; val |= MXR_GRP_CFG_ALPHA_VAL(0xff); /* non-transparent alpha */ /* Don't blend layer 0 onto the mixer background */ mixer_reg_write(res, MXR_GRAPHIC_CFG(0), val); /* Blend layer 1 into layer 0 */ val |= MXR_GRP_CFG_BLEND_PRE_MUL; val |= MXR_GRP_CFG_PIXEL_BLEND_EN; mixer_reg_write(res, MXR_GRAPHIC_CFG(1), val); /* setting video layers */ val = MXR_GRP_CFG_ALPHA_VAL(0); mixer_reg_write(res, MXR_VIDEO_CFG, val); if (ctx->vp_enabled) { /* configuration of Video Processor Registers */ vp_win_reset(ctx); vp_default_filter(res); } /* disable all layers */ mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE); mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE); if (ctx->vp_enabled) mixer_reg_writemask(res, MXR_CFG, 0, MXR_CFG_VP_ENABLE); mixer_vsync_set_update(ctx, true); spin_unlock_irqrestore(&res->reg_slock, flags); } static int mixer_iommu_on(void *ctx, bool enable) { struct exynos_drm_hdmi_context *drm_hdmi_ctx; struct mixer_context *mdata = ctx; struct drm_device *drm_dev; drm_hdmi_ctx = mdata->parent_ctx; drm_dev = drm_hdmi_ctx->drm_dev; if (is_drm_iommu_supported(drm_dev)) { if (enable) return drm_iommu_attach_device(drm_dev, mdata->dev); drm_iommu_detach_device(drm_dev, mdata->dev); } return 0; } static int mixer_enable_vblank(void *ctx, int pipe) { struct mixer_context *mixer_ctx = ctx; struct mixer_resources *res = &mixer_ctx->mixer_res; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); mixer_ctx->pipe = pipe; /* enable vsync interrupt */ mixer_reg_writemask(res, MXR_INT_EN, MXR_INT_EN_VSYNC, MXR_INT_EN_VSYNC); return 0; } static void mixer_disable_vblank(void *ctx) { struct mixer_context *mixer_ctx = ctx; struct mixer_resources *res = &mixer_ctx->mixer_res; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); /* disable vsync interrupt */ mixer_reg_writemask(res, MXR_INT_EN, 0, MXR_INT_EN_VSYNC); } static void mixer_win_mode_set(void *ctx, struct exynos_drm_overlay *overlay) { struct mixer_context *mixer_ctx = ctx; struct hdmi_win_data *win_data; int win; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); if (!overlay) { DRM_ERROR("overlay is NULL\n"); return; } DRM_DEBUG_KMS("set [%d]x[%d] at (%d,%d) to [%d]x[%d] at (%d,%d)\n", overlay->fb_width, overlay->fb_height, overlay->fb_x, overlay->fb_y, overlay->crtc_width, overlay->crtc_height, overlay->crtc_x, overlay->crtc_y); win = overlay->zpos; if (win == DEFAULT_ZPOS) win = MIXER_DEFAULT_WIN; if (win < 0 || win > MIXER_WIN_NR) { DRM_ERROR("mixer window[%d] is wrong\n", win); return; } win_data = &mixer_ctx->win_data[win]; win_data->dma_addr = overlay->dma_addr[0]; win_data->chroma_dma_addr = overlay->dma_addr[1]; win_data->pixel_format = overlay->pixel_format; win_data->bpp = overlay->bpp; win_data->crtc_x = overlay->crtc_x; win_data->crtc_y = overlay->crtc_y; win_data->crtc_width = overlay->crtc_width; win_data->crtc_height = overlay->crtc_height; win_data->fb_x = overlay->fb_x; win_data->fb_y = overlay->fb_y; win_data->fb_width = overlay->fb_width; win_data->fb_height = overlay->fb_height; win_data->src_width = overlay->src_width; win_data->src_height = overlay->src_height; win_data->mode_width = overlay->mode_width; win_data->mode_height = overlay->mode_height; win_data->scan_flags = overlay->scan_flag; } static void mixer_win_commit(void *ctx, int win) { struct mixer_context *mixer_ctx = ctx; DRM_DEBUG_KMS("[%d] %s, win: %d\n", __LINE__, __func__, win); mutex_lock(&mixer_ctx->mixer_mutex); if (!mixer_ctx->powered) { mutex_unlock(&mixer_ctx->mixer_mutex); return; } mutex_unlock(&mixer_ctx->mixer_mutex); if (win > 1 && mixer_ctx->vp_enabled) vp_video_buffer(mixer_ctx, win); else mixer_graph_buffer(mixer_ctx, win); mixer_ctx->win_data[win].enabled = true; } static void mixer_win_disable(void *ctx, int win) { struct mixer_context *mixer_ctx = ctx; struct mixer_resources *res = &mixer_ctx->mixer_res; unsigned long