/*
 *  Copyright (C) 1995  Linus Torvalds
 *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mmiotrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h>		/* For unblank_screen() */
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>		/* for max_low_pfn */
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>

#include <asm/system.h>
#include <asm/desc.h>
#include <asm/segment.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm-generic/sections.h>
#include <asm/traps.h>

/*
 * Page fault error code bits
 *	bit 0 == 0 means no page found, 1 means protection fault
 *	bit 1 == 0 means read, 1 means write
 *	bit 2 == 0 means kernel, 1 means user-mode
 *	bit 3 == 1 means use of reserved bit detected
 *	bit 4 == 1 means fault was an instruction fetch
 */
#define PF_PROT		(1<<0)
#define PF_WRITE	(1<<1)
#define PF_USER		(1<<2)
#define PF_RSVD		(1<<3)
#define PF_INSTR	(1<<4)

static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
{
#ifdef CONFIG_MMIOTRACE
	if (unlikely(is_kmmio_active()))
		if (kmmio_handler(regs, addr) == 1)
			return -1;
#endif
	return 0;
}

static inline int notify_page_fault(struct pt_regs *regs)
{
#ifdef CONFIG_KPROBES
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode_vm(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 14))
			ret = 1;
		preempt_enable();
	}

	return ret;
#else
	return 0;
#endif
}

/*
 * X86_32
 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 * Check that here and ignore it.
 *
 * X86_64
 * Sometimes the CPU reports invalid exceptions on prefetch.
 * Check that here and ignore it.
 *
 * Opcode checker based on code by Richard Brunner
 */
static int is_prefetch(struct pt_regs *regs, unsigned long addr,
		       unsigned long error_code)
{
	unsigned char *instr;
	int scan_more = 1;
	int prefetch = 0;
	unsigned char *max_instr;

	/*
	 * If it was a exec (instruction fetch) fault on NX page, then
	 * do not ignore the fault:
	 */
	if (error_code & PF_INSTR)
		return 0;

	instr = (unsigned char *)convert_ip_to_linear(current, regs);
	max_instr = instr + 15;

	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
		return 0;

	while (scan_more && instr < max_instr) {
		unsigned char opcode;
		unsigned char instr_hi;
		unsigned char instr_lo;

		if (probe_kernel_address(instr, opcode))
			break;

		instr_hi = opcode & 0xf0;
		instr_lo = opcode & 0x0f;
		instr++;

		switch (instr_hi) {
		case 0x20:
		case 0x30:
			/*
			 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
			 * In X86_64 long mode, the CPU will signal invalid
			 * opcode if some of these prefixes are present so
			 * X86_64 will never get here anyway
			 */
			scan_more = ((instr_lo & 7) == 0x6);
			break;
#ifdef CONFIG_X86_64
		case 0x40:
			/*
			 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
			 * Need to figure out under what instruction mode the
			 * instruction was issued. Could check the LDT for lm,
			 * but for now it's good enough to assume that long
			 * mode only uses well known segments or kernel.
			 */
			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
			break;
#endif
		case 0x60:
			/* 0x64 thru 0x67 are valid prefixes in all modes. */
			scan_more = (instr_lo & 0xC) == 0x4;
			break;
		case 0xF0:
			/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
			scan_more = !instr_lo || (instr_lo>>1) == 1;
			break;
		case 0x00:
			/* Prefetch instruction is 0x0F0D or 0x0F18 */
			scan_more = 0;

			if (probe_kernel_address(instr, opcode))
				break;
			prefetch = (instr_lo == 0xF) &&
				(opcode == 0x0D || opcode == 0x18);
			break;
		default:
			scan_more = 0;
			break;
		}
	}
	return prefetch;
}

static void force_sig_info_fault(int si_signo, int si_code,
	unsigned long address, struct task_struct *tsk)
{
	siginfo_t info;

	info.si_signo = si_signo;
	info.si_errno = 0;
	info.si_code = si_code;
	info.si_addr = (void __user *)address;
	force_sig_info(si_signo, &info, tsk);
}

