/* * offload engine driver for the Marvell XOR engine * Copyright (C) 2007, 2008, Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "mv_xor.h" static void mv_xor_issue_pending(struct dma_chan *chan); #define to_mv_xor_chan(chan) \ container_of(chan, struct mv_xor_chan, dmachan) #define to_mv_xor_slot(tx) \ container_of(tx, struct mv_xor_desc_slot, async_tx) #define mv_chan_to_devp(chan) \ ((chan)->device->common.dev) static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->status = (1 << 31); hw_desc->phy_next_desc = 0; hw_desc->desc_command = (1 << 31); } static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc) { struct mv_xor_desc *hw_desc = desc->hw_desc; return hw_desc->phy_dest_addr; } static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc, int src_idx) { struct mv_xor_desc *hw_desc = desc->hw_desc; return hw_desc->phy_src_addr[src_idx]; } static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc, u32 byte_count) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->byte_count = byte_count; } static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc, u32 next_desc_addr) { struct mv_xor_desc *hw_desc = desc->hw_desc; BUG_ON(hw_desc->phy_next_desc); hw_desc->phy_next_desc = next_desc_addr; } static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->phy_next_desc = 0; } static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val) { desc->value = val; } static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc, dma_addr_t addr) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->phy_dest_addr = addr; } static int mv_chan_memset_slot_count(size_t len) { return 1; } #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c) static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc, int index, dma_addr_t addr) { struct mv_xor_desc *hw_desc = desc->hw_desc; hw_desc->phy_src_addr[index] = addr; if (desc->type == DMA_XOR) hw_desc->desc_command |= (1 << index); } static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan) { return __raw_readl(XOR_CURR_DESC(chan)); } static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan, u32 next_desc_addr) { __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan)); } static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr) { __raw_writel(desc_addr, XOR_DEST_POINTER(chan)); } static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size) { __raw_writel(block_size, XOR_BLOCK_SIZE(chan)); } static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value) { __raw_writel(value, XOR_INIT_VALUE_LOW(chan)); __raw_writel(value, XOR_INIT_VALUE_HIGH(chan)); } static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan) { u32 val = __raw_readl(XOR_INTR_MASK(chan)); val |= XOR_INTR_MASK_VALUE << (chan->idx * 16); __raw_writel(val, XOR_INTR_MASK(chan)); } static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan) { u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan)); intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF; return intr_cause; } static int mv_is_err_intr(u32 intr_cause) { if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9))) return 1; return 0; } static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan) { u32 val = ~(1 << (chan->idx * 16)); dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val); __raw_writel(val, XOR_INTR_CAUSE(chan)); } static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan) { u32 val = 0xFFFF0000 >> (chan->idx * 16); __raw_writel(val, XOR_INTR_CAUSE(chan)); } static int mv_can_chain(struct mv_xor_desc_slot *desc) { struct mv_xor_desc_slot *chain_old_tail = list_entry( desc->chain_node.prev, struct mv_xor_desc_slot, chain_node); if (chain_old_tail->type != desc->type) return 0; if (desc->type == DMA_MEMSET) return 0; return 1; } static void mv_set_mode(struct mv_xor_chan *chan, enum dma_transaction_type type) { u32 op_mode; u32 config = __raw_readl(XOR_CONFIG(chan)); switch (type) { case DMA_XOR: op_mode = XOR_OPERATION_MODE_XOR; break; case DMA_MEMCPY: op_mode = XOR_OPERATION_MODE_MEMCPY; break; case DMA_MEMSET: op_mode = XOR_OPERATION_MODE_MEMSET; break; default: dev_err(mv_chan_to_devp(chan), "error: unsupported operation %d.