flags; DRM_DEBUG_KMS("[%d] %s, win: %d\n", __LINE__, __func__, win); mutex_lock(&mixer_ctx->mixer_mutex); if (!mixer_ctx->powered) { mutex_unlock(&mixer_ctx->mixer_mutex); mixer_ctx->win_data[win].resume = false; return; } mutex_unlock(&mixer_ctx->mixer_mutex); spin_lock_irqsave(&res->reg_slock, flags); mixer_vsync_set_update(mixer_ctx, false); mixer_cfg_layer(mixer_ctx, win, false); mixer_vsync_set_update(mixer_ctx, true); spin_unlock_irqrestore(&res->reg_slock, flags); mixer_ctx->win_data[win].enabled = false; } static int mixer_check_timing(void *ctx, struct fb_videomode *timing) { u32 w, h; w = timing->xres; h = timing->yres; DRM_DEBUG_KMS("%s : xres=%d, yres=%d, refresh=%d, intl=%d\n", __func__, timing->xres, timing->yres, timing->refresh, (timing->vmode & FB_VMODE_INTERLACED) ? true : false); if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) || (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) || (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080)) return 0; return -EINVAL; } static void mixer_wait_for_vblank(void *ctx) { struct mixer_context *mixer_ctx = ctx; mutex_lock(&mixer_ctx->mixer_mutex); if (!mixer_ctx->powered) { mutex_unlock(&mixer_ctx->mixer_mutex); return; } mutex_unlock(&mixer_ctx->mixer_mutex); atomic_set(&mixer_ctx->wait_vsync_event, 1); /* * wait for MIXER to signal VSYNC interrupt or return after * timeout which is set to 50ms (refresh rate of 20). */ if (!wait_event_timeout(mixer_ctx->wait_vsync_queue, !atomic_read(&mixer_ctx->wait_vsync_event), DRM_HZ/20)) DRM_DEBUG_KMS("vblank wait timed out.\n"); } static void mixer_window_suspend(struct mixer_context *ctx) { struct hdmi_win_data *win_data; int i; for (i = 0; i < MIXER_WIN_NR; i++) { win_data = &ctx->win_data[i]; win_data->resume = win_data->enabled; mixer_win_disable(ctx, i); } mixer_wait_for_vblank(ctx); } static void mixer_window_resume(struct mixer_context *ctx) { struct hdmi_win_data *win_data; int i; for (i = 0; i < MIXER_WIN_NR; i++) { win_data = &ctx->win_data[i]; win_data->enabled = win_data->resume; win_data->resume = false; } } static void mixer_poweron(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); mutex_lock(&ctx->mixer_mutex); if (ctx->powered) { mutex_unlock(&ctx->mixer_mutex); return; } ctx->powered = true; mutex_unlock(&ctx->mixer_mutex); clk_enable(res->mixer); if (ctx->vp_enabled) { clk_enable(res->vp); clk_enable(res->sclk_mixer); } mixer_reg_write(res, MXR_INT_EN, ctx->int_en); mixer_win_reset(ctx); mixer_window_resume(ctx); } static void mixer_poweroff(struct mixer_context *ctx) { struct mixer_resources *res = &ctx->mixer_res; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); mutex_lock(&ctx->mixer_mutex); if (!ctx->powered) goto out; mutex_unlock(&ctx->mixer_mutex); mixer_window_suspend(ctx); ctx->int_en = mixer_reg_read(res, MXR_INT_EN); clk_disable(res->mixer); if (ctx->vp_enabled) { clk_disable(res->vp); clk_disable(res->sclk_mixer); } mutex_lock(&ctx->mixer_mutex); ctx->powered = false; out: mutex_unlock(&ctx->mixer_mutex); } static void mixer_dpms(void *ctx, int mode) { struct mixer_context *mixer_ctx = ctx; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); switch (mode) { case DRM_MODE_DPMS_ON: if (pm_runtime_suspended(mixer_ctx->dev)) pm_runtime_get_sync(mixer_ctx->dev); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: if (!pm_runtime_suspended(mixer_ctx->dev)) pm_runtime_put_sync(mixer_ctx->dev); break; default: DRM_DEBUG_KMS("unknown dpms mode: %d\n", mode); break; } } static struct exynos_mixer_ops mixer_ops = { /* manager */ .iommu_on = mixer_iommu_on, .enable_vblank = mixer_enable_vblank, .disable_vblank = mixer_disable_vblank, .wait_for_vblank = mixer_wait_for_vblank, .dpms = mixer_dpms, /* overlay */ .win_mode_set = mixer_win_mode_set, .win_commit = mixer_win_commit, .win_disable = mixer_win_disable, /* display */ .check_timing = mixer_check_timing, }; static irqreturn_t mixer_irq_handler(int irq, void *arg) { struct exynos_drm_hdmi_context *drm_hdmi_ctx = arg; struct mixer_context *ctx = drm_hdmi_ctx->ctx; struct mixer_resources *res = &ctx->mixer_res; u32 val, base, shadow; spin_lock(&res->reg_slock); /* read interrupt status for handling and clearing flags for VSYNC */ val = mixer_reg_read(res, MXR_INT_STATUS); /* handling VSYNC */ if (val & MXR_INT_STATUS_VSYNC) { /* interlace scan need to check shadow register */ if (ctx->interlace) { base = mixer_reg_read(res, MXR_GRAPHIC_BASE(0)); shadow = mixer_reg_read(res, MXR_GRAPHIC_BASE_S(0)); if (base != shadow) goto out; base = mixer_reg_read(res, MXR_GRAPHIC_BASE(1)); shadow = mixer_reg_read(res, MXR_GRAPHIC_BASE_S(1)); if (base != shadow) goto out; } drm_handle_vblank(drm_hdmi_ctx->drm_dev, ctx->pipe); exynos_drm_crtc_finish_pageflip(drm_hdmi_ctx->drm_dev, ctx->pipe); /* set wait vsync event to zero and wake up queue. */ if (atomic_read(&ctx->wait_vsync_event)) { atomic_set(&ctx->wait_vsync_event, 0); DRM_WAKEUP(&ctx->wait_vsync_queue); } } out: /* clear interrupts */ if (~val & MXR_INT_EN_VSYNC) { /* vsync interrupt use different bit for read and clear */ val &= ~MXR_INT_EN_VSYNC; val |= MXR_INT_CLEAR_VSYNC; } mixer_reg_write(res, MXR_INT_STATUS, val); spin_unlock(&res->reg_slock); return IRQ_HANDLED; } static int mixer_resources_init(struct exynos_drm_hdmi_context *ctx, struct platform_device *pdev) { struct mixer_context *mixer_ctx = ctx->ctx; struct device *dev = &pdev->dev; struct mixer_resources *mixer_res = &mixer_ctx->mixer_res; struct resource *res; int ret; spin_lock_init(&mixer_res->reg_slock); mixer_res->mixer = devm_clk_get(dev, "mixer"); if (IS_ERR(mixer_res->mixer)) { dev_err(dev, "failed to get clock 'mixer'\n"); return -ENODEV; } mixer_res->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi"); if (IS_ERR(mixer_res->sclk_hdmi)) { dev_err(dev, "failed to get clock 'sclk_hdmi'\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(dev, "get memory resource failed.\n"); return -ENXIO; } mixer_res->mixer_regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (mixer_res->mixer_regs == NULL) { dev_err(dev, "register mapping failed.\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res == NULL) { dev_err(dev, "get interrupt resource failed.\n"); return -ENXIO; } ret = devm_request_irq(&pdev->dev, res->start, mixer_irq_handler, 0, "drm_mixer", ctx); if (ret) { dev_err(dev, "request interrupt failed.\n"); return ret; } mixer_res->irq = res->start; return 0; } static int vp_resources_init(struct exynos_drm_hdmi_context *ctx, struct platform_device *pdev) { struct mixer_context *mixer_ctx = ctx->ctx; struct device *dev = &pdev->dev; struct mixer_resources *mixer_res = &mixer_ctx->mixer_res; struct resource *res; mixer_res->vp = devm_clk_get(dev, "vp"); if (IS_ERR(mixer_res->vp)) { dev_err(dev, "failed to get clock 'vp'\n"); return -ENODEV; } mixer_res->sclk_mixer = devm_clk_get(dev, "sclk_mixer"); if (IS_ERR(mixer_res->sclk_mixer)) { dev_err(dev, "failed to get clock 'sclk_mixer'\n"); return -ENODEV; } mixer_res->sclk_dac = devm_clk_get(dev, "sclk_dac"); if (IS_ERR(mixer_res->sclk_dac)) { dev_err(dev, "failed to get clock 'sclk_dac'\n"); return -ENODEV; } if (mixer_res->sclk_hdmi) clk_set_parent(mixer_res->sclk_mixer, mixer_res->sclk_hdmi); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res == NULL) { dev_err(dev, "get memory resource failed.\n"); return -ENXIO; } mixer_res->vp_regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (mixer_res->vp_regs == NULL) { dev_err(dev, "register mapping failed.