/* * Algorithm testing framework and tests. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) 2007 Nokia Siemens Networks * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> * * Updated RFC4106 AES-GCM testing. * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Copyright (c) 2010, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/hash.h> #include <linux/err.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/string.h> #include <crypto/rng.h> #include "internal.h" #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS /* a perfect nop */ int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { return 0; } #else #include "testmgr.h" /* * Need slab memory for testing (size in number of pages). */ #define XBUFSIZE 8 /* * Indexes into the xbuf to simulate cross-page access. */ #define IDX1 32 #define IDX2 32400 #define IDX3 1 #define IDX4 8193 #define IDX5 22222 #define IDX6 17101 #define IDX7 27333 #define IDX8 3000 /* * Used by test_cipher() */ #define ENCRYPT 1 #define DECRYPT 0 struct tcrypt_result { struct completion completion; int err; }; struct aead_test_suite { struct { struct aead_testvec *vecs; unsigned int count; } enc, dec; }; struct cipher_test_suite { struct { struct cipher_testvec *vecs; unsigned int count; } enc, dec; }; struct comp_test_suite { struct { struct comp_testvec *vecs; unsigned int count; } comp, decomp; }; struct pcomp_test_suite { struct { struct pcomp_testvec *vecs; unsigned int count; } comp, decomp; }; struct hash_test_suite { struct hash_testvec *vecs; unsigned int count; }; struct cprng_test_suite { struct cprng_testvec *vecs; unsigned int count; }; struct alg_test_desc { const char *alg; int (*test)(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask); int fips_allowed; /* set if alg is allowed in fips mode */ union { struct aead_test_suite aead; struct cipher_test_suite cipher; struct comp_test_suite comp; struct pcomp_test_suite pcomp; struct hash_test_suite hash; struct cprng_test_suite cprng; } suite; }; static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 }; static void hexdump(unsigned char *buf, unsigned int len) { print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } static void tcrypt_complete(struct crypto_async_request *req, int err) { struct tcrypt_result *res = req->data; if (err == -EINPROGRESS) return; res->err = err; complete(&res->completion); } static int testmgr_alloc_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) { buf[i] = (void *)__get_free_page(GFP_KERNEL); if (!buf[i]) goto err_free_buf; } return 0; err_free_buf: while (i-- > 0) free_page((unsigned long)buf[i]); return -ENOMEM; } static void testmgr_free_buf(char *buf[XBUFSIZE]) { int i; for (i = 0; i < XBUFSIZE; i++) free_page((unsigned long)buf[i]); } static int do_one_async_hash_op(struct ahash_request *req, struct tcrypt_result *tr, int ret) { if (ret == -EINPROGRESS || ret == -EBUSY) { ret = wait_for_completion_interruptible(&tr->completion); if (!ret) ret = tr->err; INIT_COMPLETION(tr->completion); } return ret; } static int test_hash(struct crypto_ahash *tfm, struct hash_testvec *template, unsigned int tcount, bool use_digest) { const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); unsigned int i, j, k, temp; struct scatterlist sg[8]; char result[64]; struct ahash_request *req; struct tcrypt_result tresult; void *hash_buff; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; init_completion(&tresult.completion); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { printk(KERN_ERR "alg: hash: Failed to allocate request for " "%s\n", algo); goto out_noreq; } ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &tresult); j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; j++; memset(result, 0, 64); hash_buff = xbuf[0]; memcpy(hash_buff, template[i].plaintext, template[i].psize); sg_init_one(&sg[0], hash_buff, template[i].psize); if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); ret = crypto_ahash_setkey(tfm, template[i].key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey failed on " "test %d for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); if (use_digest) { ret = do_one_async_hash_op(req, &tresult, crypto_ahash_digest(req)); if (ret) { pr_err("alg: hash: digest failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } else { ret = do_one_async_hash_op(req, &tresult, crypto_ahash_init(req)); if (ret) { pr_err("alt: hash: init failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = do_one_async_hash_op(req, &tresult, crypto_ahash_update(req)); if (ret) { pr_err("alt: hash: update failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } ret = do_one_async_hash_op(req, &tresult, crypto_ahash_final(req)); if (ret) { pr_err("alt: hash: final failed on test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Test %d failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) { j++; memset(result, 0, 64); temp = 0; sg_init_table(sg, template[i].np); ret = -EINVAL; for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; sg_set_buf(&sg[k], memcpy(xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].plaintext + temp, template[i].tap[k]), template[i].tap[k]); temp += template[i].tap[k]; } if (template[i].ksize) { crypto_ahash_clear_flags(tfm, ~0); ret = crypto_ahash_setkey(tfm, template[i].key, template[i].ksize); if (ret) { printk(KERN_ERR "alg: hash: setkey " "failed on chunking test %d " "for %s: ret=%d\n", j, algo, -ret); goto out; } } ahash_request_set_crypt(req, sg, result, template[i].psize); ret = crypto_ahash_digest(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &tresult.completion); if (!ret && !