#ifdef CONFIG_X86_64
static int bad_address(void *p)
{
	unsigned long dummy;
	return probe_kernel_address((unsigned long *)p, dummy);
}
#endif

static void dump_pagetable(unsigned long address)
{
#ifdef CONFIG_X86_32
	__typeof__(pte_val(__pte(0))) page;

	page = read_cr3();
	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
#ifdef CONFIG_X86_PAE
	printk("*pdpt = %016Lx ", page);
	if ((page >> PAGE_SHIFT) < max_low_pfn
	    && page & _PAGE_PRESENT) {
		page &= PAGE_MASK;
		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
		                                         & (PTRS_PER_PMD - 1)];
		printk(KERN_CONT "*pde = %016Lx ", page);
		page &= ~_PAGE_NX;
	}
#else
	printk("*pde = %08lx ", page);
#endif

	/*
	 * We must not directly access the pte in the highpte
	 * case if the page table is located in highmem.
	 * And let's rather not kmap-atomic the pte, just in case
	 * it's allocated already.
	 */
	if ((page >> PAGE_SHIFT) < max_low_pfn
	    && (page & _PAGE_PRESENT)
	    && !(page & _PAGE_PSE)) {
		page &= PAGE_MASK;
		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
		                                         & (PTRS_PER_PTE - 1)];
		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
	}

	printk("\n");
#else /* CONFIG_X86_64 */
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = (pgd_t *)read_cr3();

	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
	pgd += pgd_index(address);
	if (bad_address(pgd)) goto bad;
	printk("PGD %lx ", pgd_val(*pgd));
	if (!pgd_present(*pgd)) goto ret;

	pud = pud_offset(pgd, address);
	if (bad_address(pud)) goto bad;
	printk("PUD %lx ", pud_val(*pud));
	if (!pud_present(*pud) || pud_large(*pud))
		goto ret;

	pmd = pmd_offset(pud, address);
	if (bad_address(pmd)) goto bad;
	printk("PMD %lx ", pmd_val(*pmd));
	if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;

	pte = pte_offset_kernel(pmd, address);
	if (bad_address(pte)) goto bad;
	printk("PTE %lx", pte_val(*pte));
ret:
	printk("\n");
	return;
bad:
	printk("BAD\n");
#endif
}

#ifdef CONFIG_X86_32
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;

	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	/*
	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
	 * and redundant with the set_pmd() on non-PAE. As would
	 * set_pud.
	 */

	pud = pud_offset(pgd, address);
	pud_k = pud_offset(pgd_k, address);
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;
	if (!pmd_present(*pmd)) {
		set_pmd(pmd, *pmd_k);
		arch_flush_lazy_mmu_mode();
	} else
		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
	return pmd_k;
}
#endif

#ifdef CONFIG_X86_64
static const char errata93_warning[] =
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
KERN_ERR "******* Please consider a BIOS update.\n"
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
#endif

/* Workaround for K8 erratum #93 & buggy BIOS.
   BIOS SMM functions are required to use a specific workaround
   to avoid corruption of the 64bit RIP register on C stepping K8.
   A lot of BIOS that didn't get tested properly miss this.
   The OS sees this as a page fault with the upper 32bits of RIP cleared.
   Try to work around it here.
   Note we only handle faults in kernel here.
   Does nothing for X86_32
 */
static int is_errata93(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
	static int warned;
	if (address != regs->ip)
		return 0;
	if ((address >> 32) != 0)
		return 0;
	address |= 0xffffffffUL << 32;
	if ((address >= (u64)_stext && address <= (u64)_etext) ||
	    (address >= MODULES_VADDR && address <= MODULES_END)) {
		if (!warned) {
			printk(errata93_warning);
			warned = 1;
		}
		regs->ip = address;
		return 1;
	}
#endif
	return 0;
}

/*
 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
 * addresses >4GB.  We catch this in the page fault handler because these
 * addresses are not reachable. Just detect this case and return.  Any code
 * segment in LDT is compatibility mode.
 */
static int is_errata100(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_64
	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
	    (address >> 32))
		return 1;
#endif
	return 0;
}

static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
{
#ifdef CONFIG_X86_F00F_BUG
	unsigned long nr;
	/*
	 * Pentium F0 0F C7 C8 bug workaround.
	 */
	if (boot_cpu_data.f00f_bug) {
		nr = (address - idt_descr.address) >> 3;

		if (nr == 6) {
			do_invalid_op(regs, 0);
			return 1;
		}
	}
#endif
	return 0;
}

static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
			    unsigned long address)
{
#ifdef CONFIG_X86_32
	if (!oops_may_print())
		return;
#endif

