/* * Support for Marvell's crypto engine which can be found on some Orion5X * boards. * * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > * License: GPLv2 * */ #include <crypto/aes.h> #include <crypto/algapi.h> #include <linux/crypto.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kthread.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <crypto/internal/hash.h> #include <crypto/sha.h> #include "mv_cesa.h" #define MV_CESA "MV-CESA:" #define MAX_HW_HASH_SIZE 0xFFFF /* * STM: * /---------------------------------------\ * | | request complete * \./ | * IDLE -> new request -> BUSY -> done -> DEQUEUE * /°\ | * | | more scatter entries * \________________/ */ enum engine_status { ENGINE_IDLE, ENGINE_BUSY, ENGINE_W_DEQUEUE, }; /** * struct req_progress - used for every crypt request * @src_sg_it: sg iterator for src * @dst_sg_it: sg iterator for dst * @sg_src_left: bytes left in src to process (scatter list) * @src_start: offset to add to src start position (scatter list) * @crypt_len: length of current hw crypt/hash process * @hw_nbytes: total bytes to process in hw for this request * @copy_back: whether to copy data back (crypt) or not (hash) * @sg_dst_left: bytes left dst to process in this scatter list * @dst_start: offset to add to dst start position (scatter list) * @hw_processed_bytes: number of bytes processed by hw (request). * * sg helper are used to iterate over the scatterlist. Since the size of the * SRAM may be less than the scatter size, this struct struct is used to keep * track of progress within current scatterlist. */ struct req_progress { struct sg_mapping_iter src_sg_it; struct sg_mapping_iter dst_sg_it; void (*complete) (void); void (*process) (int is_first); /* src mostly */ int sg_src_left; int src_start; int crypt_len; int hw_nbytes; /* dst mostly */ int copy_back; int sg_dst_left; int dst_start; int hw_processed_bytes; }; struct crypto_priv { void __iomem *reg; void __iomem *sram; int irq; struct task_struct *queue_th; /* the lock protects queue and eng_st */ spinlock_t lock; struct crypto_queue queue; enum engine_status eng_st; struct crypto_async_request *cur_req; struct req_progress p; int max_req_size; int sram_size; int has_sha1; int has_hmac_sha1; }; static struct crypto_priv *cpg; struct mv_ctx { u8 aes_enc_key[AES_KEY_LEN]; u32 aes_dec_key[8]; int key_len; u32 need_calc_aes_dkey; }; enum crypto_op { COP_AES_ECB, COP_AES_CBC, }; struct mv_req_ctx { enum crypto_op op; int decrypt; }; enum hash_op { COP_SHA1, COP_HMAC_SHA1 }; struct mv_tfm_hash_ctx { struct crypto_shash *fallback; struct crypto_shash *base_hash; u32 ivs[2 * SHA1_DIGEST_SIZE / 4]; int count_add; enum hash_op op; }; struct mv_req_hash_ctx { u64 count; u32 state[SHA1_DIGEST_SIZE / 4]; u8 buffer[SHA1_BLOCK_SIZE]; int first_hash; /* marks that we don't have previous state */ int last_chunk; /* marks that this is the 'final' request */ int extra_bytes; /* unprocessed bytes in buffer */ enum hash_op op; int count_add; struct scatterlist dummysg; }; static void compute_aes_dec_key(struct mv_ctx *ctx) { struct crypto_aes_ctx gen_aes_key; int key_pos; if (!ctx->need_calc_aes_dkey) return; crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len); key_pos = ctx->key_len + 24; memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4); switch (ctx->key_len) { case AES_KEYSIZE_256: key_pos -= 2; /* fall */ case AES_KEYSIZE_192: key_pos -= 2; memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos], 4 * 4); break; } ctx->need_calc_aes_dkey = 0; } static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct mv_ctx *ctx = crypto_tfm_ctx(tfm); switch (len) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->key_len = len; ctx->need_calc_aes_dkey = 1; memcpy(ctx->aes_enc_key, key, AES_KEY_LEN); return 0; } static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len) { int ret; void *sbuf; int copied = 0; while (1) { if (!p->sg_src_left) { ret = sg_miter_next(&p->src_sg_it); BUG_ON(!ret); p->sg_src_left = p->src_sg_it.length; p->src_start = 0; } sbuf = p->src_sg_it.addr + p->src_start; if (p->sg_src_left <= len - copied) { memcpy(dbuf + copied, sbuf, p->sg_src_left); copied += p->sg_src_left; p->sg_src_left = 0; if (copied >= len) break; } else { int copy_len = len - copied; memcpy(dbuf + copied, sbuf, copy_len); p->src_start += copy_len; p->sg_src_left -= copy_len; break; } } } static void setup_data_in(void) { struct req_progress *p = &cpg->p; int data_in_sram = min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size); copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len, data_in_sram - p->crypt_len); p->crypt_len = data_in_sram; } static void mv_process_current_q(int first_block) { struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req); struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); struct sec_accel_config op; switch (req_ctx->op) { case COP_AES_ECB: op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB; break; case COP_AES_CBC: default: op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC; op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) | ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF); if (first_block) memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16); break; } if (req_ctx->decrypt) { op.config |= CFG_DIR_DEC; memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key, AES_KEY_LEN); } else { op.config |= CFG_DIR_ENC; memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key, AES_KEY_LEN); } switch (ctx->key_len) { case AES_KEYSIZE_128: op.config |= CFG_AES_LEN_128; break; case AES_KEYSIZE_192: op.config |= CFG_AES_LEN_192; break; case AES_KEYSIZE_256: op.config |= CFG_AES_LEN_256; break; } op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) | ENC_P_DST(SRAM_DATA_OUT_START); op.enc_key_p = SRAM_DATA_KEY_P; setup_data_in(); op.enc_len = cpg->p.crypt_len; memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config)); writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0); /* GO */ writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD); /* * XXX: add timer if the interrupt does not occur for some mystery * reason */ } static void mv_crypto_algo_completion(void) { struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); sg_miter_stop(&cpg->p.src_sg_it); sg_miter_stop(&cpg->p.dst_sg_it); if (req_ctx->op != COP_AES_CBC) return ; memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16); } static void mv_process_hash_current(int first_block) { struct ahash_request *req = ahash_request_cast(cpg->cur_req); struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req); struct req_progress *p = &cpg->p; struct sec_accel_config op = { 0 }; int is_last; switch (req_ctx->op) { case COP_SHA1: default: op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1; break; case COP_HMAC_SHA1: op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1; break; } op.mac_src_p = MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32) req_ctx-> count); setup_data_in(); op.mac_digest = MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len); op.mac_iv = MAC_INNER_IV_P(SRAM_HMAC_IV_IN) | MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT); is_last = req_ctx->last_chunk && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes) && (req_ctx->count <= MAX_HW_HASH_SIZE); if (req_ctx->first_hash) { if (is_last) op.config |= CFG_NOT_FRAG; else op.config |= CFG_FIRST_FRAG; req_ctx->first_hash = 0; } else { if (is_last) op.config |= CFG_LAST_FRAG; else op.config |= CFG_MID_FRAG; } memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config)); writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0); /* GO */ writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD); /* * XXX: add timer if the interrupt does not occur for some mystery * reason */ } static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx, struct shash_desc *desc) { int i; struct sha1_state shash_state; shash_state.count = ctx->count + ctx->count_add; for (i = 0; i < 5; i++) shash_state.state[i] = ctx->state[i]; memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer)); return crypto_shash_import(desc, &shash_state); } static int mv_hash_final_fallback(struct ahash_request *req) { const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req); struct { struct shash_desc shash; char ctx[crypto_shash_descsize(tfm_ctx->fallback)]; } desc; int