\n"); return -ENXIO; } return 0; } static struct mixer_drv_data exynos5_mxr_drv_data = { .version = MXR_VER_16_0_33_0, .is_vp_enabled = 0, }; static struct mixer_drv_data exynos4_mxr_drv_data = { .version = MXR_VER_0_0_0_16, .is_vp_enabled = 1, }; static struct platform_device_id mixer_driver_types[] = { { .name = "s5p-mixer", .driver_data = (unsigned long)&exynos4_mxr_drv_data, }, { .name = "exynos5-mixer", .driver_data = (unsigned long)&exynos5_mxr_drv_data, }, { /* end node */ } }; static struct of_device_id mixer_match_types[] = { { .compatible = "samsung,exynos5-mixer", .data = &exynos5_mxr_drv_data, }, { /* end node */ } }; static int mixer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct exynos_drm_hdmi_context *drm_hdmi_ctx; struct mixer_context *ctx; struct mixer_drv_data *drv; int ret; dev_info(dev, "probe start\n"); drm_hdmi_ctx = devm_kzalloc(&pdev->dev, sizeof(*drm_hdmi_ctx), GFP_KERNEL); if (!drm_hdmi_ctx) { DRM_ERROR("failed to allocate common hdmi context.\n"); return -ENOMEM; } ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) { DRM_ERROR("failed to alloc mixer context.\n"); return -ENOMEM; } mutex_init(&ctx->mixer_mutex); if (dev->of_node) { const struct of_device_id *match; match = of_match_node(of_match_ptr(mixer_match_types), pdev->dev.of_node); drv = (struct mixer_drv_data *)match->data; } else { drv = (struct mixer_drv_data *) platform_get_device_id(pdev)->driver_data; } ctx->dev = &pdev->dev; ctx->parent_ctx = (void *)drm_hdmi_ctx; drm_hdmi_ctx->ctx = (void *)ctx; ctx->vp_enabled = drv->is_vp_enabled; ctx->mxr_ver = drv->version; DRM_INIT_WAITQUEUE(&ctx->wait_vsync_queue); atomic_set(&ctx->wait_vsync_event, 0); platform_set_drvdata(pdev, drm_hdmi_ctx); /* acquire resources: regs, irqs, clocks */ ret = mixer_resources_init(drm_hdmi_ctx, pdev); if (ret) { DRM_ERROR("mixer_resources_init failed\n"); goto fail; } if (ctx->vp_enabled) { /* acquire vp resources: regs, irqs, clocks */ ret = vp_resources_init(drm_hdmi_ctx, pdev); if (ret) { DRM_ERROR("vp_resources_init failed\n"); goto fail; } } /* attach mixer driver to common hdmi. */ exynos_mixer_drv_attach(drm_hdmi_ctx); /* register specific callback point to common hdmi. */ exynos_mixer_ops_register(&mixer_ops); pm_runtime_enable(dev); return 0; fail: dev_info(dev, "probe failed\n"); return ret; } static int mixer_remove(struct platform_device *pdev) { dev_info(&pdev->dev, "remove successful\n"); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int mixer_suspend(struct device *dev) { struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev); struct mixer_context *ctx = drm_hdmi_ctx->ctx; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); if (pm_runtime_suspended(dev)) { DRM_DEBUG_KMS("%s : Already suspended\n", __func__); return 0; } mixer_poweroff(ctx); return 0; } static int mixer_resume(struct device *dev) { struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev); struct mixer_context *ctx = drm_hdmi_ctx->ctx; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); if (!pm_runtime_suspended(dev)) { DRM_DEBUG_KMS("%s : Already resumed\n", __func__); return 0; } mixer_poweron(ctx); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int mixer_runtime_suspend(struct device *dev) { struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev); struct mixer_context *ctx = drm_hdmi_ctx->ctx; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); mixer_poweroff(ctx); return 0; } static int mixer_runtime_resume(struct device *dev) { struct exynos_drm_hdmi_context *drm_hdmi_ctx = get_mixer_context(dev); struct mixer_context *ctx = drm_hdmi_ctx->ctx; DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__); mixer_poweron(ctx); return 0; } #endif static const struct dev_pm_ops mixer_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(mixer_suspend, mixer_resume) SET_RUNTIME_PM_OPS(mixer_runtime_suspend, mixer_runtime_resume, NULL) }; struct platform_driver mixer_driver = { .driver = { .name = "exynos-mixer", .owner = THIS_MODULE, .pm = &mixer_pm_ops, .of_match_table = mixer_match_types, }, .probe = mixer_probe, .remove = mixer_remove, .id_table = mixer_driver_types, };