/* * Functions related to setting various queue properties from drivers */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ #include <linux/gcd.h> #include <linux/jiffies.h> #include "blk.h" unsigned long blk_max_low_pfn; EXPORT_SYMBOL(blk_max_low_pfn); unsigned long blk_max_pfn; /** * blk_queue_prep_rq - set a prepare_request function for queue * @q: queue * @pfn: prepare_request function * * It's possible for a queue to register a prepare_request callback which * is invoked before the request is handed to the request_fn. The goal of * the function is to prepare a request for I/O, it can be used to build a * cdb from the request data for instance. * */ void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) { q->prep_rq_fn = pfn; } EXPORT_SYMBOL(blk_queue_prep_rq); /** * blk_queue_merge_bvec - set a merge_bvec function for queue * @q: queue * @mbfn: merge_bvec_fn * * Usually queues have static limitations on the max sectors or segments that * we can put in a request. Stacking drivers may have some settings that * are dynamic, and thus we have to query the queue whether it is ok to * add a new bio_vec to a bio at a given offset or not. If the block device * has such limitations, it needs to register a merge_bvec_fn to control * the size of bio's sent to it. Note that a block device *must* allow a * single page to be added to an empty bio. The block device driver may want * to use the bio_split() function to deal with these bio's. By default * no merge_bvec_fn is defined for a queue, and only the fixed limits are * honored. */ void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) { q->merge_bvec_fn = mbfn; } EXPORT_SYMBOL(blk_queue_merge_bvec); void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) { q->softirq_done_fn = fn; } EXPORT_SYMBOL(blk_queue_softirq_done); void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) { q->rq_timeout = timeout; } EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) { q->rq_timed_out_fn = fn; } EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) { q->lld_busy_fn = fn; } EXPORT_SYMBOL_GPL(blk_queue_lld_busy); /** * blk_set_default_limits - reset limits to default values * @lim: the queue_limits structure to reset * * Description: * Returns a queue_limit struct to its default state. Can be used by * stacking drivers like DM that stage table swaps and reuse an * existing device queue. */ void blk_set_default_limits(struct queue_limits *lim) { lim->max_phys_segments = MAX_PHYS_SEGMENTS; lim->max_hw_segments = MAX_HW_SEGMENTS; lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; lim->max_segment_size = MAX_SEGMENT_SIZE; lim->max_sectors = BLK_DEF_MAX_SECTORS; lim->max_hw_sectors = INT_MAX; lim->max_discard_sectors = 0; lim->discard_granularity = 0; lim->discard_alignment = 0; lim->discard_misaligned = 0; lim->discard_zeroes_data = -1; lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); lim->alignment_offset = 0; lim->io_opt = 0; lim->misaligned = 0; lim->no_cluster = 0; } EXPORT_SYMBOL(blk_set_default_limits); /** * blk_queue_make_request - define an alternate make_request function for a device * @q: the request queue for the device to be affected * @mfn: the alternate make_request function * * Description: * The normal way for &struct bios to be passed to a device * driver is for them to be collected into requests on a request * queue, and then to allow the device driver to select requests * off that queue when it is ready. This works well for many block * devices. However some block devices (typically virtual devices * such as md or lvm) do not benefit from the processing on the * request queue, and are served best by having the requests passed * directly to them. This can be achieved by providing a function * to blk_queue_make_request(). * * Caveat: * The driver that does this *must* be able to deal appropriately * with buffers in "highmemory". This can be accomplished by either calling * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling * blk_queue_bounce() to create a buffer in normal memory. **/ void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) { /* * set defaults */ q->nr_requests = BLKDEV_MAX_RQ; q->make_request_fn = mfn; blk_queue_dma_alignment(q, 511); blk_queue_congestion_threshold(q); q->nr_batching = BLK_BATCH_REQ; q->unplug_thresh = 4; /* hmm */ q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */ if (q->unplug_delay == 0) q->unplug_delay = 1; q->unplug_timer.function = blk_unplug_timeout; q->unplug_timer.data = (unsigned long)q; blk_set_default_limits(&q->limits); blk_queue_max_sectors(q, SAFE_MAX_SECTORS); /* * If the caller didn't supply a lock, fall back to our embedded * per-queue locks */ if (!q->queue_lock) q->queue_lock = &q->__queue_lock; /* * by default assume old behaviour and bounce for any highmem page */ blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); } EXPORT_SYMBOL(blk_queue_make_request); /** * blk_queue_bounce_limit - set bounce buffer limit for queue * @q: the request queue for the device * @dma_mask: the maximum address the device can handle * * Description: * Different hardware can have different requirements as to what pages * it can do I/O directly to. A low level driver can call * blk_queue_bounce_limit to have lower memory pages allocated as bounce * buffers for doing I/O to pages residing above @dma_mask. **/ void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) { unsigned long b_pfn = dma_mask >> PAGE_SHIFT; int dma = 0; q->bounce_gfp = GFP_NOIO; #if BITS_PER_LONG == 64 /* * Assume anything <= 4GB can be handled by IOMMU. Actually * some IOMMUs can handle everything, but I don't know of a * way to test this here. */ if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) dma = 1; q->limits.bounce_pfn = max_low_pfn; #else if (b_pfn < blk_max_low_pfn) dma = 1; q->limits.bounce_pfn = b_pfn; #endif if (dma) { init_emergency_isa_pool(); q->bounce_gfp = GFP_NOIO | GFP_DMA; q->limits.bounce_pfn = b_pfn; } } EXPORT_SYMBOL(blk_queue_bounce_limit); /** * blk_queue_max_sectors - set max sectors for a request for this queue * @q: the request queue for the device * @max_sectors: max sectors in the usual 512b unit * * Description: * Enables a low level driver to set an upper limit on the size of * received requests. **/ void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) { if ((max_sectors << 9) < PAGE_CACHE_SIZE) { max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); printk(KERN_INFO "%s: set to minimum %d\n", __func__, max_sectors); } if (BLK_DEF_MAX_SECTORS > max_sectors) q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors; else { q->limits.max_sectors = BLK_DEF_MAX_SECTORS; q->limits.max_hw_sectors = max_sectors; } } EXPORT_SYMBOL(blk_queue_max_sectors); void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors) { if (BLK_DEF_MAX_SECTORS > max_sectors) q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS; else q->limits.max_hw_sectors = max_sectors; } EXPORT_SYMBOL(blk_queue_max_hw_sectors); /** * blk_queue_max_discard_sectors - set max sectors for a single discard * @q: the request queue for the device * @max_discard_sectors: maximum number of sectors to discard **/ void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors) { q->limits.max_discard_sectors = max_discard_sectors; } EXPORT_SYMBOL(blk_queue_max_discard_sectors); /** * blk_queue_max_phys_segments - set max phys segments for a request for this queue * @q: the request queue for the device * @max_segments: max number of segments * * Description: * Enables a low level driver to set an upper limit on the number of * physical data segments in a request. This would be the largest sized * scatter list the driver could handle. **/ void blk_queue_max_phys_segments(struct request_queue *q, unsigned short max_segments) { if (!max_segments) { max_segments = 1; printk(KERN_INFO "%s: set to minimum %d\n", __func__, max_segments); } q->limits.max_phys_segments = max_segments; } EXPORT_SYMBOL(blk_queue_max_phys_segments); /** * blk_queue_max_hw_segments - set max hw segments for a request for this queue * @q: the request queue for the device * @max_segments: max number of segments * * Description: * Enables a low level driver to set an upper limit on the number of * hw data segments in a request. This would be the largest number of * address/length pairs the host adapter can actually give at once * to the device. **/ void blk_queue_max_hw_segments(struct request_queue *q, unsigned short max_segments) { if (!max_segments) { max_segments = 1; printk(KERN_INFO "%s: set to minimum %d\n", __func__, max_segments); } q->limits.max_hw_segments = max_segments; } EXPORT_SYMBOL(blk_queue_max_hw_segments); /** * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg * @q: the request