(ret = tresult.err)) { INIT_COMPLETION(tresult.completion); break; } /* fall through */ default: printk(KERN_ERR "alg: hash: digest failed " "on chunking test %d for %s: " "ret=%d\n", j, algo, -ret); goto out; } if (memcmp(result, template[i].digest, crypto_ahash_digestsize(tfm))) { printk(KERN_ERR "alg: hash: Chunking test %d " "failed for %s\n", j, algo); hexdump(result, crypto_ahash_digestsize(tfm)); ret = -EINVAL; goto out; } } } ret = 0; out: ahash_request_free(req); out_noreq: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_aead(struct crypto_aead *tfm, int enc, struct aead_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm)); unsigned int i, j, k, n, temp; int ret = -ENOMEM; char *q; char *key; struct aead_request *req; struct scatterlist sg[8]; struct scatterlist asg[8]; const char *e; struct tcrypt_result result; unsigned int authsize; void *input; void *assoc; char iv[MAX_IVLEN]; char *xbuf[XBUFSIZE]; char *axbuf[XBUFSIZE]; if (testmgr_alloc_buf(xbuf)) goto out_noxbuf; if (testmgr_alloc_buf(axbuf)) goto out_noaxbuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; init_completion(&result.completion); req = aead_request_alloc(tfm, GFP_KERNEL); if (!req) { printk(KERN_ERR "alg: aead: Failed to allocate request for " "%s\n", algo); goto out; } aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &result); for (i = 0, j = 0; i < tcount; i++) { if (!template[i].np) { j++; /* some tepmplates have no input data but they will * touch input */ input = xbuf[0]; assoc = axbuf[0]; ret = -EINVAL; if (WARN_ON(template[i].ilen > PAGE_SIZE || template[i].alen > PAGE_SIZE)) goto out; memcpy(input, template[i].input, template[i].ilen); memcpy(assoc, template[i].assoc, template[i].alen); if (template[i].iv) memcpy(iv, template[i].iv, MAX_IVLEN); else memset(iv, 0, MAX_IVLEN); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags( tfm, CRYPTO_TFM_REQ_WEAK_KEY); key = template[i].key; ret = crypto_aead_setkey(tfm, key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: aead: setkey failed on " "test %d for %s: flags=%x\n", j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { printk(KERN_ERR "alg: aead: Failed to set " "authsize to %u on test %d for %s\n", authsize, j, algo); goto out; } sg_init_one(&sg[0], input, template[i].ilen + (enc ? authsize : 0)); sg_init_one(&asg[0], assoc, template[i].alen); aead_request_set_crypt(req, sg, sg, template[i].ilen, iv); aead_request_set_assoc(req, asg, template[i].alen); ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ printk(KERN_ERR "alg: aead: %s failed " "on test %d for %s: ret was 0, " "expected -EBADMSG\n", e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &result.completion); if (!ret && !(ret = result.err)) { INIT_COMPLETION(result.completion); break; } case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: printk(KERN_ERR "alg: aead: %s failed on test " "%d for %s: ret=%d\n", e, j, algo, -ret); goto out; } q = input; if (memcmp(q, template[i].result, template[i].rlen)) { printk(KERN_ERR "alg: aead: Test %d failed on " "%s for %s\n", j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } } for (i = 0, j = 0; i < tcount; i++) { if (template[i].np) { j++; if (template[i].iv) memcpy(iv, template[i].iv, MAX_IVLEN); else memset(iv, 0, MAX_IVLEN); crypto_aead_clear_flags(tfm, ~0); if (template[i].wk) crypto_aead_set_flags( tfm, CRYPTO_TFM_REQ_WEAK_KEY); key = template[i].key; ret = crypto_aead_setkey(tfm, key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: aead: setkey failed on " "chunk test %d for %s: flags=%x\n", j, algo, crypto_aead_get_flags(tfm)); goto out; } else if (ret) continue; authsize = abs(template[i].rlen - template[i].ilen); ret = -EINVAL; sg_init_table(sg, template[i].np); for (k = 0, temp = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, template[i].input + temp, template[i].tap[k]); n = template[i].tap[k]; if (k == template[i].np - 1 && enc) n += authsize; if (offset_in_page(q) + n < PAGE_SIZE) q[n] = 0; sg_set_buf(&sg[k], q, template[i].tap[k]); temp += template[i].tap[k]; } ret = crypto_aead_setauthsize(tfm, authsize); if (ret) { printk(KERN_ERR "alg: aead: Failed to set " "authsize to %u on chunk test %d for " "%s\n", authsize, j, algo); goto out; } if (enc) { if (WARN_ON(sg[k - 1].offset + sg[k - 1].length + authsize > PAGE_SIZE)) { ret = -EINVAL; goto out; } sg[k - 1].length += authsize; } sg_init_table(asg, template[i].anp); ret = -EINVAL; for (k = 0, temp = 0; k < template[i].anp; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].atap[k] > PAGE_SIZE)) goto out; sg_set_buf(&asg[k], memcpy(axbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]), template[i].assoc + temp, template[i].atap[k]), template[i].atap[k]); temp += template[i].atap[k]; } aead_request_set_crypt(req, sg, sg, template[i].ilen, iv); aead_request_set_assoc(req, asg, template[i].alen); ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); switch (ret) { case 0: if (template[i].novrfy) { /* verification was supposed to fail */ printk(KERN_ERR "alg: aead: %s failed " "on chunk test %d for %s: ret " "was 0, expected -EBADMSG\n", e, j, algo); /* so really, we got a bad message */ ret = -EBADMSG; goto out; } break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &result.completion); if (!ret && !