\n", type); BUG(); return; } config &= ~0x7; config |= op_mode; __raw_writel(config, XOR_CONFIG(chan)); chan->current_type = type; } static void mv_chan_activate(struct mv_xor_chan *chan) { u32 activation; dev_dbg(mv_chan_to_devp(chan), " activate chan.\n"); activation = __raw_readl(XOR_ACTIVATION(chan)); activation |= 0x1; __raw_writel(activation, XOR_ACTIVATION(chan)); } static char mv_chan_is_busy(struct mv_xor_chan *chan) { u32 state = __raw_readl(XOR_ACTIVATION(chan)); state = (state >> 4) & 0x3; return (state == 1) ? 1 : 0; } static int mv_chan_xor_slot_count(size_t len, int src_cnt) { return 1; } /** * mv_xor_free_slots - flags descriptor slots for reuse * @slot: Slot to free * Caller must hold &mv_chan->lock while calling this function */ static void mv_xor_free_slots(struct mv_xor_chan *mv_chan, struct mv_xor_desc_slot *slot) { dev_dbg(mv_chan_to_devp(mv_chan), "%s %d slot %p\n", __func__, __LINE__, slot); slot->slots_per_op = 0; } /* * mv_xor_start_new_chain - program the engine to operate on new chain headed by * sw_desc * Caller must hold &mv_chan->lock while calling this function */ static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan, struct mv_xor_desc_slot *sw_desc) { dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n", __func__, __LINE__, sw_desc); if (sw_desc->type != mv_chan->current_type) mv_set_mode(mv_chan, sw_desc->type); if (sw_desc->type == DMA_MEMSET) { /* for memset requests we need to program the engine, no * descriptors used. */ struct mv_xor_desc *hw_desc = sw_desc->hw_desc; mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr); mv_chan_set_block_size(mv_chan, sw_desc->unmap_len); mv_chan_set_value(mv_chan, sw_desc->value); } else { /* set the hardware chain */ mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys); } mv_chan->pending += sw_desc->slot_cnt; mv_xor_issue_pending(&mv_chan->dmachan); } static dma_cookie_t mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc, struct mv_xor_chan *mv_chan, dma_cookie_t cookie) { BUG_ON(desc->async_tx.cookie < 0); if (desc->async_tx.cookie > 0) { cookie = desc->async_tx.cookie; /* call the callback (must not sleep or submit new * operations to this channel) */ if (desc->async_tx.callback) desc->async_tx.callback( desc->async_tx.callback_param); /* unmap dma addresses * (unmap_single vs unmap_page?) */ if (desc->group_head && desc->unmap_len) { struct mv_xor_desc_slot *unmap = desc->group_head; struct device *dev = mv_chan_to_devp(mv_chan); u32 len = unmap->unmap_len; enum dma_ctrl_flags flags = desc->async_tx.flags; u32 src_cnt; dma_addr_t addr; dma_addr_t dest; src_cnt = unmap->unmap_src_cnt; dest = mv_desc_get_dest_addr(unmap); if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) { enum dma_data_direction dir; if (src_cnt > 1) /* is xor ? */ dir = DMA_BIDIRECTIONAL; else dir = DMA_FROM_DEVICE; dma_unmap_page(dev, dest, len, dir); } if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) { while (src_cnt--) { addr = mv_desc_get_src_addr(unmap, src_cnt); if (addr == dest) continue; dma_unmap_page(dev, addr, len, DMA_TO_DEVICE); } } desc->group_head = NULL; } } /* run dependent operations */ dma_run_dependencies(&desc->async_tx); return cookie; } static int mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan) { struct mv_xor_desc_slot *iter, *_iter; dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__); list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, completed_node) { if (async_tx_test_ack(&iter->async_tx)) { list_del(&iter->completed_node); mv_xor_free_slots(mv_chan, iter); } } return 0; } static int mv_xor_clean_slot(struct mv_xor_desc_slot *desc, struct mv_xor_chan *mv_chan) { dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n", __func__, __LINE__, desc, desc->async_tx.flags); list_del(&desc->chain_node); /* the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->async_tx)) { /* move this slot to the completed_slots */ list_add_tail(&desc->completed_node, &mv_chan->completed_slots); return 0; } mv_xor_free_slots(mv_chan, desc); return 0; } static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan) { struct mv_xor_desc_slot *iter, *_iter; dma_cookie_t cookie = 0; int busy = mv_chan_is_busy(mv_chan); u32 current_desc = mv_chan_get_current_desc(mv_chan); int seen_current = 0; dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__); dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc); mv_xor_clean_completed_slots(mv_chan); /* free completed slots from the chain starting with * the oldest descriptor */ list_for_each_entry_safe(iter, _iter, &mv_chan->chain, chain_node) { prefetch(_iter); prefetch(&_iter->async_tx); /* do not advance past the current descriptor loaded into the * hardware channel, subsequent descriptors are either in * process or have not been submitted */ if (seen_current) break; /* stop the search if we reach the current descriptor and the * channel is busy */ if (iter->async_tx.phys == current_desc) { seen_current = 1; if (busy) break; } cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie); if (mv_xor_clean_slot(iter, mv_chan)) break; } if ((busy == 0) && !list_empty(&mv_chan->chain)) { struct mv_xor_desc_slot *chain_head; chain_head = list_entry(mv_chan->chain.next, struct mv_xor_desc_slot, chain_node); mv_xor_start_new_chain(mv_chan, chain_head); } if (cookie > 0) mv_chan->dmachan.completed_cookie = cookie; } static void mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan) { spin_lock_bh(&mv_chan->lock); __mv_xor_slot_cleanup(mv_chan); spin_unlock_bh(&mv_chan->lock); } static void mv_xor_tasklet(unsigned long data) { struct mv_xor_chan *chan = (struct mv_xor_chan *) data; mv_xor_slot_cleanup(chan); } static struct mv_xor_desc_slot * mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots, int slots_per_op) { struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL; LIST_HEAD(chain); int slots_found, retry = 0; /* start search from the last allocated descrtiptor * if a contiguous allocation can not be found start searching * from the beginning of the list */ retry: slots_found = 0; if (retry == 0) iter = mv_chan->last_used; else iter = list_entry(&mv_chan->all_slots, struct mv_xor_desc_slot, slot_node); list_for_each_entry_safe_continue( iter, _iter, &mv_chan->all_slots, slot_node) { prefetch(_iter); prefetch(&_iter->async_tx); if (iter->slots_per_op) { /* give up after finding the first busy slot * on the second pass through the list */ if (retry) break; slots_found = 0; continue; } /* start the allocation if the slot is correctly aligned */ if (!slots_found++) alloc_start = iter; if (slots_found == num_slots) { struct mv_xor_desc_slot *alloc_tail = NULL; struct mv_xor_desc_slot *last_used = NULL; iter = alloc_start; while (num_slots) { int i; /* pre-ack all but the last descriptor */ async_tx_ack(&iter->async_tx); list_add_tail(&iter->chain_node, &chain); alloc_tail = iter; iter->async_tx.cookie = 0; iter->slot_cnt = num_slots; iter->xor_check_result = NULL; for (i = 0; i < slots_per_op; i++) { iter->slots_per_op = slots_per_op - i; last_used = iter; iter = list_entry(iter->slot_node.next, struct mv_xor_desc_slot, slot_node); } num_slots -= slots_per_op; } alloc_tail->group_head = alloc_start; alloc_tail->async_tx.cookie = -EBUSY; list_splice(&chain, &alloc_tail->tx_list); mv_chan->last_used = last_used; mv_desc_clear_next_desc(alloc_start); mv_desc_clear_next_desc(alloc_tail); return alloc_tail; } } if (!retry++) goto retry; /* try to free some slots if the allocation fails */ tasklet_schedule(&mv_chan->irq_tasklet); return NULL; } /************************ DMA engine API functions ****************************/ static dma_cookie_t mv_xor_tx_submit(struct