/* * Software async crypto daemon. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/algapi.h> #include <crypto/internal/hash.h> #include <crypto/cryptd.h> #include <crypto/crypto_wq.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #define CRYPTD_MAX_CPU_QLEN 100 struct cryptd_cpu_queue { struct crypto_queue queue; struct work_struct work; }; struct cryptd_queue { struct cryptd_cpu_queue *cpu_queue; }; struct cryptd_instance_ctx { struct crypto_spawn spawn; struct cryptd_queue *queue; }; struct cryptd_blkcipher_ctx { struct crypto_blkcipher *child; }; struct cryptd_blkcipher_request_ctx { crypto_completion_t complete; }; struct cryptd_hash_ctx { struct crypto_hash *child; }; struct cryptd_hash_request_ctx { crypto_completion_t complete; }; static void cryptd_queue_worker(struct work_struct *work); static int cryptd_init_queue(struct cryptd_queue *queue, unsigned int max_cpu_qlen) { int cpu; struct cryptd_cpu_queue *cpu_queue; queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); if (!queue->cpu_queue) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, cryptd_queue_worker); } return 0; } static void cryptd_fini_queue(struct cryptd_queue *queue) { int cpu; struct cryptd_cpu_queue *cpu_queue; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); BUG_ON(cpu_queue->queue.qlen); } free_percpu(queue->cpu_queue); } static int cryptd_enqueue_request(struct cryptd_queue *queue, struct crypto_async_request *request) { int cpu, err; struct cryptd_cpu_queue *cpu_queue; cpu = get_cpu(); cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); err = crypto_enqueue_request(&cpu_queue->queue, request); queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); put_cpu(); return err; } /* Called in workqueue context, do one real cryption work (via * req->complete) and reschedule itself if there are more work to * do. */ static void cryptd_queue_worker(struct work_struct *work) { struct cryptd_cpu_queue *cpu_queue; struct crypto_async_request *req, *backlog; cpu_queue = container_of(work, struct cryptd_cpu_queue, work); /* Only handle one request at a time to avoid hogging crypto * workqueue. preempt_disable/enable is used to prevent * being preempted by cryptd_enqueue_request() */ preempt_disable(); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); preempt_enable(); if (!req) return; if (backlog) backlog->complete(backlog, -EINPROGRESS); req->complete(req, 0); if (cpu_queue->queue.qlen) queue_work(kcrypto_wq, &cpu_queue->work); } static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); return ictx->queue; } static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent, const u8 *key, unsigned int keylen) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent); struct crypto_blkcipher *child = ctx->child; int err; crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_blkcipher_setkey(child, key, keylen); crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static void cryptd_blkcipher_crypt(struct ablkcipher_request *req, struct crypto_blkcipher *child, int err, int (*crypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int len)) { struct cryptd_blkcipher_request_ctx *rctx; struct blkcipher_desc desc; rctx = ablkcipher_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.info = req->info; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypt(&desc, req->dst, req->src, req->nbytes); req->base.complete = rctx->complete; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); struct crypto_blkcipher *child = ctx->child; cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, crypto_blkcipher_crt(child)->encrypt); } static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); struct crypto_blkcipher *child = ctx->child; cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, crypto_blkcipher_crt(child)->decrypt); } static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req, crypto_completion_t complete) { struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req); struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct cryptd_queue *queue; queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = complete; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req) { return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt); } static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req) { return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt); } static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_spawn *spawn = &ictx->spawn; struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_blkcipher *cipher; cipher = crypto_spawn_blkcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; tfm->crt_ablkcipher.reqsize = sizeof(struct cryptd_blkcipher_request_ctx); return 0; } static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_blkcipher(ctx->child); } static struct crypto_instance *cryptd_alloc_instance(struct crypto_alg *alg, struct cryptd_queue *queue) { struct crypto_instance *inst; struct cryptd_instance_ctx *ctx; int err; inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) { inst = ERR_PTR(-ENOMEM); goto out; } err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto out_free_inst; ctx = crypto_instance_ctx(inst); err = crypto_init_spawn(&ctx->spawn, alg, inst, CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC); if (err) goto out_free_inst; ctx->queue = queue; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_priority = alg->cra_priority + 50; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; out: return inst; out_free_inst: kfree(inst); inst = ERR_PTR(err); goto out; } static struct crypto_instance *cryptd_alloc_blkcipher( struct rtattr **tb, struct cryptd_queue *queue) { struct crypto_instance *inst; struct crypto_alg *alg; alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(alg)) return ERR_CAST(alg); inst = cryptd_alloc_instance(alg, queue); if (IS_ERR(inst)) goto out_put_alg; inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; inst->alg.cra_type = &crypto_ablkcipher_type; inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize; inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize; inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize; inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv; inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx); inst->alg.cra_init = cryptd_blkcipher_init_tfm; inst->alg.cra_exit = cryptd_blkcipher_exit_tfm; inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey; inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue; inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue; out_put_alg: crypto_mod_put(alg); return inst; } static int cryptd_hash_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_spawn *spawn = &ictx->spawn; struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_hash *cipher; cipher = crypto_spawn_hash(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; tfm->crt_ahash.reqsize = sizeof(struct cryptd_hash_request_ctx); return 0; } static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_hash(ctx->child); } static int cryptd_hash_setkey(struct crypto_ahash *parent, const u8 *key, unsigned int keylen) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); struct crypto_hash *child = ctx->child; int err; crypto_hash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_hash_set_flags(child, crypto_ahash_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_hash_setkey(child, key, keylen); crypto_ahash_set_flags(parent, crypto_hash_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int cryptd_hash_enqueue(struct ahash_request *req, crypto_completion_t complete) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_ahash_tfm(tfm)); rctx->complete = req->base.complete; req->base.complete = complete; return cryptd_enqueue_request(queue, &req->base); } static void cryptd_hash_init(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_hash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx; struct hash_desc desc; rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_hash_crt(child)->init(&desc); req->base.complete = rctx->complete; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int cryptd_hash_init_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_init); } static void cryptd_hash_update(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_hash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx; struct hash_desc desc; rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_hash_crt(child)->update(&desc, req->src, req->nbytes); req->base.complete = rctx->complete; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int cryptd_hash_update_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_update); } static void cryptd_hash_final(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_hash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx; struct hash_desc desc; rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_hash_crt(child)->final(&desc, req->result); req->base.complete = rctx->complete; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int cryptd_hash_final_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_final); } static void cryptd_hash_digest(struct crypto_async_request *req_async, int err) { struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); struct crypto_hash *child = ctx->child; struct ahash_request *req = ahash_request_cast(req_async); struct cryptd_hash_request_ctx *rctx; struct hash_desc desc; rctx = ahash_request_ctx(req); if (unlikely(err == -EINPROGRESS)) goto out; desc.tfm = child; desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; err = crypto_hash_crt(child)->digest(&desc, req->src, req->nbytes, req->result); req->base.complete = rctx->complete; out: local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } static int cryptd_hash_digest_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_digest); } static struct crypto_instance *cryptd_alloc_hash( struct rtattr **tb, struct cryptd_queue *queue) { struct crypto_instance *inst; struct crypto_alg *alg; alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_HASH, CRYPTO_ALG_TYPE_HASH_MASK); if (IS_ERR(alg)) return ERR_PTR(PTR_ERR(alg)); inst = cryptd_alloc_instance(alg, queue); if (IS_ERR(inst)) goto out_put_alg; inst->alg.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC; inst->alg.cra_type = &crypto_ahash_type; inst->alg.cra_ahash.digestsize = alg->cra_hash.digestsize; inst->alg.cra_ctxsize = sizeof(struct cryptd_hash_ctx); inst->alg.cra_init = cryptd_hash_init_tfm; inst->alg.cra_exit = cryptd_hash_exit_tfm; inst->alg.cra_ahash.init = cryptd_hash_init_enqueue; inst->alg.cra_ahash.update = cryptd_hash_update_enqueue; inst->alg.cra_ahash.final = cryptd_hash_final_enqueue; inst->alg.cra_ahash.setkey = cryptd_hash_setkey; inst->alg.cra_ahash.digest = cryptd_hash_digest_enqueue; out_put_alg: crypto_mod_put(alg); return inst; } static struct cryptd_queue queue; static struct crypto_instance *cryptd_alloc(struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return ERR_CAST(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_BLKCIPHER: return cryptd_alloc_blkcipher(tb, &queue); case CRYPTO_ALG_TYPE_DIGEST: return cryptd_alloc_hash(tb, &queue); } return ERR_PTR(-EINVAL); } static void cryptd_free(struct crypto_instance *inst) { struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst); crypto_drop_spawn(&ctx->spawn); kfree(inst); } static struct crypto_template cryptd_tmpl = { .name = "cryptd", .alloc = cryptd_alloc, .free = cryptd_free, .module = THIS_MODULE, }; struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct crypto_ablkcipher *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_ablkcipher(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_module != THIS_MODULE) { crypto_free_ablkcipher(tfm); return ERR_PTR(-EINVAL); } return __cryptd_ablkcipher_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher); struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm) { struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child); void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm) { crypto_free_ablkcipher(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher); static int __init cryptd_init(void) { int err; err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN); if (err) return err; err = crypto_register_template(&cryptd_tmpl); if (err) cryptd_fini_queue(&queue); return err; } static void __exit cryptd_exit(void) { cryptd_fini_queue(&queue); crypto_unregister_template(&cryptd_tmpl); } module_init(cryptd_init); module_exit(cryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async crypto daemon");