(ret = result.err)) { INIT_COMPLETION(result.completion); break; } case -EBADMSG: if (template[i].novrfy) /* verification failure was expected */ continue; /* fall through */ default: printk(KERN_ERR "alg: aead: %s failed on " "chunk test %d for %s: ret=%d\n", e, j, algo, -ret); goto out; } ret = -EINVAL; for (k = 0, temp = 0; k < template[i].np; k++) { q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); n = template[i].tap[k]; if (k == template[i].np - 1) n += enc ? authsize : -authsize; if (memcmp(q, template[i].result + temp, n)) { printk(KERN_ERR "alg: aead: Chunk " "test %d failed on %s at page " "%u for %s\n", j, e, k, algo); hexdump(q, n); goto out; } q += n; if (k == template[i].np - 1 && !enc) { if (memcmp(q, template[i].input + temp + n, authsize)) n = authsize; else n = 0; } else { for (n = 0; offset_in_page(q + n) && q[n]; n++) ; } if (n) { printk(KERN_ERR "alg: aead: Result " "buffer corruption in chunk " "test %d on %s at page %u for " "%s: %u bytes:\n", j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } } ret = 0; out: aead_request_free(req); testmgr_free_buf(axbuf); out_noaxbuf: testmgr_free_buf(xbuf); out_noxbuf: return ret; } static int test_cipher(struct crypto_cipher *tfm, int enc, struct cipher_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); unsigned int i, j, k; char *q; const char *e; void *data; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; j = 0; for (i = 0; i < tcount; i++) { if (template[i].np) continue; j++; ret = -EINVAL; if (WARN_ON(template[i].ilen > PAGE_SIZE)) goto out; data = xbuf[0]; memcpy(data, template[i].input, template[i].ilen); crypto_cipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_cipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: cipher: setkey failed " "on test %d for %s: flags=%x\n", j, algo, crypto_cipher_get_flags(tfm)); goto out; } else if (ret) continue; for (k = 0; k < template[i].ilen; k += crypto_cipher_blocksize(tfm)) { if (enc) crypto_cipher_encrypt_one(tfm, data + k, data + k); else crypto_cipher_decrypt_one(tfm, data + k, data + k); } q = data; if (memcmp(q, template[i].result, template[i].rlen)) { printk(KERN_ERR "alg: cipher: Test %d failed " "on %s for %s\n", j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } ret = 0; out: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_skcipher(struct crypto_ablkcipher *tfm, int enc, struct cipher_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_ablkcipher_tfm(tfm)); unsigned int i, j, k, n, temp; char *q; struct ablkcipher_request *req; struct scatterlist sg[8]; const char *e; struct tcrypt_result result; void *data; char iv[MAX_IVLEN]; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; init_completion(&result.completion); req = ablkcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { printk(KERN_ERR "alg: skcipher: Failed to allocate request " "for %s\n", algo); goto out; } ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, tcrypt_complete, &result); j = 0; for (i = 0; i < tcount; i++) { if (template[i].iv) memcpy(iv, template[i].iv, MAX_IVLEN); else memset(iv, 0, MAX_IVLEN); if (!(template[i].np)) { j++; ret = -EINVAL; if (WARN_ON(template[i].ilen > PAGE_SIZE)) goto out; data = xbuf[0]; memcpy(data, template[i].input, template[i].ilen); crypto_ablkcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_ablkcipher_set_flags( tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_ablkcipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: skcipher: setkey failed " "on test %d for %s: flags=%x\n", j, algo, crypto_ablkcipher_get_flags(tfm)); goto out; } else if (ret) continue; sg_init_one(&sg[0], data, template[i].ilen); ablkcipher_request_set_crypt(req, sg, sg, template[i].ilen, iv); ret = enc ? crypto_ablkcipher_encrypt(req) : crypto_ablkcipher_decrypt(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &result.completion); if (!ret && !((ret = result.err))) { INIT_COMPLETION(result.completion); break; } /* fall through */ default: printk(KERN_ERR "alg: skcipher: %s failed on " "test %d for %s: ret=%d\n", e, j, algo, -ret); goto out; } q = data; if (memcmp(q, template[i].result, template[i].rlen)) { printk(KERN_ERR "alg: skcipher: Test %d " "failed on %s for %s\n", j, e, algo); hexdump(q, template[i].rlen); ret = -EINVAL; goto out; } } } j = 0; for (i = 0; i < tcount; i++) { if (template[i].iv) memcpy(iv, template[i].iv, MAX_IVLEN); else memset(iv, 0, MAX_IVLEN); if (template[i].np) { j++; crypto_ablkcipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_ablkcipher_set_flags( tfm, CRYPTO_TFM_REQ_WEAK_KEY); ret = crypto_ablkcipher_setkey(tfm, template[i].key, template[i].klen); if (!ret == template[i].fail) { printk(KERN_ERR "alg: skcipher: setkey failed " "on chunk test %d for %s: flags=%x\n", j, algo, crypto_ablkcipher_get_flags(tfm)); goto out; } else if (ret) continue; temp = 0; ret = -EINVAL; sg_init_table(sg, template[i].np); for (k = 0; k < template[i].np; k++) { if (WARN_ON(offset_in_page(IDX[k]) + template[i].tap[k] > PAGE_SIZE)) goto out; q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); memcpy(q, template[i].input + temp, template[i].tap[k]); if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE) q[template[i].tap[k]] = 0; sg_set_buf(&sg[k], q, template[i].tap[k]); temp += template[i].tap[k]; } ablkcipher_request_set_crypt(req, sg, sg, template[i].ilen, iv); ret = enc ? crypto_ablkcipher_encrypt(req) : crypto_ablkcipher_decrypt(req); switch (ret) { case 0: break; case -EINPROGRESS: case -EBUSY: ret = wait_for_completion_interruptible( &result.completion); if (!ret && !