/* * libata-acpi.c * Provides ACPI support for PATA/SATA. * * Copyright (C) 2006 Intel Corp. * Copyright (C) 2006 Randy Dunlap */ #include <linux/module.h> #include <linux/ata.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/libata.h> #include <linux/pci.h> #include <scsi/scsi_device.h> #include "libata.h" #include <acpi/acpi_bus.h> unsigned int ata_acpi_gtf_filter = ATA_ACPI_FILTER_DEFAULT; module_param_named(acpi_gtf_filter, ata_acpi_gtf_filter, int, 0644); MODULE_PARM_DESC(acpi_gtf_filter, "filter mask for ACPI _GTF commands, set to filter out (0x1=set xfermode, 0x2=lock/freeze lock, 0x4=DIPM, 0x8=FPDMA non-zero offset, 0x10=FPDMA DMA Setup FIS auto-activate)"); #define NO_PORT_MULT 0xffff #define SATA_ADR(root, pmp) (((root) << 16) | (pmp)) #define REGS_PER_GTF 7 struct ata_acpi_gtf { u8 tf[REGS_PER_GTF]; /* regs. 0x1f1 - 0x1f7 */ } __packed; /* * Helper - belongs in the PCI layer somewhere eventually */ static int is_pci_dev(struct device *dev) { return (dev->bus == &pci_bus_type); } static void ata_acpi_clear_gtf(struct ata_device *dev) { kfree(dev->gtf_cache); dev->gtf_cache = NULL; } /** * ata_acpi_associate_sata_port - associate SATA port with ACPI objects * @ap: target SATA port * * Look up ACPI objects associated with @ap and initialize acpi_handle * fields of @ap, the port and devices accordingly. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -errno on failure. */ void ata_acpi_associate_sata_port(struct ata_port *ap) { WARN_ON(!(ap->flags & ATA_FLAG_ACPI_SATA)); if (!sata_pmp_attached(ap)) { acpi_integer adr = SATA_ADR(ap->port_no, NO_PORT_MULT); ap->link.device->acpi_handle = acpi_get_child(ap->host->acpi_handle, adr); } else { struct ata_link *link; ap->link.device->acpi_handle = NULL; ata_for_each_link(link, ap, EDGE) { acpi_integer adr = SATA_ADR(ap->port_no, link->pmp); link->device->acpi_handle = acpi_get_child(ap->host->acpi_handle, adr); } } } static void ata_acpi_associate_ide_port(struct ata_port *ap) { int max_devices, i; ap->acpi_handle = acpi_get_child(ap->host->acpi_handle, ap->port_no); if (!ap->acpi_handle) return; max_devices = 1; if (ap->flags & ATA_FLAG_SLAVE_POSS) max_devices++; for (i = 0; i < max_devices; i++) { struct ata_device *dev = &ap->link.device[i]; dev->acpi_handle = acpi_get_child(ap->acpi_handle, i); } if (ata_acpi_gtm(ap, &ap->__acpi_init_gtm) == 0) ap->pflags |= ATA_PFLAG_INIT_GTM_VALID; } /* @ap and @dev are the same as ata_acpi_handle_hotplug() */ static void ata_acpi_detach_device(struct ata_port *ap, struct ata_device *dev) { if (dev) dev->flags |= ATA_DFLAG_DETACH; else { struct ata_link *tlink; struct ata_device *tdev; ata_for_each_link(tlink, ap, EDGE) ata_for_each_dev(tdev, tlink, ALL) tdev->flags |= ATA_DFLAG_DETACH; } ata_port_schedule_eh(ap); } /** * ata_acpi_handle_hotplug - ACPI event handler backend * @ap: ATA port ACPI event occurred * @dev: ATA device ACPI event occurred (can be NULL) * @event: ACPI event which occurred * * All ACPI bay / device realted events end up in this function. If * the event is port-wide @dev is NULL. If the event is specific to a * device, @dev points to it. * * Hotplug (as opposed to unplug) notification is always handled as * port-wide while unplug only kills the target device on device-wide * event. * * LOCKING: * ACPI notify handler context. May sleep. */ static void ata_acpi_handle_hotplug(struct ata_port *ap, struct ata_device *dev, u32 