#ifdef CONFIG_X86_PAE
	if (error_code & PF_INSTR) {
		unsigned int level;
		pte_t *pte = lookup_address(address, &level);

		if (pte && pte_present(*pte) && !pte_exec(*pte))
			printk(KERN_CRIT "kernel tried to execute "
				"NX-protected page - exploit attempt? "
				"(uid: %d)\n", current_uid());
	}
#endif

	printk(KERN_ALERT "BUG: unable to handle kernel ");
	if (address < PAGE_SIZE)
		printk(KERN_CONT "NULL pointer dereference");
	else
		printk(KERN_CONT "paging request");
	printk(KERN_CONT " at %p\n", (void *) address);
	printk(KERN_ALERT "IP:");
	printk_address(regs->ip, 1);
	dump_pagetable(address);
}

#ifdef CONFIG_X86_64
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
				 unsigned long error_code)
{
	unsigned long flags = oops_begin();
	int sig = SIGKILL;
	struct task_struct *tsk;

	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
	       current->comm, address);
	dump_pagetable(address);
	tsk = current;
	tsk->thread.cr2 = address;
	tsk->thread.trap_no = 14;
	tsk->thread.error_code = error_code;
	if (__die("Bad pagetable", regs, error_code))
		sig = 0;
	oops_end(flags, regs, sig);
}
#endif

static int spurious_fault_check(unsigned long error_code, pte_t *pte)
{
	if ((error_code & PF_WRITE) && !pte_write(*pte))
		return 0;
	if ((error_code & PF_INSTR) && !pte_exec(*pte))
		return 0;

	return 1;
}

/*
 * Handle a spurious fault caused by a stale TLB entry.  This allows
 * us to lazily refresh the TLB when increasing the permissions of a
 * kernel page (RO -> RW or NX -> X).  Doing it eagerly is very
 * expensive since that implies doing a full cross-processor TLB
 * flush, even if no stale TLB entries exist on other processors.
 * There are no security implications to leaving a stale TLB when
 * increasing the permissions on a page.
 */
static int spurious_fault(unsigned long address,
			  unsigned long error_code)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	/* Reserved-bit violation or user access to kernel space? */
	if (error_code & (PF_USER | PF_RSVD))
		return 0;

	pgd = init_mm.pgd + pgd_index(address);
	if (!pgd_present(*pgd))
		return 0;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return 0;

	if (pud_large(*pud))
		return spurious_fault_check(error_code, (pte_t *) pud);

	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;

	if (pmd_large(*pmd))
		return spurious_fault_check(error_code, (pte_t *) pmd);

	pte = pte_offset_kernel(pmd, address);
	if (!pte_present(*pte))
		return 0;

	return spurious_fault_check(error_code, pte);
}

/*
 * X86_32
 * Handle a fault on the vmalloc or module mapping area
 *
 * X86_64
 * Handle a fault on the vmalloc area
 *
 * This assumes no large pages in there.
 */
static int vmalloc_fault(unsigned long address)
{
#ifdef CONFIG_X86_32
	unsigned long pgd_paddr;
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 *
	 * Do _not_ use "current" here. We might be inside
	 * an interrupt in the middle of a task switch..
	 */
	pgd_paddr = read_cr3();
	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
	if (!pmd_k)
		return -1;
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;
	return 0;
#else
	pgd_t *pgd, *pgd_ref;
	pud_t *pud, *pud_ref;
	pmd_t *pmd, *pmd_ref;
	pte_t *pte, *pte_ref;

	/* Make sure we are in vmalloc area */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

	/* Copy kernel mappings over when needed. This can also
	   happen within a race in page table update. In the later
	   case just flush. */

	pgd = pgd_offset(current->active_mm, address);
	pgd_ref = pgd_offset_k(address);
	if (pgd_none(*pgd_ref))
		return -1;
	if (pgd_none(*pgd))
		set_pgd(pgd, *pgd_ref);
	else
		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));

	/* Below here mismatches are bugs because these lower tables
	   are shared */

	pud = pud_offset(pgd, address);
	pud_ref = pud_offset(pgd_ref, address);
	if (pud_none(*pud_ref))
		return -1;
	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
		BUG();
	pmd = pmd_offset(pud, address);
	pmd_ref = pmd_offset(pud_ref, address);
	if (pmd_none(*pmd_ref))
		return -1;
	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
		BUG();
	pte_ref = pte_offset_kernel(pmd_ref, address);
	if (!pte_present(*pte_ref))
		return -1;
	pte = pte_offset_kernel(pmd, address);
	/* Don't use pte_page here, because the mappings can point
	   outside mem_map, and the NUMA hash lookup cannot handle
	   that. */
	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
		BUG();
	return 0;
#endif
}

int show_unhandled_signals = 1;