queue for the device * @max_size: max size of segment in bytes * * Description: * Enables a low level driver to set an upper limit on the size of a * coalesced segment **/ void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) { if (max_size < PAGE_CACHE_SIZE) { max_size = PAGE_CACHE_SIZE; printk(KERN_INFO "%s: set to minimum %d\n", __func__, max_size); } q->limits.max_segment_size = max_size; } EXPORT_SYMBOL(blk_queue_max_segment_size); /** * blk_queue_logical_block_size - set logical block size for the queue * @q: the request queue for the device * @size: the logical block size, in bytes * * Description: * This should be set to the lowest possible block size that the * storage device can address. The default of 512 covers most * hardware. **/ void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) { q->limits.logical_block_size = size; if (q->limits.physical_block_size < size) q->limits.physical_block_size = size; if (q->limits.io_min < q->limits.physical_block_size) q->limits.io_min = q->limits.physical_block_size; } EXPORT_SYMBOL(blk_queue_logical_block_size); /** * blk_queue_physical_block_size - set physical block size for the queue * @q: the request queue for the device * @size: the physical block size, in bytes * * Description: * This should be set to the lowest possible sector size that the * hardware can operate on without reverting to read-modify-write * operations. */ void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) { q->limits.physical_block_size = size; if (q->limits.physical_block_size < q->limits.logical_block_size) q->limits.physical_block_size = q->limits.logical_block_size; if (q->limits.io_min < q->limits.physical_block_size) q->limits.io_min = q->limits.physical_block_size; } EXPORT_SYMBOL(blk_queue_physical_block_size); /** * blk_queue_alignment_offset - set physical block alignment offset * @q: the request queue for the device * @offset: alignment offset in bytes * * Description: * Some devices are naturally misaligned to compensate for things like * the legacy DOS partition table 63-sector offset. Low-level drivers * should call this function for devices whose first sector is not * naturally aligned. */ void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) { q->limits.alignment_offset = offset & (q->limits.physical_block_size - 1); q->limits.misaligned = 0; } EXPORT_SYMBOL(blk_queue_alignment_offset); /** * blk_limits_io_min - set minimum request size for a device * @limits: the queue limits * @min: smallest I/O size in bytes * * Description: * Some devices have an internal block size bigger than the reported * hardware sector size. This function can be used to signal the * smallest I/O the device can perform without incurring a performance * penalty. */ void blk_limits_io_min(struct queue_limits *limits, unsigned int min) { limits->io_min = min; if (limits->io_min < limits->logical_block_size) limits->io_min = limits->logical_block_size; if (limits->io_min < limits->physical_block_size) limits->io_min = limits->physical_block_size; } EXPORT_SYMBOL(blk_limits_io_min); /** * blk_queue_io_min - set minimum request size for the queue * @q: the request queue for the device * @min: smallest I/O size in bytes * * Description: * Storage devices may report a granularity or preferred minimum I/O * size which is the smallest request the device can perform without * incurring a performance penalty. For disk drives this is often the * physical block size. For RAID arrays it is often the stripe chunk * size. A properly aligned multiple of minimum_io_size is the * preferred request size for workloads where a high number of I/O * operations is desired. */ void blk_queue_io_min(struct request_queue *q, unsigned int min) { blk_limits_io_min(&q->limits, min); } EXPORT_SYMBOL(blk_queue_io_min); /** * blk_limits_io_opt - set optimal request size for a device * @limits: the queue limits * @opt: smallest I/O size in bytes * * Description: * Storage devices may report an optimal I/O size, which is the * device's preferred unit for sustained I/O. This is rarely reported * for disk drives. For RAID arrays it is usually the stripe width or * the internal track size. A properly aligned multiple of * optimal_io_size is the preferred request size for workloads where * sustained throughput is desired. */ void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) { limits->io_opt = opt; } EXPORT_SYMBOL(blk_limits_io_opt); /** * blk_queue_io_opt - set optimal request size for the queue * @q: the request queue for the device * @opt: optimal request size in bytes * * Description: * Storage devices may report an optimal I/O size, which is the * device's preferred unit for sustained I/O. This is rarely reported * for disk drives. For RAID arrays it is usually the stripe width or * the internal track size. A properly aligned multiple of * optimal_io_size is the preferred request size for workloads where * sustained throughput is desired. */ void blk_queue_io_opt(struct request_queue *q, unsigned int opt) { blk_limits_io_opt(&q->limits, opt); } EXPORT_SYMBOL(blk_queue_io_opt); /* * Returns the minimum that is _not_ zero, unless both are zero. */ #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) /** * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers * @t: the stacking driver (top) * @b: the underlying device (bottom) **/ void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) { blk_stack_limits(&t->limits, &b->limits, 0); if (!t->queue_lock) WARN_ON_ONCE(1); else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { unsigned long flags; spin_lock_irqsave(t->queue_lock, flags); queue_flag_clear(QUEUE_FLAG_CLUSTER, t); spin_unlock_irqrestore(t->queue_lock, flags); } } EXPORT_SYMBOL(blk_queue_stack_limits); static unsigned int lcm(unsigned int a, unsigned int b) { if (a && b) return (a * b) / gcd(a, b); else if (b) return b; return a; } /** * blk_stack_limits - adjust queue_limits for stacked devices * @t: the stacking driver limits (top) * @b: the underlying queue limits (bottom) * @offset: offset to beginning of data within component device * * Description: * Merges two queue_limit structs. Returns 0 if alignment didn't * change. Returns -1 if adding the bottom device caused * misalignment. */ int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset) { int ret; ret = 0; t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, b->seg_boundary_mask); t->max_phys_segments = min_not_zero(t->max_phys_segments, b->max_phys_segments); t->max_hw_segments = min_not_zero(t->max_hw_segments, b->max_hw_segments); t->max_segment_size = min_not_zero(t->max_segment_size, b->max_segment_size); t->logical_block_size = max(t->logical_block_size, b->logical_block_size); t->physical_block_size = max(t->physical_block_size, b->physical_block_size); t->io_min = max(t->io_min, b->io_min); t->no_cluster |= b->no_cluster; t->discard_zeroes_data &= b->discard_zeroes_data; /* Bottom device offset aligned? */ if (offset && (offset & (b->physical_block_size - 1)) != b->alignment_offset) { t->misaligned = 1; ret = -1; } if (offset && (offset & (b->discard_granularity - 1)) != b->discard_alignment) { t->discard_misaligned = 1; ret = -1; } /* If top has no alignment offset, inherit from bottom */ if (!t->alignment_offset) t->alignment_offset = b->alignment_offset & (b->physical_block_size - 1); if (!t->discard_alignment) t->discard_alignment = b->discard_alignment & (b->discard_granularity - 1); /* Top device aligned on logical block boundary? */ if (t->alignment_offset & (t->logical_block_size - 1)) { t->misaligned = 1; ret = -1; } /* Find lcm() of optimal I/O size and granularity */ t->io_opt = lcm(t->io_opt, b->io_opt); t->discard_granularity = lcm(t->discard_granularity, b->discard_granularity); /* Verify that optimal I/O size is a multiple of io_min */ if (t->io_min && t->io_opt % t->io_min) ret = -1; return ret; } EXPORT_SYMBOL(blk_stack_limits); /** * disk_stack_limits - adjust queue limits for stacked drivers * @disk: MD/DM gendisk (top) * @bdev: the underlying block device (bottom) * @offset: offset to beginning of data within component device * * Description: * Merges the limits for two queues. Returns 0 if alignment * didn't change. Returns -1 if adding the bottom device caused * misalignment. */ void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset) { struct request_queue *t = disk->queue; struct request_queue *b = bdev_get_queue(bdev); offset += get_start_sect(bdev) << 9; if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) { char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; disk_name(disk, 0, top); bdevname(bdev, bottom); printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", top, bottom); } if (!t->queue_lock) WARN_ON_ONCE(1); else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { unsigned long flags; spin_lock_irqsave(t->queue_lock, flags); if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) queue_flag_clear(QUEUE_FLAG_CLUSTER, t); spin_unlock_irqrestore(t->queue_lock, flags); } } EXPORT_SYMBOL(disk_stack_limits); /** * blk_queue_dma_pad - set pad mask * @q: the request queue for the device * @mask: pad mask * * Set dma pad mask. * * Appending pad buffer to a request modifies the last entry of a * scatter list such that it includes the pad buffer. **/ void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) { q->dma_pad_mask = mask; } EXPORT_SYMBOL(blk_queue_dma_pad); /** * blk_queue_update_dma_pad - update pad mask * @q: the request queue for the device * @mask: pad mask * * Update dma pad mask. * * Appending pad buffer to a request modifies the last entry of a * scatter list such that it includes the pad buffer. **/ void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) { if (mask > q->dma_pad_mask) q->dma_pad_mask = mask; } EXPORT_SYMBOL(blk_queue_update_dma_pad); /** * blk_queue_dma_drain - Set up a drain buffer for excess dma. * @q: the request queue for the device * @dma_drain_needed: fn which returns non-zero if drain is necessary * @buf: physically contiguous buffer * @size: size of the buffer in bytes * * Some devices have excess DMA problems and can't simply discard (or * zero fill) the unwanted piece of the transfer. They have to have a * real area of memory to transfer it into. The use case for this is * ATAPI devices in DMA mode. If the packet command causes a transfer * bigger than the transfer size some HBAs will lock up if there * aren't DMA elements to contain the excess transfer. What this API * does is adjust the queue so that the buf is always appended * silently to the scatterlist. * * Note: This routine adjusts max_hw_segments to make room for * appending the drain buffer. If you call * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after * calling this routine, you must set the limit to one fewer than your * device can support otherwise there won't be room for the drain * buffer. */ int blk_queue_dma_drain(struct request_queue *q, dma_drain_needed_fn *dma_drain_needed, void *buf, unsigned int size) { if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2) return -EINVAL; /* make room for appending the drain */ blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1); blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1); q->dma_drain_needed = dma_drain_needed; q->dma_drain_buffer = buf; q->dma_drain_size = size; return 0; } EXPORT_SYMBOL_GPL(blk_queue_dma_drain); /** * blk_queue_segment_boundary - set boundary rules for segment merging * @q: the request queue for the device * @mask: the memory boundary mask **/ void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) { if (mask < PAGE_CACHE_SIZE - 1) { mask = PAGE_CACHE_SIZE - 1; printk(KERN_INFO "%s: set to minimum %lx\n", __func__, mask); } q->limits.seg_boundary_mask = mask; } EXPORT_SYMBOL(blk_queue_segment_boundary); /** * blk_queue_dma_alignment - set dma length and memory alignment * @q: the request queue for the device * @mask: alignment mask * * description: * set required memory and length alignment for direct dma transactions. * this is used when building direct io requests for the queue. * **/ void blk_queue_dma_alignment(struct request_queue *q, int mask) { q->dma_alignment = mask; } EXPORT_SYMBOL(blk_queue_dma_alignment); /** * blk_queue_update_dma_alignment - update dma length and memory alignment * @q: the request queue for the device * @mask: alignment mask * * description: * update required memory and length alignment for direct dma transactions. * If the requested alignment is larger than the current alignment, then * the current queue alignment is updated to the new value, otherwise it * is left alone. The design of this is to allow multiple objects * (driver, device, transport etc) to set their respective * alignments without having them interfere. * **/ void blk_queue_update_dma_alignment(struct request_queue *q, int mask) { BUG_ON(mask > PAGE_SIZE); if (mask > q->dma_alignment) q->dma_alignment = mask; } EXPORT_SYMBOL(blk_queue_update_dma_alignment); static int __init blk_settings_init(void) { blk_max_low_pfn = max_low_pfn - 1; blk_max_pfn = max_pfn - 1; return 0; } subsys_initcall(blk_settings_init);