rc; desc.shash.tfm = tfm_ctx->fallback; desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP; if (unlikely(req_ctx->first_hash)) { crypto_shash_init(&desc.shash); crypto_shash_update(&desc.shash, req_ctx->buffer, req_ctx->extra_bytes); } else { /* only SHA1 for now.... */ rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash); if (rc) goto out; } rc = crypto_shash_final(&desc.shash, req->result); out: return rc; } static void mv_hash_algo_completion(void) { struct ahash_request *req = ahash_request_cast(cpg->cur_req); struct mv_req_hash_ctx *ctx = ahash_request_ctx(req); if (ctx->extra_bytes) copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes); sg_miter_stop(&cpg->p.src_sg_it); ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A); ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B); ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C); ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D); ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E); if (likely(ctx->last_chunk)) { if (likely(ctx->count <= MAX_HW_HASH_SIZE)) { memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF, crypto_ahash_digestsize(crypto_ahash_reqtfm (req))); } else mv_hash_final_fallback(req); } } static void dequeue_complete_req(void) { struct crypto_async_request *req = cpg->cur_req; void *buf; int ret; cpg->p.hw_processed_bytes += cpg->p.crypt_len; if (cpg->p.copy_back) { int need_copy_len = cpg->p.crypt_len; int sram_offset = 0; do { int dst_copy; if (!cpg->p.sg_dst_left) { ret = sg_miter_next(&cpg->p.dst_sg_it); BUG_ON(!ret); cpg->p.sg_dst_left = cpg->p.dst_sg_it.length; cpg->p.dst_start = 0; } buf = cpg->p.dst_sg_it.addr; buf += cpg->p.dst_start; dst_copy = min(need_copy_len, cpg->p.sg_dst_left); memcpy(buf, cpg->sram + SRAM_DATA_OUT_START + sram_offset, dst_copy); sram_offset += dst_copy; cpg->p.sg_dst_left -= dst_copy; need_copy_len -= dst_copy; cpg->p.dst_start += dst_copy; } while (need_copy_len > 0); } cpg->p.crypt_len = 0; BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE); if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) { /* process next scatter list entry */ cpg->eng_st = ENGINE_BUSY; cpg->p.process(0); } else { cpg->p.complete(); cpg->eng_st = ENGINE_IDLE; local_bh_disable(); req->complete(req, 0); local_bh_enable(); } } static int count_sgs(struct scatterlist *sl, unsigned int total_bytes) { int i = 0; size_t cur_len; while (1) { cur_len = sl[i].length; ++i; if (total_bytes > cur_len) total_bytes -= cur_len; else break; } return i; } static void mv_start_new_crypt_req(struct ablkcipher_request *req) { struct req_progress *p = &cpg->p; int num_sgs; cpg->cur_req = &req->base; memset(p, 0, sizeof(struct req_progress)); p->hw_nbytes = req->nbytes; p->complete = mv_crypto_algo_completion; p->process = mv_process_current_q; p->copy_back = 1; num_sgs = count_sgs(req->src, req->nbytes); sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG); num_sgs = count_sgs(req->dst, req->nbytes); sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG); mv_process_current_q(1); } static void mv_start_new_hash_req(struct ahash_request *req) { struct req_progress *p = &cpg->p; struct mv_req_hash_ctx *ctx = ahash_request_ctx(req); const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm); int num_sgs, hw_bytes, old_extra_bytes, rc; cpg->cur_req = &req->base; memset(p, 0, sizeof(struct req_progress)); hw_bytes = req->nbytes + ctx->extra_bytes; old_extra_bytes = ctx->extra_bytes; if (unlikely(ctx->extra_bytes)) { memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer, ctx->extra_bytes); p->crypt_len = ctx->extra_bytes; } memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs)); if (unlikely(!ctx->first_hash)) { writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A); writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B); writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C); writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D); writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E); } ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE; if (ctx->extra_bytes != 0 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE)) hw_bytes -= ctx->extra_bytes; else ctx->extra_bytes = 0; num_sgs = count_sgs(req->src, req->nbytes); sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG); if (hw_bytes) { p->hw_nbytes = hw_bytes; p->complete = mv_hash_algo_completion; p->process = mv_process_hash_current; mv_process_hash_current(1); } else { copy_src_to_buf(p, ctx->buffer + old_extra_bytes, ctx->extra_bytes - old_extra_bytes); sg_miter_stop(&p->src_sg_it); if (ctx->last_chunk) rc = mv_hash_final_fallback(req); else rc = 0; cpg->eng_st = ENGINE_IDLE; local_bh_disable(); req->base.complete(&req->base, rc); local_bh_enable(); } } static int queue_manag(void *data) { cpg->eng_st = ENGINE_IDLE; do { struct crypto_async_request *async_req = NULL; struct crypto_async_request *backlog; __set_current_state(TASK_INTERRUPTIBLE); if (cpg->eng_st == ENGINE_W_DEQUEUE) dequeue_complete_req(); spin_lock_irq(&cpg->lock); if (cpg->eng_st == ENGINE_IDLE) { backlog = crypto_get_backlog(&cpg->queue); async_req = crypto_dequeue_request(&cpg->queue); if (async_req) { BUG_ON(cpg->eng_st != ENGINE_IDLE); cpg->eng_st = ENGINE_BUSY; } } spin_unlock_irq(&cpg->lock); if (backlog) { backlog->complete(backlog, -EINPROGRESS); backlog = NULL; } if (async_req) { if (async_req->tfm->__crt_alg->cra_type != &crypto_ahash_type) { struct ablkcipher_request *req = container_of(async_req, struct ablkcipher_request, base); mv_start_new_crypt_req(req); } else { struct ahash_request *req = ahash_request_cast(async_req); mv_start_new_hash_req(req); } async_req = NULL; } schedule(); } while (!kthread_should_stop()); return 0; } static int mv_handle_req(struct crypto_async_request *req) { unsigned long flags; int ret; spin_lock_irqsave(&cpg->lock, flags); ret = crypto_enqueue_request(&cpg->queue, req); spin_unlock_irqrestore(&cpg->lock, flags); wake_up_process(cpg->queue_th); return ret; } static int mv_enc_aes_ecb(struct ablkcipher_request *req) { struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_ECB; req_ctx->decrypt = 0; return mv_handle_req(&req->base); } static int mv_dec_aes_ecb(struct ablkcipher_request *req) { struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_ECB; req_ctx->decrypt = 1; compute_aes_dec_key(ctx); return mv_handle_req(&req->base); } static int mv_enc_aes_cbc(struct ablkcipher_request *req) { struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_CBC; req_ctx->decrypt = 0; return mv_handle_req(&req->base); } static int mv_dec_aes_cbc(struct ablkcipher_request *req) { struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_CBC; req_ctx->decrypt = 1; compute_aes_dec_key(ctx); return mv_handle_req(&req->base); } static int mv_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx); return 0; } static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op, int is_last, unsigned int req_len, int count_add) { memset(ctx, 0, sizeof(*ctx)); ctx->op = op; ctx->count = req_len; ctx->first_hash = 1; ctx->last_chunk = is_last; ctx->count_add = count_add; } static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last, unsigned req_len) { ctx->last_chunk = is_last; ctx->count += req_len; } static int mv_hash_init(struct ahash_request *req) { const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm); mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0, tfm_ctx->count_add); return 0; } static int mv_hash_update(struct ahash_request *req) { if (!req->nbytes) return 0; mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes); return mv_handle_req(&req->base); } static int mv_hash_final(struct ahash_request *req) { struct mv_req_hash_ctx *ctx = ahash_request_ctx(req); /* dummy buffer of 4 bytes */ sg_init_one(&ctx->dummysg, ctx->buffer, 4); /* I think I'm allowed to do that... */ ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0); mv_update_hash_req_ctx(ctx, 1, 0); return mv_handle_req(&req->base); } static int mv_hash_finup(struct ahash_request *req) { if (!req->nbytes) return mv_hash_final(req); mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes); return mv_handle_req(&req->base); } static int mv_hash_digest(struct ahash_request *req) { const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm); mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1, req->nbytes, tfm_ctx->count_add); return mv_handle_req(&req->base); } static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate, const void *ostate) { const struct sha1_state *isha1_state = istate, *osha1_state = ostate; int i; for (i = 0; i < 5; i++) { ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]); ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]); } } static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key, unsigned int keylen) { int rc; struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base); int bs, ds, ss; if (!ctx->base_hash) return 0; rc = crypto_shash_setkey(ctx->fallback, key, keylen); if (rc) return rc; /* Can't see a way to extract the ipad/opad from the fallback tfm so I'm basically copying code from the hmac module */ bs = crypto_shash_blocksize(ctx->base_hash); ds = crypto_shash_digestsize(ctx->base_hash); ss = crypto_shash_statesize(ctx->base_hash); { struct { struct shash_desc shash; char ctx[crypto_shash_descsize(ctx->base_hash)]; } desc; unsigned int i; char ipad[ss]; char opad[ss]; desc.shash.tfm = ctx->base_hash; desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) & CRYPTO_TFM_REQ_MAY_SLEEP; if (keylen > bs) { int err; err = crypto_shash_digest(&desc.shash, key, keylen, ipad); if (err) return err; keylen = ds; } else memcpy(ipad, key, keylen); memset(ipad + keylen, 0, bs - keylen); memcpy(opad, ipad, bs); for (i = 0; i < bs; i++) { ipad[i] ^= 0x36; opad[i] ^= 0x5c; } rc = crypto_shash_init(&desc.shash) ? : crypto_shash_update(&desc.shash, ipad, bs) ? : crypto_shash_export(&desc.shash, ipad) ? : crypto_shash_init(&desc.shash) ? : crypto_shash_update(&desc.shash, opad, bs) ? : crypto_shash_export(&desc.shash, opad); if (rc == 0) mv_hash_init_ivs(ctx, ipad, opad); return rc; } } static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name, enum hash_op op, int count_add) { const char *fallback_driver_name = tfm->__crt_alg->cra_name; struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_shash *fallback_tfm = NULL; struct crypto_shash *base_hash = NULL; int err = -ENOMEM; ctx->op = op; ctx->count_add = count_add; /* Allocate a fallback and abort if it failed. */ fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) { printk(KERN_WARNING MV_CESA "Fallback driver '%s' could not be loaded!\n", fallback_driver_name); err = PTR_ERR(fallback_tfm); goto out; } ctx->fallback = fallback_tfm; if (base_hash_name) { /* Allocate a hash to compute the ipad/opad of hmac. */ base_hash = crypto_alloc_shash(base_hash_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(base_hash)) { printk(KERN_WARNING MV_CESA "Base driver '%s' could not be loaded!\n", base_hash_name); err = PTR_ERR(base_hash); goto err_bad_base; } } ctx->base_hash = base_hash; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mv_req_hash_ctx) + crypto_shash_descsize(ctx->fallback)); return 0; err_bad_base: crypto_free_shash(fallback_tfm); out: return err; } static void mv_cra_hash_exit(struct crypto_tfm *tfm) { struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_shash(ctx->fallback); if (ctx->base_hash) crypto_free_shash(ctx->base_hash); } static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm) { return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0); } static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm) { return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE); } irqreturn_t crypto_int(int irq, void *priv) { u32 val; val = readl(cpg->reg + SEC_ACCEL_INT_STATUS); if (!