/*
 * This routine handles page faults.  It determines the address,
 * and the problem, and then passes it off to one of the appropriate
 * routines.
 */
#ifdef CONFIG_X86_64
asmlinkage
#endif
void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	unsigned long address;
	int write, si_code;
	int fault;
#ifdef CONFIG_X86_64
	unsigned long flags;
	int sig;
#endif

	tsk = current;
	mm = tsk->mm;
	prefetchw(&mm->mmap_sem);

	/* get the address */
	address = read_cr2();

	si_code = SEGV_MAPERR;

	if (unlikely(kmmio_fault(regs, address)))
		return;

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * (error_code & 4) == 0, and that the fault was not a
	 * protection error (error_code & 9) == 0.
	 */
#ifdef CONFIG_X86_32
	if (unlikely(address >= TASK_SIZE)) {
#else
	if (unlikely(address >= TASK_SIZE64)) {
#endif
		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
		    vmalloc_fault(address) >= 0)
			return;

		/* Can handle a stale RO->RW TLB */
		if (spurious_fault(address, error_code))
			return;

		/* kprobes don't want to hook the spurious faults. */
		if (notify_page_fault(regs))
			return;
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
		 * fault we could otherwise deadlock.
		 */
		goto bad_area_nosemaphore;
	}

	/* kprobes don't want to hook the spurious faults. */
	if (notify_page_fault(regs))
		return;

	/*
	 * It's safe to allow irq's after cr2 has been saved and the
	 * vmalloc fault has been handled.
	 *
	 * User-mode registers count as a user access even for any
	 * potential system fault or CPU buglet.
	 */
	if (user_mode_vm(regs)) {
		local_irq_enable();
		error_code |= PF_USER;
	} else if (regs->flags & X86_EFLAGS_IF)
		local_irq_enable();

#ifdef CONFIG_X86_64
	if (unlikely(error_code & PF_RSVD))
		pgtable_bad(address, regs, error_code);
#endif

	/*
	 * If we're in an interrupt, have no user context or are running in an
	 * atomic region then we must not take the fault.
	 */
	if (unlikely(in_atomic() || !mm))
		goto bad_area_nosemaphore;

	/*
	 * When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
	 * the source reference check when there is a possibility of a deadlock.
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if ((error_code & PF_USER) == 0 &&
		    !search_exception_tables(regs->ip))
			goto bad_area_nosemaphore;
		down_read(&mm->mmap_sem);
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
	if (error_code & PF_USER) {
		/*
		 * Accessing the stack below %sp is always a bug.
		 * The large cushion allows instructions like enter
		 * and pusha to work.  ("enter $65535,$31" pushes
		 * 32 pointers and then decrements %sp by 65535.)
		 */
		if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;
/*
 * Ok, we have a good vm_area for this memory access, so
 * we can handle it..
 */
good_area:
	si_code = SEGV_ACCERR;
	write = 0;
	switch (error_code & (PF_PROT|PF_WRITE)) {
	default:	/* 3: write, present */
		/* fall through */
	case PF_WRITE:		/* write, not present */
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
		write++;
		break;
	case PF_PROT:		/* read, present */
		goto bad_area;
	case 0:			/* read, not present */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			goto bad_area;
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
	fault = handle_mm_fault(mm, vma, address, write);
	if (unlikely(fault & VM_FAULT_ERROR)) {
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGBUS)
			goto do_sigbus;
		BUG();
	}
	if (fault & VM_FAULT_MAJOR)
		tsk->maj_flt++;
	else
		tsk->min_flt++;

#ifdef CONFIG_X86_32
	/*
	 * Did it hit the DOS screen memory VA from vm86 mode?
	 */
	if (v8086_mode(regs)) {
		unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
		if (bit < 32)
			tsk->thread.screen_bitmap |= 1 << bit;
	}
#endif
	up_read(&mm->mmap_sem);
	return;