dma_async_tx_descriptor *tx) { struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx); struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan); struct mv_xor_desc_slot *grp_start, *old_chain_tail; dma_cookie_t cookie; int new_hw_chain = 1; dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p: async_tx %p\n", __func__, sw_desc, &sw_desc->async_tx); grp_start = sw_desc->group_head; spin_lock_bh(&mv_chan->lock); cookie = dma_cookie_assign(tx); if (list_empty(&mv_chan->chain)) list_splice_init(&sw_desc->tx_list, &mv_chan->chain); else { new_hw_chain = 0; old_chain_tail = list_entry(mv_chan->chain.prev, struct mv_xor_desc_slot, chain_node); list_splice_init(&grp_start->tx_list, &old_chain_tail->chain_node); if (!mv_can_chain(grp_start)) goto submit_done; dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %x\n", old_chain_tail->async_tx.phys); /* fix up the hardware chain */ mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys); /* if the channel is not busy */ if (!mv_chan_is_busy(mv_chan)) { u32 current_desc = mv_chan_get_current_desc(mv_chan); /* * and the curren desc is the end of the chain before * the append, then we need to start the channel */ if (current_desc == old_chain_tail->async_tx.phys) new_hw_chain = 1; } } if (new_hw_chain) mv_xor_start_new_chain(mv_chan, grp_start); submit_done: spin_unlock_bh(&mv_chan->lock); return cookie; } /* returns the number of allocated descriptors */ static int mv_xor_alloc_chan_resources(struct dma_chan *chan) { char *hw_desc; int idx; struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *slot = NULL; int num_descs_in_pool = mv_chan->device->pool_size/MV_XOR_SLOT_SIZE; /* Allocate descriptor slots */ idx = mv_chan->slots_allocated; while (idx < num_descs_in_pool) { slot = kzalloc(sizeof(*slot), GFP_KERNEL); if (!slot) { printk(KERN_INFO "MV XOR Channel only initialized" " %d descriptor slots", idx); break; } hw_desc = (char *) mv_chan->device->dma_desc_pool_virt; slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE]; dma_async_tx_descriptor_init(&slot->async_tx, chan); slot->async_tx.tx_submit = mv_xor_tx_submit; INIT_LIST_HEAD(&slot->chain_node); INIT_LIST_HEAD(&slot->slot_node); INIT_LIST_HEAD(&slot->tx_list); hw_desc = (char *) mv_chan->device->dma_desc_pool; slot->async_tx.phys = (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE]; slot->idx = idx++; spin_lock_bh(&mv_chan->lock); mv_chan->slots_allocated = idx; list_add_tail(&slot->slot_node, &mv_chan->all_slots); spin_unlock_bh(&mv_chan->lock); } if (mv_chan->slots_allocated && !mv_chan->last_used) mv_chan->last_used = list_entry(mv_chan->all_slots.next, struct mv_xor_desc_slot, slot_node); dev_dbg(mv_chan_to_devp(mv_chan), "allocated %d descriptor slots last_used: %p\n", mv_chan->slots_allocated, mv_chan->last_used); return mv_chan->slots_allocated ? : -ENOMEM; } static struct dma_async_tx_descriptor * mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *sw_desc, *grp_start; int slot_cnt; dev_dbg(mv_chan_to_devp(mv_chan), "%s dest: %x src %x len: %u flags: %ld\n", __func__, dest, src, len, flags); if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) return NULL; BUG_ON(len > MV_XOR_MAX_BYTE_COUNT); spin_lock_bh(&mv_chan->lock); slot_cnt = mv_chan_memcpy_slot_count(len); sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); if (sw_desc) { sw_desc->type = DMA_MEMCPY; sw_desc->async_tx.flags = flags; grp_start = sw_desc->group_head; mv_desc_init(grp_start, flags); mv_desc_set_byte_count(grp_start, len); mv_desc_set_dest_addr(sw_desc->group_head, dest); mv_desc_set_src_addr(grp_start, 0, src); sw_desc->unmap_src_cnt = 1; sw_desc->unmap_len = len; } spin_unlock_bh(&mv_chan->lock); dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p async_tx %p\n", __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *sw_desc, *grp_start; int slot_cnt; dev_dbg(mv_chan_to_devp(mv_chan), "%s dest: %x len: %u flags: %ld\n", __func__, dest, len, flags); if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) return NULL; BUG_ON(len > MV_XOR_MAX_BYTE_COUNT); spin_lock_bh(&mv_chan->lock); slot_cnt = mv_chan_memset_slot_count(len); sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); if (sw_desc) { sw_desc->type = DMA_MEMSET; sw_desc->async_tx.flags = flags; grp_start = sw_desc->group_head; mv_desc_init(grp_start, flags); mv_desc_set_byte_count(grp_start, len); mv_desc_set_dest_addr(sw_desc->group_head, dest); mv_desc_set_block_fill_val(grp_start, value); sw_desc->unmap_src_cnt = 1; sw_desc->unmap_len = len; } spin_unlock_bh(&mv_chan->lock); dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p async_tx %p \n", __func__, sw_desc, &sw_desc->async_tx); return sw_desc ? &sw_desc->async_tx : NULL; } static struct dma_async_tx_descriptor * mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *sw_desc, *grp_start; int slot_cnt; if (unlikely(len < MV_XOR_MIN_BYTE_COUNT)) return NULL; BUG_ON(len > MV_XOR_MAX_BYTE_COUNT); dev_dbg(mv_chan_to_devp(mv_chan), "%s src_cnt: %d len: dest %x %u flags: %ld\n", __func__, src_cnt, len, dest, flags); spin_lock_bh(&mv_chan->lock); slot_cnt = mv_chan_xor_slot_count(len, src_cnt); sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1); if (sw_desc) { sw_desc->type = DMA_XOR; sw_desc->async_tx.flags = flags; grp_start = sw_desc->group_head; mv_desc_init(grp_start, flags); /* the byte count field is the same as in memcpy desc*/ mv_desc_set_byte_count(grp_start, len); mv_desc_set_dest_addr(sw_desc->group_head, dest); sw_desc->unmap_src_cnt = src_cnt; sw_desc->unmap_len = len; while (src_cnt--) mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]); } spin_unlock_bh(&mv_chan->lock); dev_dbg(mv_chan_to_devp(mv_chan), "%s sw_desc %p async_tx %p \n", __func__, sw_desc, &sw_desc->async_tx); return sw_desc ? &sw_desc->async_tx : NULL; } static void mv_xor_free_chan_resources(struct dma_chan *chan) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_desc_slot *iter, *_iter; int in_use_descs = 0; mv_xor_slot_cleanup(mv_chan); spin_lock_bh(&mv_chan->lock); list_for_each_entry_safe(iter, _iter, &mv_chan->chain, chain_node) { in_use_descs++; list_del(&iter->chain_node); } list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots, completed_node) { in_use_descs++; list_del(&iter->completed_node); } list_for_each_entry_safe_reverse( iter, _iter, &mv_chan->all_slots, slot_node) { list_del(&iter->slot_node); kfree(iter); mv_chan->slots_allocated--; } mv_chan->last_used = NULL; dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n", __func__, mv_chan->slots_allocated); spin_unlock_bh(&mv_chan->lock); if (in_use_descs) dev_err(mv_chan_to_devp(mv_chan), "freeing %d in use descriptors!\n", in_use_descs); } /** * mv_xor_status - poll the status of an XOR transaction * @chan: XOR channel handle * @cookie: XOR transaction identifier * @txstate: XOR transactions state holder (or NULL) */ static enum dma_status mv_xor_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); enum dma_status ret; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_SUCCESS) { mv_xor_clean_completed_slots(mv_chan); return ret; } mv_xor_slot_cleanup(mv_chan); return dma_cookie_status(chan, cookie, txstate); } static void mv_dump_xor_regs(struct mv_xor_chan *chan) { u32 val; val = __raw_readl(XOR_CONFIG(chan)); dev_err(mv_chan_to_devp(chan), "config 0x%08x.\n", val); val = __raw_readl(XOR_ACTIVATION(chan)); dev_err(mv_chan_to_devp(chan), "activation 0x%08x.\n", val); val = __raw_readl(XOR_INTR_CAUSE(chan)); dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x.\n", val); val = __raw_readl(XOR_INTR_MASK(chan)); dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x.\n", val); val = __raw_readl(XOR_ERROR_CAUSE(chan)); dev_err(mv_chan_to_devp(chan), "error cause 0x%08x.\n", val); val = __raw_readl(XOR_ERROR_ADDR(chan)); dev_err(mv_chan_to_devp(chan), "error addr 0x%08x.