(val & SEC_INT_ACCEL0_DONE)) return IRQ_NONE; val &= ~SEC_INT_ACCEL0_DONE; writel(val, cpg->reg + FPGA_INT_STATUS); writel(val, cpg->reg + SEC_ACCEL_INT_STATUS); BUG_ON(cpg->eng_st != ENGINE_BUSY); cpg->eng_st = ENGINE_W_DEQUEUE; wake_up_process(cpg->queue_th); return IRQ_HANDLED; } struct crypto_alg mv_aes_alg_ecb = { .cra_name = "ecb(aes)", .cra_driver_name = "mv-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 16, .cra_ctxsize = sizeof(struct mv_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = mv_cra_init, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mv_setkey_aes, .encrypt = mv_enc_aes_ecb, .decrypt = mv_dec_aes_ecb, }, }, }; struct crypto_alg mv_aes_alg_cbc = { .cra_name = "cbc(aes)", .cra_driver_name = "mv-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = mv_cra_init, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mv_setkey_aes, .encrypt = mv_enc_aes_cbc, .decrypt = mv_dec_aes_cbc, }, }, }; struct ahash_alg mv_sha1_alg = { .init = mv_hash_init, .update = mv_hash_update, .final = mv_hash_final, .finup = mv_hash_finup, .digest = mv_hash_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "mv-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx), .cra_init = mv_cra_hash_sha1_init, .cra_exit = mv_cra_hash_exit, .cra_module = THIS_MODULE, } } }; struct ahash_alg mv_hmac_sha1_alg = { .init = mv_hash_init, .update = mv_hash_update, .final = mv_hash_final, .finup = mv_hash_finup, .digest = mv_hash_digest, .setkey = mv_hash_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "mv-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx), .cra_init = mv_cra_hash_hmac_sha1_init, .cra_exit = mv_cra_hash_exit, .cra_module = THIS_MODULE, } } }; static int mv_probe(struct platform_device *pdev) { struct crypto_priv *cp; struct resource *res; int irq; int ret; if (cpg) { printk(KERN_ERR MV_CESA "Second crypto dev?\n"); return -EEXIST; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); if (!res) return -ENXIO; cp = kzalloc(sizeof(*cp), GFP_KERNEL); if (!cp) return -ENOMEM; spin_lock_init(&cp->lock); crypto_init_queue(&cp->queue, 50); cp->reg = ioremap(res->start, resource_size(res)); if (!cp->reg) { ret = -ENOMEM; goto err; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram"); if (!res) { ret = -ENXIO; goto err_unmap_reg; } cp->sram_size = resource_size(res); cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE; cp->sram = ioremap(res->start, cp->sram_size); if (!cp->sram) { ret = -ENOMEM; goto err_unmap_reg; } irq = platform_get_irq(pdev, 0); if (irq < 0 || irq == NO_IRQ) { ret = irq; goto err_unmap_sram; } cp->irq = irq; platform_set_drvdata(pdev, cp); cpg = cp; cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto"); if (IS_ERR(cp->queue_th)) { ret = PTR_ERR(cp->queue_th); goto err_unmap_sram; } ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev), cp); if (ret) goto err_thread; writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK); writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG); ret = crypto_register_alg(&mv_aes_alg_ecb); if (ret) goto err_irq; ret = crypto_register_alg(&mv_aes_alg_cbc); if (ret) goto err_unreg_ecb; ret = crypto_register_ahash(&mv_sha1_alg); if (ret == 0) cpg->has_sha1 = 1; else printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n"); ret = crypto_register_ahash(&mv_hmac_sha1_alg); if (ret == 0) { cpg->has_hmac_sha1 = 1; } else { printk(KERN_WARNING MV_CESA "Could not register hmac-sha1 driver\n"); } return 0; err_unreg_ecb: crypto_unregister_alg(&mv_aes_alg_ecb); err_irq: free_irq(irq, cp); err_thread: kthread_stop(cp->queue_th); err_unmap_sram: iounmap(cp->sram); err_unmap_reg: iounmap(cp->reg); err: kfree(cp); cpg = NULL; platform_set_drvdata(pdev, NULL); return ret; } static int mv_remove(struct platform_device *pdev) { struct crypto_priv *cp = platform_get_drvdata(pdev); crypto_unregister_alg(&mv_aes_alg_ecb); crypto_unregister_alg(&mv_aes_alg_cbc); if (cp->has_sha1) crypto_unregister_ahash(&mv_sha1_alg); if (cp->has_hmac_sha1) crypto_unregister_ahash(&mv_hmac_sha1_alg); kthread_stop(cp->queue_th); free_irq(cp->irq, cp); memset(cp->sram, 0, cp->sram_size); iounmap(cp->sram); iounmap(cp->reg); kfree(cp); cpg = NULL; return 0; } static struct platform_driver marvell_crypto = { .probe = mv_probe, .remove = mv_remove, .driver = { .owner = THIS_MODULE, .name = "mv_crypto", }, }; MODULE_ALIAS("platform:mv_crypto"); static int __init mv_crypto_init(void) { return platform_driver_register(&marvell_crypto); } module_init(mv_crypto_init); static void __exit mv_crypto_exit(void) { platform_driver_unregister(&marvell_crypto); } module_exit(mv_crypto_exit); MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>"); MODULE_DESCRIPTION("Support for Marvell's cryptographic engine"); MODULE_LICENSE("GPL");