((ret = result.err))) { INIT_COMPLETION(result.completion); break; } /* fall through */ default: printk(KERN_ERR "alg: skcipher: %s failed on " "chunk test %d for %s: ret=%d\n", e, j, algo, -ret); goto out; } temp = 0; ret = -EINVAL; for (k = 0; k < template[i].np; k++) { q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]); if (memcmp(q, template[i].result + temp, template[i].tap[k])) { printk(KERN_ERR "alg: skcipher: Chunk " "test %d failed on %s at page " "%u for %s\n", j, e, k, algo); hexdump(q, template[i].tap[k]); goto out; } q += template[i].tap[k]; for (n = 0; offset_in_page(q + n) && q[n]; n++) ; if (n) { printk(KERN_ERR "alg: skcipher: " "Result buffer corruption in " "chunk test %d on %s at page " "%u for %s: %u bytes:\n", j, e, k, algo, n); hexdump(q, n); goto out; } temp += template[i].tap[k]; } } } ret = 0; out: ablkcipher_request_free(req); testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_comp(struct crypto_comp *tfm, struct comp_testvec *ctemplate, struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); unsigned int i; char result[COMP_BUF_SIZE]; int ret; for (i = 0; i < ctcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(result, 0, sizeof (result)); ilen = ctemplate[i].inlen; ret = crypto_comp_compress(tfm, ctemplate[i].input, ilen, result, &dlen); if (ret) { printk(KERN_ERR "alg: comp: compression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != ctemplate[i].outlen) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(result, ctemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s\n", i + 1, algo); hexdump(result, dlen); ret = -EINVAL; goto out; } } for (i = 0; i < dtcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(result, 0, sizeof (result)); ilen = dtemplate[i].inlen; ret = crypto_comp_decompress(tfm, dtemplate[i].input, ilen, result, &dlen); if (ret) { printk(KERN_ERR "alg: comp: decompression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != dtemplate[i].outlen) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(result, dtemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s\n", i + 1, algo); hexdump(result, dlen); ret = -EINVAL; goto out; } } ret = 0; out: return ret; } static int test_pcomp(struct crypto_pcomp *tfm, struct pcomp_testvec *ctemplate, struct pcomp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_pcomp_tfm(tfm)); unsigned int i; char result[COMP_BUF_SIZE]; int res; for (i = 0; i < ctcount; i++) { struct comp_request req; unsigned int produced = 0; res = crypto_compress_setup(tfm, ctemplate[i].params, ctemplate[i].paramsize); if (res) { pr_err("alg: pcomp: compression setup failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } res = crypto_compress_init(tfm); if (res) { pr_err("alg: pcomp: compression init failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } memset(result, 0, sizeof(result)); req.next_in = ctemplate[i].input; req.avail_in = ctemplate[i].inlen / 2; req.next_out = result; req.avail_out = ctemplate[i].outlen / 2; res = crypto_compress_update(tfm, &req); if (res < 0 && (res != -EAGAIN || req.avail_in)) { pr_err("alg: pcomp: compression update failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } if (res > 0) produced += res; /* Add remaining input data */ req.avail_in += (ctemplate[i].inlen + 1) / 2; res = crypto_compress_update(tfm, &req); if (res < 0 && (res != -EAGAIN || req.avail_in)) { pr_err("alg: pcomp: compression update failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } if (res > 0) produced += res; /* Provide remaining output space */ req.avail_out += COMP_BUF_SIZE - ctemplate[i].outlen / 2; res = crypto_compress_final(tfm, &req); if (res < 0) { pr_err("alg: pcomp: compression final failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } produced += res; if (COMP_BUF_SIZE - req.avail_out != ctemplate[i].outlen) { pr_err("alg: comp: Compression test %d failed for %s: " "output len = %d (expected %d)\n", i + 1, algo, COMP_BUF_SIZE - req.avail_out, ctemplate[i].outlen); return -EINVAL; } if (produced != ctemplate[i].outlen) { pr_err("alg: comp: Compression test %d failed for %s: " "returned len = %u (expected %d)\n", i + 1, algo, produced, ctemplate[i].outlen); return -EINVAL; } if (memcmp(result, ctemplate[i].output, ctemplate[i].outlen)) { pr_err("alg: pcomp: Compression test %d failed for " "%s\n", i + 1, algo); hexdump(result, ctemplate[i].outlen); return -EINVAL; } } for (i = 0; i < dtcount; i++) { struct comp_request req; unsigned int produced = 0; res = crypto_decompress_setup(tfm, dtemplate[i].params, dtemplate[i].paramsize); if (res) { pr_err("alg: pcomp: decompression setup failed on " "test %d for %s: error=%d\n", i + 1, algo, res); return res; } res = crypto_decompress_init(tfm); if (res) { pr_err("alg: pcomp: decompression init failed on test " "%d for %s: error=%d\n", i + 1, algo, res); return res; } memset(result, 0, sizeof(result)); req.next_in = dtemplate[i].input; req.avail_in = dtemplate[i].inlen / 2; req.next_out = result; req.avail_out = dtemplate[i].outlen / 2; res = crypto_decompress_update(tfm, &req); if (res < 0 && (res != -EAGAIN || req.avail_in)) { pr_err("alg: pcomp: decompression update failed on " "test %d for %s: error=%d\n", i + 1, algo, res); return res; } if (res > 0) produced += res; /* Add remaining input data */ req.avail_in += (dtemplate[i].inlen + 1) / 2; res = crypto_decompress_update(tfm, &req); if (res < 0 && (res != -EAGAIN || req.avail_in)) { pr_err("alg: pcomp: decompression update failed on " "test %d for %s: error=%d\n", i + 1, algo, res); return res; } if (res > 0) produced += res; /* Provide remaining output space */ req.avail_out += COMP_BUF_SIZE - dtemplate[i].outlen / 2; res = crypto_decompress_final(tfm, &req); if (res < 0 && (res != -EAGAIN || req.avail_in)) { pr_err("alg: pcomp: decompression final failed on " "test %d for %s: error=%d\n", i + 1, algo, res); return res; } if (res > 0) produced += res; if (COMP_BUF_SIZE - req.avail_out != dtemplate[i].outlen) { pr_err("alg: comp: Decompression test %d failed for " "%s: output len = %d (expected %d)\n", i + 1, algo, COMP_BUF_SIZE - req.avail_out, dtemplate[i].outlen); return -EINVAL; } if (produced != dtemplate[i].outlen) { pr_err("alg: comp: Decompression test %d failed for " "%s: returned len = %u (expected %d)\n", i + 1, algo, produced, dtemplate[i].outlen); return -EINVAL; } if (memcmp(result, dtemplate[i].output, dtemplate[i].outlen)) { pr_err("alg: pcomp: Decompression test %d failed for " "%s\n", i + 1, algo); hexdump(result, dtemplate[i].outlen); return -EINVAL; } } return 0; } static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); int err = 0, i, j, seedsize; u8 *seed; char result[32]; seedsize = crypto_rng_seedsize(tfm); seed = kmalloc(seedsize, GFP_KERNEL); if (!seed) { printk(KERN_ERR "alg: cprng: Failed to allocate seed space " "for %s\n", algo); return -ENOMEM; } for (i = 0; i < tcount; i++) { memset(result, 0, 32); memcpy(seed, template[i].v, template[i].vlen); memcpy(seed + template[i].vlen, template[i].key, template[i].klen); memcpy(seed + template[i].vlen + template[i].klen, template[i].dt, template[i].dtlen); err = crypto_rng_reset(tfm, seed, seedsize); if (err) { printk(KERN_ERR "alg: cprng: Failed to reset rng " "for %s\n", algo); goto out; } for (j = 0; j < template[i].loops; j++) { err = crypto_rng_get_bytes(tfm, result, template[i].rlen); if (err != template[i].rlen) { printk(KERN_ERR "alg: cprng: Failed to obtain " "the correct amount of random data for " "%s (requested %d, got %d)\n", algo, template[i].rlen, err); goto out; } } err = memcmp(result, template[i].result, template[i].rlen); if (err) { printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", i, algo); hexdump(result, template[i].rlen); err = -EINVAL; goto out; } } out: kfree(seed); return err; } static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_aead *tfm; int err = 0; tfm = crypto_alloc_aead(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: aead: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.aead.enc.vecs) { err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs, desc->suite.aead.enc.count); if (err) goto out; } if (!err && desc->suite.aead.dec.vecs) err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs, desc->suite.aead.dec.count); out: crypto_free_aead(tfm); return err; } static int alg_test_cipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_cipher *tfm; int err = 0; tfm = crypto_alloc_cipher(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: cipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.cipher.enc.vecs) { err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs, desc->suite.cipher.enc.count); if (err) goto out; } if (desc->suite.cipher.dec.vecs) err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs, desc->suite.cipher.dec.count); out: crypto_free_cipher(tfm); return err; } static int alg_test_skcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_ablkcipher *tfm; int err = 0; tfm = crypto_alloc_ablkcipher(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: skcipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.cipher.enc.vecs) { err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs, desc->suite.cipher.enc.count); if (err) goto out; } if (desc->suite.cipher.dec.vecs) err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs, desc->suite.cipher.dec.count); out: crypto_free_ablkcipher(tfm); return err; } static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_comp *tfm; int err; tfm = crypto_alloc_comp(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: comp: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_comp(tfm, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_comp(tfm); return err; } static int alg_test_pcomp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_pcomp *tfm; int err; tfm = crypto_alloc_pcomp(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: pcomp: Failed to load transform for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_pcomp(tfm, desc->suite.pcomp.comp.vecs, desc->suite.pcomp.decomp.vecs, desc->suite.pcomp.comp.count, desc->suite.pcomp.decomp.count); crypto_free_pcomp(tfm); return err; } static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_ahash *tfm; int err; tfm = crypto_alloc_ahash(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: hash: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_hash(tfm, desc->suite.hash.vecs, desc->suite.hash.count, true); if (!err) err = test_hash(tfm, desc->suite.hash.vecs, desc->suite.hash.count, false); crypto_free_ahash(tfm); return