\n", val); } static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan, u32 intr_cause) { if (intr_cause & (1 << 4)) { dev_dbg(mv_chan_to_devp(chan), "ignore this error\n"); return; } dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x.\n", chan->idx, intr_cause); mv_dump_xor_regs(chan); BUG(); } static irqreturn_t mv_xor_interrupt_handler(int irq, void *data) { struct mv_xor_chan *chan = data; u32 intr_cause = mv_chan_get_intr_cause(chan); dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause); if (mv_is_err_intr(intr_cause)) mv_xor_err_interrupt_handler(chan, intr_cause); tasklet_schedule(&chan->irq_tasklet); mv_xor_device_clear_eoc_cause(chan); return IRQ_HANDLED; } static void mv_xor_issue_pending(struct dma_chan *chan) { struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); if (mv_chan->pending >= MV_XOR_THRESHOLD) { mv_chan->pending = 0; mv_chan_activate(mv_chan); } } /* * Perform a transaction to verify the HW works. */ #define MV_XOR_TEST_SIZE 2000 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device) { int i; void *src, *dest; dma_addr_t src_dma, dest_dma; struct dma_chan *dma_chan; dma_cookie_t cookie; struct dma_async_tx_descriptor *tx; int err = 0; src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL); if (!src) return -ENOMEM; dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL); if (!dest) { kfree(src); return -ENOMEM; } /* Fill in src buffer */ for (i = 0; i < MV_XOR_TEST_SIZE; i++) ((u8 *) src)[i] = (u8)i; /* Start copy, using first DMA channel */ dma_chan = container_of(device->common.channels.next, struct dma_chan, device_node); if (mv_xor_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } dest_dma = dma_map_single(dma_chan->device->dev, dest, MV_XOR_TEST_SIZE, DMA_FROM_DEVICE); src_dma = dma_map_single(dma_chan->device->dev, src, MV_XOR_TEST_SIZE, DMA_TO_DEVICE); tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma, MV_XOR_TEST_SIZE, 0); cookie = mv_xor_tx_submit(tx); mv_xor_issue_pending(dma_chan); async_tx_ack(tx); msleep(1); if (mv_xor_status(dma_chan, cookie, NULL) != DMA_SUCCESS) { dev_err(dma_chan->device->dev, "Self-test copy timed out, disabling\n"); err = -ENODEV; goto free_resources; } dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma, MV_XOR_TEST_SIZE, DMA_FROM_DEVICE); if (memcmp(src, dest, MV_XOR_TEST_SIZE)) { dev_err(dma_chan->device->dev, "Self-test copy failed compare, disabling\n"); err = -ENODEV; goto free_resources; } free_resources: mv_xor_free_chan_resources(dma_chan); out: kfree(src); kfree(dest); return err; } #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */ static int __devinit mv_xor_xor_self_test(struct mv_xor_device *device) { int i, src_idx; struct page *dest; struct page *xor_srcs[MV_XOR_NUM_SRC_TEST]; dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST]; dma_addr_t dest_dma; struct dma_async_tx_descriptor *tx; struct dma_chan *dma_chan; dma_cookie_t cookie; u8 cmp_byte = 0; u32 cmp_word; int err = 0; for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) { xor_srcs[src_idx] = alloc_page(GFP_KERNEL); if (!xor_srcs[src_idx]) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } } dest = alloc_page(GFP_KERNEL); if (!dest) { while (src_idx--) __free_page(xor_srcs[src_idx]); return -ENOMEM; } /* Fill in src buffers */ for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) { u8 *ptr = page_address(xor_srcs[src_idx]); for (i = 0; i < PAGE_SIZE; i++) ptr[i] = (1 << src_idx); } for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) cmp_byte ^= (u8) (1 << src_idx); cmp_word = (cmp_byte << 24) | (cmp_byte << 16) | (cmp_byte << 8) | cmp_byte; memset(page_address(dest), 0, PAGE_SIZE); dma_chan = container_of(device->common.channels.next, struct dma_chan, device_node); if (mv_xor_alloc_chan_resources(dma_chan) < 1) { err = -ENODEV; goto out; } /* test xor */ dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++) dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i], 