event) { struct ata_eh_info *ehi = &ap->link.eh_info; int wait = 0; unsigned long flags; acpi_handle handle; if (dev) handle = dev->acpi_handle; else handle = ap->acpi_handle; spin_lock_irqsave(ap->lock, flags); /* * When dock driver calls into the routine, it will always use * ACPI_NOTIFY_BUS_CHECK/ACPI_NOTIFY_DEVICE_CHECK for add and * ACPI_NOTIFY_EJECT_REQUEST for remove */ switch (event) { case ACPI_NOTIFY_BUS_CHECK: case ACPI_NOTIFY_DEVICE_CHECK: ata_ehi_push_desc(ehi, "ACPI event"); ata_ehi_hotplugged(ehi); ata_port_freeze(ap); break; case ACPI_NOTIFY_EJECT_REQUEST: ata_ehi_push_desc(ehi, "ACPI event"); ata_acpi_detach_device(ap, dev); wait = 1; break; } spin_unlock_irqrestore(ap->lock, flags); if (wait) ata_port_wait_eh(ap); } static void ata_acpi_dev_notify_dock(acpi_handle handle, u32 event, void *data) { struct ata_device *dev = data; ata_acpi_handle_hotplug(dev->link->ap, dev, event); } static void ata_acpi_ap_notify_dock(acpi_handle handle, u32 event, void *data) { struct ata_port *ap = data; ata_acpi_handle_hotplug(ap, NULL, event); } static void ata_acpi_uevent(struct ata_port *ap, struct ata_device *dev, u32 event) { struct kobject *kobj = NULL; char event_string[20]; char *envp[] = { event_string, NULL }; if (dev) { if (dev->sdev) kobj = &dev->sdev->sdev_gendev.kobj; } else kobj = &ap->dev->kobj; if (kobj) { snprintf(event_string, 20, "BAY_EVENT=%d", event); kobject_uevent_env(kobj, KOBJ_CHANGE, envp); } } static void ata_acpi_ap_uevent(acpi_handle handle, u32 event, void *data) { ata_acpi_uevent(data, NULL, event); } static void ata_acpi_dev_uevent(acpi_handle handle, u32 event, void *data) { struct ata_device *dev = data; ata_acpi_uevent(dev->link->ap, dev, event); } static struct acpi_dock_ops ata_acpi_dev_dock_ops = { .handler = ata_acpi_dev_notify_dock, .uevent = ata_acpi_dev_uevent, }; static struct acpi_dock_ops ata_acpi_ap_dock_ops = { .handler = ata_acpi_ap_notify_dock, .uevent = ata_acpi_ap_uevent, }; /** * ata_acpi_associate - associate ATA host with ACPI objects * @host: target ATA host * * Look up ACPI objects associated with @host and initialize * acpi_handle fields of @host, its ports and devices accordingly. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -errno on failure. */ void ata_acpi_associate(struct ata_host *host) { int i, j; if (!is_pci_dev(host->dev) || libata_noacpi) return; host->acpi_handle = DEVICE_ACPI_HANDLE(host->dev); if (!host->acpi_handle) return; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; if (host->ports[0]->flags & ATA_FLAG_ACPI_SATA) ata_acpi_associate_sata_port(ap); else ata_acpi_associate_ide_port(ap); if (ap->acpi_handle) { /* we might be on a docking station */ register_hotplug_dock_device(ap->acpi_handle, &ata_acpi_ap_dock_ops, ap); } for (j = 0; j < ata_link_max_devices(&ap->link); j++) { struct ata_device *dev = &ap->link.device[j]; if (dev->acpi_handle) { /* we might be on a docking station */ register_hotplug_dock_device(dev->acpi_handle, &ata_acpi_dev_dock_ops, dev); } } } } /** * ata_acpi_dissociate - dissociate ATA host from ACPI objects * @host: target ATA host * * This function is called during driver detach after the whole host * is shut down. * * LOCKING: * EH context. */ void ata_acpi_dissociate(struct ata_host *host) { int i; /* Restore initial _GTM values so that driver which attaches * afterward can use them too. */ for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; const struct ata_acpi_gtm *gtm = ata_acpi_init_gtm(ap); if (ap->acpi_handle && gtm) ata_acpi_stm(ap, gtm); } } /** * ata_acpi_gtm - execute _GTM * @ap: target ATA port * @gtm: out parameter for _GTM result * * Evaluate _GTM and store the result in @gtm. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -ENOENT if _GTM doesn't exist, -errno on failure. */ int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *gtm) { struct acpi_buffer output = { .length = ACPI_ALLOCATE_BUFFER }; union acpi_object *out_obj; acpi_status status; int rc = 0; status = acpi_evaluate_object(ap->acpi_handle, "_GTM", NULL, &output); rc = -ENOENT; if (status == AE_NOT_FOUND) goto out_free; rc = -EINVAL; if (ACPI_FAILURE(status)) { ata_port_printk(ap, KERN_ERR, "ACPI get timing mode failed (AE 0x%x)\n", status); goto out_free; } out_obj = output.pointer; if (out_obj->type != ACPI_TYPE_BUFFER) { ata_port_printk(ap, KERN_WARNING, "_GTM returned unexpected object type 0x%x\n", out_obj->type); goto out_free; } if (out_obj->buffer.length != sizeof(struct ata_acpi_gtm)) { ata_port_printk(ap, KERN_ERR, "_GTM returned invalid length %d\n", out_obj->buffer.length); goto out_free; } memcpy(gtm, out_obj->buffer.pointer, sizeof(struct ata_acpi_gtm)); rc = 0; out_free: kfree(output.pointer); return rc; } EXPORT_SYMBOL_GPL(ata_acpi_gtm); /** * ata_acpi_stm - execute _STM * @ap: target ATA port * @stm: timing parameter to _STM * * Evaluate _STM with timing parameter @stm. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -ENOENT if _STM doesn't exist, -errno on failure. */ int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm) { acpi_status status; struct ata_acpi_gtm stm_buf = *stm; struct acpi_object_list input; union acpi_object in_params[3]; in_params[0].type = ACPI_TYPE_BUFFER; in_params[0].buffer.length = sizeof(struct ata_acpi_gtm); in_params[0].buffer.pointer = (u8 *)&stm_buf; /* Buffers for id may need byteswapping ? */ in_params[1].type = ACPI_TYPE_BUFFER; in_params[1].buffer.length = 512; in_params[1].buffer.pointer = (u8 *)ap->link.device[0].id; in_params[2].type = ACPI_TYPE_BUFFER; in_params[2].buffer.length = 512; in_params[2].buffer.pointer = (u8 *)ap->link.device[1].id; input.count = 3; input.pointer = in_params; status = acpi_evaluate_object(ap->acpi_handle, "_STM", &input, NULL); if (status == AE_NOT_FOUND) return -ENOENT; if (ACPI_FAILURE(status)) { ata_port_printk(ap, KERN_ERR, "ACPI set timing mode failed (status=0x%x)\n", status); return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(ata_acpi_stm); /** * ata_dev_get_GTF - get the drive bootup default taskfile settings * @dev: target ATA device * @gtf: output parameter for buffer containing _GTF taskfile arrays * * This applies to both PATA and SATA drives. * * The _GTF method has no input parameters. * It returns a variable number of register set values (registers * hex 1F1..1F7, taskfiles). * The <variable number> is not known in advance, so have ACPI-CA * allocate the buffer as needed and return it, then free it later. * * LOCKING: * EH context. * * RETURNS: * Number of taskfiles on success, 0 if _GTF doesn't exist. -EINVAL * if _GTF is invalid. */ static int ata_dev_get_GTF(struct ata_device *dev, struct ata_acpi_gtf **gtf) { struct ata_port *ap = dev->link->ap; acpi_status status; struct acpi_buffer output; union acpi_object *out_obj; int rc = 0; /* if _GTF is cached, use