err; } static int alg_test_crc32c(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_shash *tfm; u32 val; int err; err = alg_test_hash(desc, driver, type, mask); if (err) goto out; tfm = crypto_alloc_shash(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); err = PTR_ERR(tfm); goto out; } do { struct { struct shash_desc shash; char ctx[crypto_shash_descsize(tfm)]; } sdesc; sdesc.shash.tfm = tfm; sdesc.shash.flags = 0; *(u32 *)sdesc.ctx = le32_to_cpu(420553207); err = crypto_shash_final(&sdesc.shash, (u8 *)&val); if (err) { printk(KERN_ERR "alg: crc32c: Operation failed for " "%s: %d\n", driver, err); break; } if (val != ~420553207) { printk(KERN_ERR "alg: crc32c: Test failed for %s: " "%d\n", driver, val); err = -EINVAL; } } while (0); crypto_free_shash(tfm); out: return err; } static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_rng *rng; int err; rng = crypto_alloc_rng(driver, type, mask); if (IS_ERR(rng)) { printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(rng)); return PTR_ERR(rng); } err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); crypto_free_rng(rng); return err; } static int alg_test_null(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { return 0; } /* Please keep this list sorted by algorithm name. */ static const struct alg_test_desc alg_test_descs[] = { { .alg = "__driver-cbc-aes-aesni", .test = alg_test_null, .suite = { .cipher = { .enc = { .vecs = NULL, .count = 0 }, .dec = { .vecs = NULL, .count = 0 } } } }, { .alg = "__driver-ecb-aes-aesni", .test = alg_test_null, .suite = { .cipher = { .enc = { .vecs = NULL, .count = 0 }, .dec = { .vecs = NULL, .count = 0 } } } }, { .alg = "__ghash-pclmulqdqni", .test = alg_test_null, .suite = { .hash = { .vecs = NULL, .count = 0 } } }, { .alg = "ansi_cprng", .test = alg_test_cprng, .fips_allowed = 1, .suite = { .cprng = { .vecs = ansi_cprng_aes_tv_template, .count = ANSI_CPRNG_AES_TEST_VECTORS } } }, { .alg = "cbc(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_cbc_enc_tv_template, .count = AES_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = aes_cbc_dec_tv_template, .count = AES_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(anubis)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = anubis_cbc_enc_tv_template, .count = ANUBIS_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = anubis_cbc_dec_tv_template, .count = ANUBIS_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = bf_cbc_enc_tv_template, .count = BF_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = bf_cbc_dec_tv_template, .count = BF_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_cbc_enc_tv_template, .count = CAMELLIA_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_cbc_dec_tv_template, .count = CAMELLIA_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(des)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = des_cbc_enc_tv_template, .count = DES_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = des_cbc_dec_tv_template, .count = DES_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = des3_ede_cbc_enc_tv_template, .count = DES3_EDE_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = des3_ede_cbc_dec_tv_template, .count = DES3_EDE_CBC_DEC_TEST_VECTORS } } } }, { .alg = "cbc(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_cbc_enc_tv_template, .count = TF_CBC_ENC_TEST_VECTORS }, .dec = { .vecs = tf_cbc_dec_tv_template, .count = TF_CBC_DEC_TEST_VECTORS } } } }, { .alg = "ccm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_ccm_enc_tv_template, .count = AES_CCM_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ccm_dec_tv_template, .count = AES_CCM_DEC_TEST_VECTORS } } } }, { .alg = "crc32c", .test = alg_test_crc32c, .fips_allowed = 1, .suite = { .hash = { .vecs = crc32c_tv_template, .count = CRC32C_TEST_VECTORS } } }, { .alg = "cryptd(__driver-ecb-aes-aesni)", .test = alg_test_null, .suite = { .cipher = { .enc = { .vecs = NULL, .count = 0 }, .dec = { .vecs = NULL, .count = 0 } } } }, { .alg = "cryptd(__ghash-pclmulqdqni)", .test = alg_test_null, .suite = { .hash = { .vecs = NULL, .count = 0 } } }, { .alg = "ctr(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_ctr_enc_tv_template, .count = AES_CTR_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ctr_dec_tv_template, .count = AES_CTR_DEC_TEST_VECTORS } } } }, { .alg = "cts(cbc(aes))", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cts_mode_enc_tv_template, .count = CTS_MODE_ENC_TEST_VECTORS }, .dec = { .vecs = cts_mode_dec_tv_template, .count = CTS_MODE_DEC_TEST_VECTORS } } } }, { .alg = "deflate", .test = alg_test_comp, .suite = { .comp = { .comp = { .vecs = deflate_comp_tv_template, .count = DEFLATE_COMP_TEST_VECTORS }, .decomp = { .vecs = deflate_decomp_tv_template, .count = DEFLATE_DECOMP_TEST_VECTORS } } } }, { .alg = "ecb(__aes-aesni)", .test = alg_test_null, .suite = { .cipher = { .enc = { .vecs = NULL, .count = 0 }, .dec = { .vecs = NULL, .count = 0 } } } }, { .alg = "ecb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_enc_tv_template, .count = AES_ENC_TEST_VECTORS }, .dec = { .vecs = aes_dec_tv_template, .count = AES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(anubis)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = anubis_enc_tv_template, .count = ANUBIS_ENC_TEST_VECTORS }, .dec = { .vecs = anubis_dec_tv_template, .count = ANUBIS_DEC_TEST_VECTORS } } } }, { .alg = "ecb(arc4)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = arc4_enc_tv_template, .count = ARC4_ENC_TEST_VECTORS }, .dec = { .vecs = arc4_dec_tv_template, .count = ARC4_DEC_TEST_VECTORS } } } }, { .alg = "ecb(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = bf_enc_tv_template, .count = BF_ENC_TEST_VECTORS }, .dec = { .vecs = bf_dec_tv_template, .count = BF_DEC_TEST_VECTORS } } } }, { .alg = "ecb(camellia)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = camellia_enc_tv_template, .count = CAMELLIA_ENC_TEST_VECTORS }, .dec = { .vecs = camellia_dec_tv_template, .count = CAMELLIA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(cast5)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast5_enc_tv_template, .count = CAST5_ENC_TEST_VECTORS }, .dec = { .vecs = cast5_dec_tv_template, .count = CAST5_DEC_TEST_VECTORS } } } }, { .alg = "ecb(cast6)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = cast6_enc_tv_template, .count = CAST6_ENC_TEST_VECTORS }, .dec = { .vecs = cast6_dec_tv_template, .count = CAST6_DEC_TEST_VECTORS } } } }, { .alg = "ecb(des)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = des_enc_tv_template, .count = DES_ENC_TEST_VECTORS }, .dec = { .vecs = des_dec_tv_template, .count = DES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = des3_ede_enc_tv_template, .count = DES3_EDE_ENC_TEST_VECTORS }, .dec = { .vecs = des3_ede_dec_tv_template, .count = DES3_EDE_DEC_TEST_VECTORS } } } }, { .alg = "ecb(khazad)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = khazad_enc_tv_template, .count = KHAZAD_ENC_TEST_VECTORS }, .dec = { .vecs = khazad_dec_tv_template, .count = KHAZAD_DEC_TEST_VECTORS } } } }, { .alg = "ecb(seed)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = seed_enc_tv_template, .count = SEED_ENC_TEST_VECTORS }, .dec = { .vecs = seed_dec_tv_template, .count = SEED_DEC_TEST_VECTORS } } } }, { .alg = "ecb(serpent)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = serpent_enc_tv_template, .count = SERPENT_ENC_TEST_VECTORS }, .dec = { .vecs = serpent_dec_tv_template, .count = SERPENT_DEC_TEST_VECTORS } } } }, { .alg = "ecb(tea)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tea_enc_tv_template, .count = TEA_ENC_TEST_VECTORS }, .dec = { .vecs = tea_dec_tv_template, .count = TEA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(tnepres)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tnepres_enc_tv_template, .count = TNEPRES_ENC_TEST_VECTORS }, .dec = { .vecs = tnepres_dec_tv_template, .count = TNEPRES_DEC_TEST_VECTORS } } } }, { .alg = "ecb(twofish)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = tf_enc_tv_template, .count = TF_ENC_TEST_VECTORS }, .dec = { .vecs = tf_dec_tv_template, .count = TF_DEC_TEST_VECTORS } } } }, { .alg = "ecb(xeta)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = xeta_enc_tv_template, .count = XETA_ENC_TEST_VECTORS }, .dec = { .vecs = xeta_dec_tv_template, .count = XETA_DEC_TEST_VECTORS } } } }, { .alg = "ecb(xtea)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = xtea_enc_tv_template, .count = XTEA_ENC_TEST_VECTORS }, .dec = { .vecs = xtea_dec_tv_template, .count = XTEA_DEC_TEST_VECTORS } } } }, { .alg = "gcm(aes)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_gcm_enc_tv_template, .count = AES_GCM_ENC_TEST_VECTORS }, .dec = { .vecs = aes_gcm_dec_tv_template, .count = AES_GCM_DEC_TEST_VECTORS } } } }, { .alg = "ghash", .test = alg_test_hash, .suite = { .hash = { .vecs = ghash_tv_template, .count = GHASH_TEST_VECTORS } } }, { .alg = "hmac(md5)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_md5_tv_template, .count = HMAC_MD5_TEST_VECTORS } } }, { .alg = "hmac(rmd128)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_rmd128_tv_template, .count = HMAC_RMD128_TEST_VECTORS } } }, { .alg = "hmac(rmd160)", .test = alg_test_hash, .suite = { .hash = { .vecs = hmac_rmd160_tv_template, .count = HMAC_RMD160_TEST_VECTORS } } }, { .alg = "hmac(sha1)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha1_tv_template, .count = HMAC_SHA1_TEST_VECTORS } } }, { .alg = "hmac(sha224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha224_tv_template, .count = HMAC_SHA224_TEST_VECTORS } } }, { .alg = "hmac(sha256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha256_tv_template, .count = HMAC_SHA256_TEST_VECTORS } } }, { .alg = "hmac(sha384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha384_tv_template, .count = HMAC_SHA384_TEST_VECTORS } } }, { .alg = "hmac(sha512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = hmac_sha512_tv_template, .count = HMAC_SHA512_TEST_VECTORS } } }, { .alg = "lrw(aes)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = aes_lrw_enc_tv_template, .count = AES_LRW_ENC_TEST_VECTORS }, .dec = { .vecs = aes_lrw_dec_tv_template, .count = AES_LRW_DEC_TEST_VECTORS } } } }, { .alg = "lzo", .test = alg_test_comp, .suite = { .comp = { .comp = { .vecs = lzo_comp_tv_template, .count = LZO_COMP_TEST_VECTORS }, .decomp = { .vecs = lzo_decomp_tv_template, .count = LZO_DECOMP_TEST_VECTORS } } } }, { .alg = "md4", .test = alg_test_hash, .suite = { .hash = { .vecs = md4_tv_template, .count = MD4_TEST_VECTORS } } }, { .alg = "md5", .test = alg_test_hash, .suite = { .hash = { .vecs = md5_tv_template, .count = MD5_TEST_VECTORS } } }, { .alg = "michael_mic", .test = alg_test_hash, .suite = { .hash = { .vecs = michael_mic_tv_template, .count = MICHAEL_MIC_TEST_VECTORS } } }, { .alg = "pcbc(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = fcrypt_pcbc_enc_tv_template, .count = FCRYPT_ENC_TEST_VECTORS }, .dec = { .vecs = fcrypt_pcbc_dec_tv_template, .count = FCRYPT_DEC_TEST_VECTORS } } } }, { .alg = "rfc3686(ctr(aes))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = { .enc = { .vecs = aes_ctr_rfc3686_enc_tv_template, .count = AES_CTR_3686_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ctr_rfc3686_dec_tv_template, .count = AES_CTR_3686_DEC_TEST_VECTORS } } } }, { .alg = "rfc4106(gcm(aes))", .test = alg_test_aead, .suite = { .aead = { .enc = { .vecs = aes_gcm_rfc4106_enc_tv_template, .count = AES_GCM_4106_ENC_TEST_VECTORS }, .dec = { .vecs = aes_gcm_rfc4106_dec_tv_template, .count = AES_GCM_4106_DEC_TEST_VECTORS } } } }, { .alg = "rfc4309(ccm(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { .enc = { .vecs = aes_ccm_rfc4309_enc_tv_template, .count = AES_CCM_4309_ENC_TEST_VECTORS }, .dec = { .vecs = aes_ccm_rfc4309_dec_tv_template, .count = AES_CCM_4309_DEC_TEST_VECTORS } } } }, { .alg = "rmd128", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd128_tv_template, .count = RMD128_TEST_VECTORS } } }, { .alg = "rmd160", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd160_tv_template, .count = RMD160_TEST_VECTORS } } }, { .alg = "rmd256", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd256_tv_template, .count = RMD256_TEST_VECTORS } } }, { .alg = "rmd320", .test = alg_test_hash, .suite = { .hash = { .vecs = rmd320_tv_template, .count = RMD320_TEST_VECTORS } } }, { .alg = "salsa20", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = salsa20_stream_enc_tv_template, .count = SALSA20_STREAM_ENC_TEST_VECTORS } } } }, { .alg = "sha1", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha1_tv_template, .count = SHA1_TEST_VECTORS } } }, { .alg = "sha224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha224_tv_template, .count = SHA224_TEST_VECTORS } } }, { .alg = "sha256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha256_tv_template, .count = SHA256_TEST_VECTORS } } }, { .alg = "sha384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha384_tv_template, .count = SHA384_TEST_VECTORS } } }, { .alg = "sha512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = { .vecs = sha512_tv_template, .count = SHA512_TEST_VECTORS } } }, { .alg = "tgr128", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr128_tv_template, .count = TGR128_TEST_VECTORS } } }, { .alg = "tgr160", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr160_tv_template, .count = TGR160_TEST_VECTORS } } }, { .alg = "tgr192", .test = alg_test_hash, .suite = { .hash = { .vecs = tgr192_tv_template, .count = TGR192_TEST_VECTORS } } }, { .alg = "vmac(aes)", .test = alg_test_hash, .suite = { .hash = { .vecs = aes_vmac128_tv_template, .count = VMAC_AES_TEST_VECTORS } } }, { .alg = "wp256", .test = alg_test_hash, .suite = { .hash = { .vecs = wp256_tv_template, .count = WP256_TEST_VECTORS } } }, { .alg = "wp384", .test = alg_test_hash, .suite = { .hash = { .vecs = wp384_tv_template, .count = WP384_TEST_VECTORS } } }, { .alg = "wp512", .test = alg_test_hash, .suite = { .hash = { .vecs = wp512_tv_template, .count = WP512_TEST_VECTORS } } }, { .alg = "xcbc(aes)", .test = alg_test_hash, .suite = { .hash = { .vecs = aes_xcbc128_tv_template, .count = XCBC_AES_TEST_VECTORS } } }, { .alg = "xts(aes)", .test = alg_test_skcipher, .suite = { .cipher = { .enc = { .vecs = aes_xts_enc_tv_template, .count = AES_XTS_ENC_TEST_VECTORS }, .dec = { .vecs = aes_xts_dec_tv_template, .count = AES_XTS_DEC_TEST_VECTORS } } } }, { .alg = "zlib", .test = alg_test_pcomp, .suite = { .pcomp = { .comp = { .vecs = zlib_comp_tv_template, .count = ZLIB_COMP_TEST_VECTORS }, .decomp = { .vecs = zlib_decomp_tv_template, .count = ZLIB_DECOMP_TEST_VECTORS } } } } }; static int alg_find_test(const char *alg) { int start = 0; int end = ARRAY_SIZE(alg_test_descs); while (start < end) { int i = (start + end) / 2; int diff = strcmp(alg_test_descs[i].alg, alg); if (diff > 0) { end = i; continue; } if (diff < 0) { start = i + 1; continue; } return i; } return -1; } int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { int i; int j; int rc; if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { char nalg[CRYPTO_MAX_ALG_NAME]; if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= sizeof(nalg)) return -ENAMETOOLONG; i = alg_find_test(nalg); if (i < 0) goto notest; if (fips_enabled && !alg_test_descs[i].fips_allowed) goto non_fips_alg; rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); goto test_done; } i = alg_find_test(alg); j = alg_find_test(driver); if (i < 0 && j < 0) goto notest; if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) || (j >= 0 && !alg_test_descs[j].fips_allowed))) goto non_fips_alg; rc = 0; if (i >= 0) rc |= alg_test_descs[i].test(alg_test_descs + i, driver, type, mask); if (j >= 0) rc |= alg_test_descs[j].test(alg_test_descs + j, driver, type, mask); test_done: if (fips_enabled && rc) panic("%s: %s alg self test failed in fips mode!\n", driver, alg); if (fips_enabled && !rc) printk(KERN_INFO "alg: self-tests for %s (%s) passed\n", driver, alg); return rc; notest: printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); return 0; non_fips_alg: return -EINVAL; } #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ EXPORT_SYMBOL_GPL(alg_test);