0, PAGE_SIZE, DMA_TO_DEVICE); tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs, MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0); cookie = mv_xor_tx_submit(tx); mv_xor_issue_pending(dma_chan); async_tx_ack(tx); msleep(8); if (mv_xor_status(dma_chan, cookie, NULL) != DMA_SUCCESS) { dev_err(dma_chan->device->dev, "Self-test xor timed out, disabling\n"); err = -ENODEV; goto free_resources; } dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE); for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) { u32 *ptr = page_address(dest); if (ptr[i] != cmp_word) { dev_err(dma_chan->device->dev, "Self-test xor failed compare, disabling." " index %d, data %x, expected %x\n", i, ptr[i], cmp_word); err = -ENODEV; goto free_resources; } } free_resources: mv_xor_free_chan_resources(dma_chan); out: src_idx = MV_XOR_NUM_SRC_TEST; while (src_idx--) __free_page(xor_srcs[src_idx]); __free_page(dest); return err; } static int mv_xor_channel_remove(struct mv_xor_device *device) { struct dma_chan *chan, *_chan; struct mv_xor_chan *mv_chan; struct device *dev = device->common.dev; dma_async_device_unregister(&device->common); dma_free_coherent(dev, device->pool_size, device->dma_desc_pool_virt, device->dma_desc_pool); list_for_each_entry_safe(chan, _chan, &device->common.channels, device_node) { mv_chan = to_mv_xor_chan(chan); list_del(&chan->device_node); } return 0; } static struct mv_xor_device * mv_xor_channel_add(struct mv_xor_private *msp, struct platform_device *pdev, int hw_id, dma_cap_mask_t cap_mask, size_t pool_size, int irq) { int ret = 0; struct mv_xor_device *adev; struct mv_xor_chan *mv_chan; struct dma_device *dma_dev; adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL); if (!adev) return ERR_PTR(-ENOMEM); dma_dev = &adev->common; /* allocate coherent memory for hardware descriptors * note: writecombine gives slightly better performance, but * requires that we explicitly flush the writes */ adev->pool_size = pool_size; adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev, adev->pool_size, &adev->dma_desc_pool, GFP_KERNEL); if (!adev->dma_desc_pool_virt) return ERR_PTR(-ENOMEM); /* discover transaction capabilites from the platform data */ dma_dev->cap_mask = cap_mask; adev->shared = msp; INIT_LIST_HEAD(&dma_dev->channels); /* set base routines */ dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources; dma_dev->device_free_chan_resources = mv_xor_free_chan_resources; dma_dev->device_tx_status = mv_xor_status; dma_dev->device_issue_pending = mv_xor_issue_pending; dma_dev->dev = &pdev->dev; /* set prep routines based on capability */ if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy; if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset; if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { dma_dev->max_xor = 8; dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor; } mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL); if (!mv_chan) { ret = -ENOMEM; goto err_free_dma; } mv_chan->device = adev; mv_chan->idx = hw_id; mv_chan->mmr_base = adev->shared->xor_base; if (!mv_chan->mmr_base) { ret = -ENOMEM; goto err_free_dma; } tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long) mv_chan); /* clear errors before enabling interrupts */ mv_xor_device_clear_err_status(mv_chan); ret = devm_request_irq(&pdev->dev, irq, mv_xor_interrupt_handler, 0, dev_name(&pdev->dev), mv_chan); if (ret) goto err_free_dma; mv_chan_unmask_interrupts(mv_chan); mv_set_mode(mv_chan, DMA_MEMCPY); spin_lock_init(&mv_chan->lock); INIT_LIST_HEAD(&mv_chan->chain); INIT_LIST_HEAD(&mv_chan->completed_slots); INIT_LIST_HEAD(&mv_chan->all_slots); mv_chan->dmachan.device = dma_dev; dma_cookie_init(&mv_chan->dmachan); list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels); if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { ret = mv_xor_memcpy_self_test(adev); dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret); if (ret) goto