#include #include #include #include #include #include #include #include "pci.h" struct pci_root_info { char *name; unsigned int res_num; struct resource *res; struct pci_bus *bus; int busnum; }; struct gap_info { unsigned long gapstart; unsigned long gapsize; }; static acpi_status resource_to_addr(struct acpi_resource *resource, struct acpi_resource_address64 *addr) { acpi_status status; status = acpi_resource_to_address64(resource, addr); if (ACPI_SUCCESS(status) && (addr->resource_type == ACPI_MEMORY_RANGE || addr->resource_type == ACPI_IO_RANGE) && addr->address_length > 0 && addr->producer_consumer == ACPI_PRODUCER) { return AE_OK; } return AE_ERROR; } static acpi_status count_resource(struct acpi_resource *acpi_res, void *data) { struct pci_root_info *info = data; struct acpi_resource_address64 addr; acpi_status status; if (info->res_num >= PCI_BUS_NUM_RESOURCES) return AE_OK; status = resource_to_addr(acpi_res, &addr); if (ACPI_SUCCESS(status)) info->res_num++; return AE_OK; } static acpi_status setup_resource(struct acpi_resource *acpi_res, void *data) { struct pci_root_info *info = data; struct resource *res; struct acpi_resource_address64 addr; acpi_status status; unsigned long flags; struct resource *root; if (info->res_num >= PCI_BUS_NUM_RESOURCES) return AE_OK; status = resource_to_addr(acpi_res, &addr); if (!ACPI_SUCCESS(status)) return AE_OK; if (addr.resource_type == ACPI_MEMORY_RANGE) { root = &iomem_resource; flags = IORESOURCE_MEM; if (addr.info.mem.caching == ACPI_PREFETCHABLE_MEMORY) flags |= IORESOURCE_PREFETCH; } else if (addr.resource_type == ACPI_IO_RANGE) { root = &ioport_resource; flags = IORESOURCE_IO; } else return AE_OK; res = &info->res[info->res_num]; res->name = info->name; res->flags = flags; res->start = addr.minimum + addr.translation_offset; res->end = res->start + addr.address_length - 1; res->child = NULL; if (insert_resource(root, res)) { printk(KERN_ERR "PCI: Failed to allocate 0x%lx-0x%lx " "from %s for %s\n", (unsigned long) res->start, (unsigned long) res->end, root->name, info->name); } else { info->bus->resource[info->res_num] = res; info->res_num++; } return AE_OK; } static void adjust_transparent_bridge_resources(struct pci_bus *bus) { struct pci_dev *dev; list_for_each_entry(dev, &bus->devices, bus_list) { int i; u16 class = dev->class >> 8; if (class == PCI_CLASS_BRIDGE_PCI && dev->transparent) { for(i = 3; i < PCI_BUS_NUM_RESOURCES; i++) dev->subordinate->resource[i] = dev->bus->resource[i - 3]; } } } static acpi_status search_gap(struct acpi_resource *resource, void *data) { struct acpi_resource_address64 addr; acpi_status status; struct gap_info *gap = data; unsigned long long start_addr, end_addr; status = resource_to_addr(resource, &addr); if (ACPI_SUCCESS(status) && addr.resource_type == ACPI_MEMORY_RANGE && addr.address_length > gap->gapsize) { start_addr = addr.minimum + addr.translation_offset; /* * We want space only in the 32bit address range */ if (start_addr < UINT_MAX) { end_addr = start_addr + addr.address_length; e820_search_gap(&gap->gapstart, &gap->gapsize, start_addr, end_addr); } } return AE_OK; } /* * Search for a hole in the 32 bit address space for PCI to assign MMIO * resources, for hotplug or unconfigured resources. * We query the CRS object of the PCI root device to look for possible producer * resources in the tree and consider these while calulating the start address * for this hole. */ static void pci_setup_gap(acpi_handle *handle) { struct gap_info gap; acpi_status status; gap.gapstart = 0; gap.gapsize = 0x400000; status = acpi_walk_resources(handle, METHOD_NAME__CRS, search_gap, &gap); if (ACPI_SUCCESS(status)) { unsigned long round; if (!gap.gapstart) { printk(KERN_ERR "ACPI: Warning: Cannot find a gap " "in the 32bit address range for PCI\n" "ACPI: PCI devices may collide with " "hotpluggable memory address range\n"); } /* * Round the gapstart, uses the same logic as in * e820_gap_setup */ round = 0x100000; while ((gap.gapsize >> 4) > round) round += round; /* Fun with two's complement */ pci_mem_start = (gap.gapstart + round) & -round; printk(KERN_INFO "ACPI: PCI resources should " "start at %lx (gap: %lx:%lx)\n", pci_mem_start, gap.gapstart, gap.gapsize); } else { printk(KERN_ERR "ACPI: Error while searching for gap in " "the 32bit address range for PCI\n"); } } static void get_current_resources(struct acpi_device *device, int busnum, int domain, struct pci_bus *bus) { struct pci_root_info info; size_t size; info.bus = bus; info.res_num = 0; acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_resource, &info); if (!info.res_num) return; size = sizeof(*info.res) * info.res_num; info.res = kmalloc(size, GFP_KERNEL); if (!info.res) goto res_alloc_fail; info.name = kmalloc(16, GFP_KERNEL); if (!info.name) goto name_alloc_fail; sprintf(info.name, "PCI Bus %04x:%02x", domain, busnum); info.res_num = 0; acpi_walk_resources(device->handle, METHOD_NAME__CRS, setup_resource, &info); if (info.res_num) adjust_transparent_bridge_resources(bus); return; name_alloc_fail: kfree(info.res); res_alloc_fail: return; } struct pci_bus * __devinit pci_acpi_scan_root(struct acpi_device *device, int domain, int busnum) { struct pci_bus *bus; struct pci_sysdata *sd; int node; #ifdef CONFIG_ACPI_NUMA int pxm; #endif if (domain && !pci_domains_supported) { printk(KERN_WARNING "PCI: Multiple domains not supported " "(dom %d, bus %d)\n", domain, busnum); return NULL; } node = -1; #ifdef CONFIG_ACPI_NUMA pxm = acpi_get_pxm(device->handle); if (pxm >= 0) node = pxm_to_node(pxm); if (node != -1) set_mp_bus_to_node(busnum, node); else node = get_mp_bus_to_node(busnum); #endif /* Allocate per-root-bus (not per bus) arch-specific data. * TODO: leak; this memory is never freed. * It's arguable whether it's worth the trouble to care. */ sd = kzalloc(sizeof(*sd), GFP_KERNEL); if (!sd) { printk(KERN_ERR "PCI: OOM, not probing PCI bus %02x\n", busnum); return NULL; } sd->domain = domain; sd->node = node; /* * Maybe the desired pci bus has been already scanned. In such case * it is unnecessary to scan the pci bus with the given domain,busnum. */ bus = pci_find_bus(domain, busnum); if (bus) { /* * If the desired bus exits, the content of bus->sysdata will * be replaced by sd. */ memcpy(bus->sysdata, sd, sizeof(*sd)); kfree(sd); } else bus = pci_scan_bus_parented(NULL, busnum, &pci_root_ops, sd); if (!bus) kfree(sd); #ifdef CONFIG_ACPI_NUMA if (bus) { if (pxm >= 0) { printk(KERN_DEBUG "bus %02x -> pxm %d -> node %d\n", busnum, pxm, pxm_to_node(pxm)); } } #endif if (bus && (pci_probe & PCI_USE__CRS)) get_current_resources(device, busnum, domain, bus); pci_setup_gap(device->handle); return bus; } extern int pci_routeirq; static int __init pci_acpi_init(void) { struct pci_dev *dev = NULL; if (pcibios_scanned) return 0; if (acpi_noirq) return 0; printk(KERN_INFO "PCI: Using ACPI for IRQ routing\n"); acpi_irq_penalty_init(); pcibios_scanned++; pcibios_enable_irq = acpi_pci_irq_enable; pcibios_disable_irq = acpi_pci_irq_disable; if (pci_routeirq) { /* * PCI IRQ routing is set up by pci_enable_device(), but we * also do it here in case there are still broken drivers that * don't use pci_enable_device(). */ printk(KERN_INFO "PCI: Routing PCI interrupts for all devices because \"pci=routeirq\" specified\n"); for_each_pci_dev(dev) acpi_pci_irq_enable(dev); } #ifdef CONFIG_X86_IO_APIC if (acpi_ioapic) print_IO_APIC(); #endif return 0; } subsys_initcall(pci_acpi_init);