the cached value */ if (dev->gtf_cache) { out_obj = dev->gtf_cache; goto done; } /* set up output buffer */ output.length = ACPI_ALLOCATE_BUFFER; output.pointer = NULL; /* ACPI-CA sets this; save/free it later */ if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER: port#: %d\n", __func__, ap->port_no); /* _GTF has no input parameters */ status = acpi_evaluate_object(dev->acpi_handle, "_GTF", NULL, &output); out_obj = dev->gtf_cache = output.pointer; if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { ata_dev_printk(dev, KERN_WARNING, "_GTF evaluation failed (AE 0x%x)\n", status); rc = -EINVAL; } goto out_free; } if (!output.length || !output.pointer) { if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: Run _GTF: " "length or ptr is NULL (0x%llx, 0x%p)\n", __func__, (unsigned long long)output.length, output.pointer); rc = -EINVAL; goto out_free; } if (out_obj->type != ACPI_TYPE_BUFFER) { ata_dev_printk(dev, KERN_WARNING, "_GTF unexpected object type 0x%x\n", out_obj->type); rc = -EINVAL; goto out_free; } if (out_obj->buffer.length % REGS_PER_GTF) { ata_dev_printk(dev, KERN_WARNING, "unexpected _GTF length (%d)\n", out_obj->buffer.length); rc = -EINVAL; goto out_free; } done: rc = out_obj->buffer.length / REGS_PER_GTF; if (gtf) { *gtf = (void *)out_obj->buffer.pointer; if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: returning gtf=%p, gtf_count=%d\n", __func__, *gtf, rc); } return rc; out_free: ata_acpi_clear_gtf(dev); return rc; } /** * ata_acpi_gtm_xfermode - determine xfermode from GTM parameter * @dev: target device * @gtm: GTM parameter to use * * Determine xfermask for @dev from @gtm. * * LOCKING: * None. * * RETURNS: * Determined xfermask. */ unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm) { unsigned long xfer_mask = 0; unsigned int type; int unit; u8 mode; /* we always use the 0 slot for crap hardware */ unit = dev->devno; if (!(gtm->flags & 0x10)) unit = 0; /* PIO */ mode = ata_timing_cycle2mode(ATA_SHIFT_PIO, gtm->drive[unit].pio); xfer_mask |= ata_xfer_mode2mask(mode); /* See if we have MWDMA or UDMA data. We don't bother with * MWDMA if UDMA is available as this means the BIOS set UDMA * and our error changedown if it works is UDMA to PIO anyway. */ if (!(gtm->flags & (1 << (2 * unit)))) type = ATA_SHIFT_MWDMA; else type = ATA_SHIFT_UDMA; mode = ata_timing_cycle2mode(type, gtm->drive[unit].dma); xfer_mask |= ata_xfer_mode2mask(mode); return xfer_mask; } EXPORT_SYMBOL_GPL(ata_acpi_gtm_xfermask); /** * ata_acpi_cbl_80wire - Check for 80 wire cable * @ap: Port to check * @gtm: GTM data to use * * Return 1 if the @gtm indicates the BIOS selected an 80wire mode. */ int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm) { struct ata_device *dev; ata_for_each_dev(dev, &ap->link, ENABLED) { unsigned long xfer_mask, udma_mask; xfer_mask = ata_acpi_gtm_xfermask(dev, gtm); ata_unpack_xfermask(xfer_mask, NULL, NULL, &udma_mask); if (udma_mask & ~ATA_UDMA_MASK_40C) return 1; } return 0; } EXPORT_SYMBOL_GPL(ata_acpi_cbl_80wire); static void ata_acpi_gtf_to_tf(struct ata_device *dev, const struct ata_acpi_gtf *gtf, struct ata_taskfile *tf) { ata_tf_init(dev, tf); tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; tf->feature = gtf->tf[0]; /* 0x1f1 */ tf->nsect = gtf->tf[1]; /* 0x1f2 */ tf->lbal = gtf->tf[2]; /* 0x1f3 */ tf->lbam = gtf->tf[3]; /* 0x1f4 */ tf->lbah = gtf->tf[4]; /* 0x1f5 */ tf->device = gtf->tf[5]; /* 0x1f6 */ tf->command = gtf->tf[6]; /* 0x1f7 */ } static int ata_acpi_filter_tf(struct ata_device *dev, const struct ata_taskfile *tf, const struct ata_taskfile *ptf) { if (dev->gtf_filter & ATA_ACPI_FILTER_SETXFER) { /* libata doesn't use ACPI to configure transfer mode. * It will only confuse device configuration. Skip. */ if (tf->command == ATA_CMD_SET_FEATURES && tf->feature == SETFEATURES_XFER) return 1; } if (dev->gtf_filter & ATA_ACPI_FILTER_LOCK) { /* BIOS writers, sorry but we don't wanna lock * features unless the user explicitly said so. */ /* DEVICE CONFIGURATION FREEZE LOCK */ if (tf->command == ATA_CMD_CONF_OVERLAY && tf->feature == ATA_DCO_FREEZE_LOCK) return 1; /* SECURITY FREEZE LOCK */ if (tf->command == ATA_CMD_SEC_FREEZE_LOCK) return 1; /* SET MAX LOCK and SET MAX FREEZE LOCK */ if ((!ptf || ptf->command != ATA_CMD_READ_NATIVE_MAX) && tf->command == ATA_CMD_SET_MAX && (tf->feature == ATA_SET_MAX_LOCK || tf->feature == ATA_SET_MAX_FREEZE_LOCK)) return 1; } if (tf->command == ATA_CMD_SET_FEATURES && tf->feature == SETFEATURES_SATA_ENABLE) { /* inhibit enabling DIPM */ if (dev->gtf_filter & ATA_ACPI_FILTER_DIPM && tf->nsect == SATA_DIPM) return 1; /* inhibit FPDMA non-zero offset */ if (dev->gtf_filter & ATA_ACPI_FILTER_FPDMA_OFFSET && (tf->nsect == SATA_FPDMA_OFFSET || tf->nsect == SATA_FPDMA_IN_ORDER)) return 1; /* inhibit FPDMA auto activation */ if (dev->gtf_filter & ATA_ACPI_FILTER_FPDMA_AA && tf->nsect == SATA_FPDMA_AA) return 1; } return 0; } /** * ata_acpi_run_tf - send taskfile registers to host controller * @dev: target ATA device * @gtf: raw ATA taskfile register set (0x1f1 - 0x1f7) * * Outputs ATA taskfile to standard ATA host controller using MMIO * or PIO as indicated by the ATA_FLAG_MMIO flag. * Writes the control, feature, nsect, lbal, lbam, and lbah registers. * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect, * hob_lbal, hob_lbam, and hob_lbah. * * This function waits for idle (!BUSY and !DRQ) after writing * registers. If the control register has a new value, this * function also waits for idle after writing control and before * writing the remaining registers. * * LOCKING: * EH context. * * RETURNS: * 1 if command is executed successfully. 0 if ignored, rejected or * filtered out, -errno on other errors. */ static int ata_acpi_run_tf(struct ata_device *dev, const struct ata_acpi_gtf *gtf, const struct ata_acpi_gtf *prev_gtf) { struct ata_taskfile *pptf = NULL; struct ata_taskfile tf, ptf, rtf; unsigned int err_mask; const char *level; const char *descr; char msg[60]; int rc; if ((gtf->tf[0] == 0) && (gtf->tf[1] == 0) && (gtf->tf[2] == 0) && (gtf->tf[3] == 0) && (gtf->tf[4] == 0) && (gtf->tf[5] == 0) && (gtf->tf[6] == 0)) return 0; ata_acpi_gtf_to_tf(dev, gtf, &tf); if (prev_gtf) { ata_acpi_gtf_to_tf(dev, prev_gtf, &ptf); pptf = &ptf; } if (!ata_acpi_filter_tf(dev, &tf, pptf)) { rtf = tf; err_mask = ata_exec_internal(dev, &rtf, NULL, DMA_NONE, NULL, 0, 0); switch (err_mask) { case 0: level = KERN_DEBUG; snprintf(msg, sizeof(msg), "succeeded"); rc = 1; break; case AC_ERR_DEV: level = KERN_INFO; snprintf(msg, sizeof(msg), "rejected by device (Stat=0x%02x Err=0x%02x)", rtf.command, rtf.feature); rc = 0; break; default: level = KERN_ERR; snprintf(msg, sizeof(msg), "failed (Emask=0x%x Stat=0x%02x Err=0x%02x)", err_mask, rtf.command, rtf.feature); rc = -EIO; break; } } else { level = KERN_INFO; snprintf(msg, sizeof(msg), "filtered out"); rc = 0; } descr = ata_get_cmd_descript(tf.command); ata_dev_printk(dev, level, "ACPI cmd %02x/%02x:%02x:%02x:%02x:%02x:%02x (%s) %s\n", tf.command, tf.feature, tf.nsect, tf.lbal, tf.lbam, tf.lbah, tf.device, (descr ? descr : "unknown"), msg); return rc; } /** * ata_acpi_exec_tfs - get then write drive taskfile settings * @dev: target ATA device * @nr_executed: out parameter for the number of executed commands * * Evaluate _GTF and execute returned taskfiles. * * LOCKING: * EH context. * * RETURNS: * Number of executed taskfiles on success, 0 if _GTF doesn't exist. * -errno on other errors. */ static int ata_acpi_exec_tfs(struct ata_device *dev, int *nr_executed) { struct ata_acpi_gtf *gtf = NULL, *pgtf = NULL; int gtf_count, i, rc; /* get taskfiles */ rc = ata_dev_get_GTF(dev, >f); if (rc < 0) return rc; gtf_count = rc; /* execute them */ for (i = 0; i < gtf_count; i++, gtf++) { rc = ata_acpi_run_tf(dev, gtf, pgtf); if (rc < 0) break; if (rc) { (*nr_executed)++; pgtf = gtf; } } ata_acpi_clear_gtf(dev); if (rc < 0) return rc; return 0; } /** * ata_acpi_push_id - send Identify data to drive * @dev: target ATA device * * _SDD ACPI object: for SATA mode only * Must be after Identify (Packet) Device -- uses its data * ATM this function never returns a failure. It is an optional * method and if it fails for whatever reason, we should still * just keep going. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -errno on failure. */ static int ata_acpi_push_id(struct ata_device *dev) { struct ata_port *ap = dev->link->ap; int err; acpi_status status; struct acpi_object_list input; union acpi_object in_params[1]; if (ata_msg_probe(ap)) ata_dev_printk(dev, KERN_DEBUG, "%s: ix = %d, port#: %d\n", __func__, dev->devno, ap->port_no); /* Give the drive Identify data to the drive via the _SDD method */ /* _SDD: set up input parameters */ input.count = 1; input.pointer = in_params; in_params[0].type = ACPI_TYPE_BUFFER; in_params[0].buffer.length = sizeof(dev->id[0]) * ATA_ID_WORDS; in_params[0].buffer.pointer = (u8 *)dev->id; /* Output buffer: _SDD has no output */ /* It's OK for _SDD to be missing too. */ swap_buf_le16(dev->id, ATA_ID_WORDS); status = acpi_evaluate_object(dev->acpi_handle, "_SDD", &input, NULL); swap_buf_le16(dev->id, ATA_ID_WORDS); err = ACPI_FAILURE(status) ? -EIO : 0; if (err < 0) ata_dev_printk(dev, KERN_WARNING, "ACPI _SDD failed (AE 0x%x)\n", status); return err; } /** * ata_acpi_on_suspend - ATA ACPI hook called on suspend * @ap: target ATA port * * This function is called when @ap is about to be suspended. All * devices are already put to sleep but the port_suspend() callback * hasn't been executed yet. Error return from this function aborts * suspend. * * LOCKING: * EH context. * * RETURNS: * 0 on success, -errno on failure. */ int ata_acpi_on_suspend(struct ata_port *ap) { /* nada */ return 0; } /** * ata_acpi_on_resume - ATA ACPI hook called on resume * @ap: target ATA port * * This function is called when @ap is resumed - right after port * itself is resumed but before any EH action is taken. * * LOCKING: * EH context. */ void ata_acpi_on_resume(struct ata_port *ap) { const struct ata_acpi_gtm *gtm = ata_acpi_init_gtm(ap); struct ata_device *dev; if (ap->acpi_handle && gtm) { /* _GTM valid */ /* restore timing parameters */ ata_acpi_stm(ap, gtm); /* _GTF should immediately follow _STM so that it can * use values set by _STM. Cache _GTF result and * schedule _GTF. */ ata_for_each_dev(dev, &ap->link, ALL) { ata_acpi_clear_gtf(dev); if (ata_dev_enabled(dev) && ata_dev_get_GTF(dev, NULL) >= 0) dev->flags |= ATA_DFLAG_ACPI_PENDING; } } else { /* SATA _GTF needs to be evaulated after _SDD and * there's no reason to evaluate IDE _GTF early * without _STM. Clear cache and schedule _GTF. */ ata_for_each_dev(dev, &ap->link, ALL) { ata_acpi_clear_gtf(dev); if (ata_dev_enabled(dev)) dev->flags |= ATA_DFLAG_ACPI_PENDING; } } } /** * ata_acpi_set_state - set the port power state * @ap: target ATA port * @state: state, on/off * * This function executes the _PS0/_PS3 ACPI method to set the power state. * ACPI spec requires _PS0 when IDE power on and _PS3 when power off */ void ata_acpi_set_state(struct ata_port *ap, pm_message_t state) { struct ata_device *dev; if (!ap->acpi_handle || (ap->flags & ATA_FLAG_ACPI_SATA)) return; /* channel first and then drives for power on and vica versa for power off */ if (state.event == PM_EVENT_ON) acpi_bus_set_power(ap->acpi_handle, ACPI_STATE_D0); ata_for_each_dev(dev, &ap->link, ENABLED) { if (dev->acpi_handle) acpi_bus_set_power(dev->acpi_handle, state.event == PM_EVENT_ON ? ACPI_STATE_D0 : ACPI_STATE_D3); } if (state.event != PM_EVENT_ON) acpi_bus_set_power(ap->acpi_handle, ACPI_STATE_D3); } /** * ata_acpi_on_devcfg - ATA ACPI hook called on device donfiguration * @dev: target ATA device * * This function is called when @dev is about to be configured. * IDENTIFY data might have been modified after this hook is run. * * LOCKING: * EH context. * * RETURNS: * Positive number if IDENTIFY data needs to be refreshed, 0 if not, * -errno on failure. */ int ata_acpi_on_devcfg(struct ata_device *dev) { struct ata_port *ap = dev->link->ap; struct ata_eh_context *ehc = &ap->link.eh_context; int acpi_sata = ap->flags & ATA_FLAG_ACPI_SATA; int nr_executed = 0; int rc; if (!dev->acpi_handle) return 0; /* do we need to do _GTF? */ if (!(dev->flags & ATA_DFLAG_ACPI_PENDING) && !(acpi_sata && (ehc->i.flags & ATA_EHI_DID_HARDRESET))) return 0; /* do _SDD if SATA */ if (acpi_sata) { rc = ata_acpi_push_id(dev); if (rc) goto acpi_err; } /* do _GTF */ rc = ata_acpi_exec_tfs(dev, &nr_executed); if (rc) goto acpi_err; dev->flags &= ~ATA_DFLAG_ACPI_PENDING; /* refresh IDENTIFY page if any _GTF command has been executed */ if (nr_executed) { rc = ata_dev_reread_id(dev, 0); if (rc < 0) { ata_dev_printk(dev, KERN_ERR, "failed to IDENTIFY " "after ACPI commands\n"); return rc; } } return 0; acpi_err: /* ignore evaluation failure if we can continue safely */ if (rc == -EINVAL && !nr_executed && !(ap->pflags & ATA_PFLAG_FROZEN)) return 0; /* fail and let EH retry once more for unknown IO errors */ if (!(dev->flags & ATA_DFLAG_ACPI_FAILED)) { dev->flags |= ATA_DFLAG_ACPI_FAILED; return rc; } ata_dev_printk(dev, KERN_WARNING, "ACPI: failed the second time, disabled\n"); dev->acpi_handle = NULL; /* We can safely continue if no _GTF command has been executed * and port is not frozen. */ if (!nr_executed && !(ap->pflags & ATA_PFLAG_FROZEN)) return 0; return rc; } /** * ata_acpi_on_disable - ATA ACPI hook called when a device is disabled * @dev: target ATA device * * This function is called when @dev is about to be disabled. * * LOCKING: * EH context. */ void ata_acpi_on_disable(struct ata_device *dev) { ata_acpi_clear_gtf(dev); }