err_free_dma; } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { ret = mv_xor_xor_self_test(adev); dev_dbg(&pdev->dev, "xor self test returned %d\n", ret); if (ret) goto err_free_dma; } dev_info(&pdev->dev, "Marvell XOR: " "( %s%s%s%s)\n", dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "", dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "", dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "", dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : ""); dma_async_device_register(dma_dev); return adev; err_free_dma: dma_free_coherent(&pdev->dev, pool_size, adev->dma_desc_pool_virt, adev->dma_desc_pool); return ERR_PTR(ret); } static void mv_xor_conf_mbus_windows(struct mv_xor_private *msp, const struct mbus_dram_target_info *dram) { void __iomem *base = msp->xor_base; u32 win_enable = 0; int i; for (i = 0; i < 8; i++) { writel(0, base + WINDOW_BASE(i)); writel(0, base + WINDOW_SIZE(i)); if (i < 4) writel(0, base + WINDOW_REMAP_HIGH(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; writel((cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id, base + WINDOW_BASE(i)); writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i)); win_enable |= (1 << i); win_enable |= 3 << (16 + (2 * i)); } writel(win_enable, base + WINDOW_BAR_ENABLE(0)); writel(win_enable, base + WINDOW_BAR_ENABLE(1)); } static int mv_xor_probe(struct platform_device *pdev) { const struct mbus_dram_target_info *dram; struct mv_xor_private *msp; struct mv_xor_platform_data *pdata = pdev->dev.platform_data; struct resource *res; int i, ret; dev_notice(&pdev->dev, "Marvell XOR driver\n"); msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL); if (!msp) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; msp->xor_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!msp->xor_base) return -EBUSY; res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) return -ENODEV; msp->xor_high_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!msp->xor_high_base) return -EBUSY; platform_set_drvdata(pdev, msp); /* * (Re-)program MBUS remapping windows if we are asked to. */ dram = mv_mbus_dram_info(); if (dram) mv_xor_conf_mbus_windows(msp, dram); /* Not all platforms can gate the clock, so it is not * an error if the clock does not exists. */ msp->clk = clk_get(&pdev->dev, NULL); if (!IS_ERR(msp->clk)) clk_prepare_enable(msp->clk); if (pdata && pdata->channels) { for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) { struct mv_xor_channel_data *cd; int irq; cd = &pdata->channels[i]; if (!cd) { ret = -ENODEV; goto err_channel_add; } irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err_channel_add; } msp->channels[i] = mv_xor_channel_add(msp, pdev, cd->hw_id, cd->cap_mask, cd->pool_size, irq); if (IS_ERR(msp->channels[i])) { ret = PTR_ERR(msp->channels[i]); goto err_channel_add; } } } return 0; err_channel_add: for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) if (msp->channels[i]) mv_xor_channel_remove(msp->channels[i]); clk_disable_unprepare(msp->clk); clk_put(msp->clk); return ret; } static int mv_xor_remove(struct platform_device *pdev) { struct mv_xor_private *msp = platform_get_drvdata(pdev); int i; for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) { if (msp->channels[i]) mv_xor_channel_remove(msp->channels[i]); } if (!IS_ERR(msp->clk)) { clk_disable_unprepare(msp->clk); clk_put(msp->clk); } return 0; } static struct platform_driver mv_xor_driver = { .probe = mv_xor_probe, .remove = mv_xor_remove, .driver = { .owner = THIS_MODULE, .name = MV_XOR_NAME, }, }; static int __init mv_xor_init(void) { return platform_driver_register(&mv_xor_driver); } module_init(mv_xor_init); /* it's currently unsafe to unload this module */ #if 0 static void __exit mv_xor_exit(void) { platform_driver_unregister(&mv_xor_driver); return; } module_exit(mv_xor_exit); #endif MODULE_AUTHOR("Saeed Bishara "); MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine"); MODULE_LICENSE("GPL");