/*
 * Something tried to access memory that isn't in our memory map..
 * Fix it, but check if it's kernel or user first..
 */
bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses just cause a SIGSEGV */
	if (error_code & PF_USER) {
		/*
		 * It's possible to have interrupts off here.
		 */
		local_irq_enable();

		/*
		 * Valid to do another page fault here because this one came
		 * from user space.
		 */
		if (is_prefetch(regs, address, error_code))
			return;

		if (is_errata100(regs, address))
			return;

		if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
		    printk_ratelimit()) {
			printk(
			"%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
			task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
			tsk->comm, task_pid_nr(tsk), address,
			(void *) regs->ip, (void *) regs->sp, error_code);
			print_vma_addr(" in ", regs->ip);
			printk("\n");
		}

		tsk->thread.cr2 = address;
		/* Kernel addresses are always protection faults */
		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
		tsk->thread.trap_no = 14;
		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
		return;
	}

	if (is_f00f_bug(regs, address))
		return;

no_context:
	/* Are we prepared to handle this kernel fault?  */
	if (fixup_exception(regs))
		return;

	/*
	 * X86_32
	 * Valid to do another page fault here, because if this fault
	 * had been triggered by is_prefetch fixup_exception would have
	 * handled it.
	 *
	 * X86_64
	 * Hall of shame of CPU/BIOS bugs.
	 */
	if (is_prefetch(regs, address, error_code))
		return;

	if (is_errata93(regs, address))
		return;

/*
 * Oops. The kernel tried to access some bad page. We'll have to
 * terminate things with extreme prejudice.
 */
#ifdef CONFIG_X86_32
	bust_spinlocks(1);
#else
	flags = oops_begin();
#endif

	show_fault_oops(regs, error_code, address);

	tsk->thread.cr2 = address;
	tsk->thread.trap_no = 14;
	tsk->thread.error_code = error_code;

#ifdef CONFIG_X86_32
	die("Oops", regs, error_code);
	bust_spinlocks(0);
	do_exit(SIGKILL);
#else
	sig = SIGKILL;
	if (__die("Oops", regs, error_code))
		sig = 0;
	/* Executive summary in case the body of the oops scrolled away */
	printk(KERN_EMERG "CR2: %016lx\n", address);
	oops_end(flags, regs, sig);
#endif

out_of_memory:
	/*
	 * We ran out of memory, call the OOM killer, and return the userspace
	 * (which will retry the fault, or kill us if we got oom-killed).
	 */
	up_read(&mm->mmap_sem);
	pagefault_out_of_memory();
	return;

do_sigbus:
	up_read(&mm->mmap_sem);

	/* Kernel mode? Handle exceptions or die */
	if (!(error_code & PF_USER))
		goto no_context;
#ifdef CONFIG_X86_32
	/* User space => ok to do another page fault */
	if (is_prefetch(regs, address, error_code))
		return;
#endif
	tsk->thread.cr2 = address;
	tsk->thread.error_code = error_code;
	tsk->thread.trap_no = 14;
	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
}

DEFINE_SPINLOCK(pgd_lock);
LIST_HEAD(pgd_list);

void vmalloc_sync_all(void)
{
	unsigned long address;

#ifdef CONFIG_X86_32
	if (SHARED_KERNEL_PMD)
		return;

	for (address = VMALLOC_START & PMD_MASK;
	     address >= TASK_SIZE && address < FIXADDR_TOP;
	     address += PMD_SIZE) {
		unsigned long flags;
		struct page *page;

		spin_lock_irqsave(&pgd_lock, flags);
		list_for_each_entry(page, &pgd_list, lru) {
			if (!vmalloc_sync_one(page_address(page),
					      address))
				break;
		}
		spin_unlock_irqrestore(&pgd_lock, flags);
	}
#else /* CONFIG_X86_64 */
	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
	     address += PGDIR_SIZE) {
		const pgd_t *pgd_ref = pgd_offset_k(address);
		unsigned long flags;
		struct page *page;

		if (pgd_none(*pgd_ref))
			continue;
		spin_lock_irqsave(&pgd_lock, flags);
		list_for_each_entry(page, &pgd_list, lru) {
			pgd_t *pgd;
			pgd = (pgd_t *)page_address(page) + pgd_index(address);
			if (pgd_none(*pgd))
				set_pgd(pgd, *pgd_ref);
			else
				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
		}
		spin_unlock_irqrestore(&pgd_lock, flags);
	}
#endif
}