/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #if TILE_CHIP < 10 #include #define TREG_SP 54 #define TREG_LR 55 /** A decoded bundle used for backtracer analysis. */ typedef struct { tile_bundle_bits bits; int num_insns; struct tile_decoded_instruction insns[TILE_MAX_INSTRUCTIONS_PER_BUNDLE]; } BacktraceBundle; /* This implementation only makes sense for native tools. */ /** Default function to read memory. */ static bool bt_read_memory(void *result, VirtualAddress addr, size_t size, void *extra) { /* FIXME: this should do some horrible signal stuff to catch * SEGV cleanly and fail. * * Or else the caller should do the setjmp for efficiency. */ memcpy(result, (const void *)addr, size); return true; } /** Locates an instruction inside the given bundle that * has the specified mnemonic, and whose first 'num_operands_to_match' * operands exactly match those in 'operand_values'. */ static const struct tile_decoded_instruction* find_matching_insn(const BacktraceBundle *bundle, tile_mnemonic mnemonic, const int *operand_values, int num_operands_to_match) { int i, j; bool match; for (i = 0; i < bundle->num_insns; i++) { const struct tile_decoded_instruction *insn = &bundle->insns[i]; if (insn->opcode->mnemonic != mnemonic) continue; match = true; for (j = 0; j < num_operands_to_match; j++) { if (operand_values[j] != insn->operand_values[j]) { match = false; break; } } if (match) return insn; } return NULL; } /** Does this bundle contain an 'iret' instruction? */ static inline bool bt_has_iret(const BacktraceBundle *bundle) { return find_matching_insn(bundle, TILE_OPC_IRET, NULL, 0) != NULL; } /** Does this bundle contain an 'addi sp, sp, OFFSET' or * 'addli sp, sp, OFFSET' instruction, and if so, what is OFFSET? */ static bool bt_has_addi_sp(const BacktraceBundle *bundle, int *adjust) { static const int vals[2] = { TREG_SP, TREG_SP }; const struct tile_decoded_instruction *insn = find_matching_insn(bundle, TILE_OPC_ADDI, vals, 2); if (insn == NULL) insn = find_matching_insn(bundle, TILE_OPC_ADDLI, vals, 2); if (insn == NULL) return false; *adjust = insn->operand_values[2]; return true; } /** Does this bundle contain any 'info OP' or 'infol OP' * instruction, and if so, what are their OP? Note that OP is interpreted * as an unsigned value by this code since that's what the caller wants. * Returns the number of info ops found. */ static int bt_get_info_ops(const BacktraceBundle *bundle, int operands[MAX_INFO_OPS_PER_BUNDLE]) { int num_ops = 0; int i; for (i = 0; i < bundle->num_insns; i++) { const struct tile_decoded_instruction *insn = &bundle->insns[i]; if (insn->opcode->mnemonic == TILE_OPC_INFO || insn->opcode->mnemonic == TILE_OPC_INFOL) { operands[num_ops++] = insn->operand_values[0]; } } return num_ops; } /** Does this bundle contain a jrp instruction, and if so, to which * register is it jumping? */ static bool bt_has_jrp(const BacktraceBundle *bundle, int *target_reg) { const struct tile_decoded_instruction *insn = find_matching_insn(bundle, TILE_OPC_JRP, NULL, 0); if (insn == NULL) return false; *target_reg = insn->operand_values[0]; return true; } /** Does this bundle modify the specified register in any way? */ static bool bt_modifies_reg(const BacktraceBundle *bundle, int reg) { int i, j; for (i = 0; i < bundle->num_insns; i++) { const struct tile_decoded_instruction *insn = &bundle->insns[i]; if (insn->opcode->implicitly_written_register == reg) return true; for (j = 0; j < insn->opcode->num_operands; j++) if (insn->operands[j]->is_dest_reg && insn->operand_values[j] == reg) return true; } return false; } /** Does this bundle modify sp? */ static inline bool bt_modifies_sp(const BacktraceBundle *bundle) { return bt_modifies_reg(bundle, TREG_SP); } /** Does this bundle modify lr? */ static inline bool bt_modifies_lr(const BacktraceBundle *bundle) { return bt_modifies_reg(bundle, TREG_LR); } /** Does this bundle contain the instruction 'move fp, sp'? */ static inline bool bt_has_move_r52_sp(const BacktraceBundle *bundle) { static const int vals[2] = { 52, TREG_SP }; return find_matching_insn(bundle, TILE_OPC_MOVE, vals, 2) != NULL; } /** Does this bundle contain the instruction 'sw sp, lr'? */ static inline bool bt_has_sw_sp_lr(const BacktraceBundle *bundle) { static const int vals[2] = { TREG_SP, TREG_LR }; return find_matching_insn(bundle, TILE_OPC_SW, vals, 2) != NULL; } /** Locates the caller's PC and SP for a program starting at the * given address. */ static void find_caller_pc_and_caller_sp(CallerLocation *location, const VirtualAddress start_pc, BacktraceMemoryReader read_memory_func, void *read_memory_func_extra) { /* Have we explicitly decided what the sp is, * rather than just the default? */ bool sp_determined = false; /* Has any bundle seen so far modified lr? */ bool lr_modified = false; /* Have we seen a move from sp to fp? */ bool sp_moved_to_r52 = false; /* Have we seen a terminating bundle? */ bool seen_terminating_bundle = false; /* Cut down on round-trip reading overhead by reading several * bundles at a time. */ tile_bundle_bits prefetched_bundles[32]; int num_bundles_prefetched = 0; int next_bundle = 0; VirtualAddress pc; /* Default to assuming that the caller's sp is the current sp. * This is necessary to handle the case where we start backtracing * right at the end of the epilog. */ location->sp_location = SP_LOC_OFFSET; location->sp_offset = 0; /* Default to having no idea where the caller PC is. */ location->pc_location = PC_LOC_UNKNOWN; /* Don't even try if the PC is not aligned. */ if (start_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) return; for (pc = start_pc;; pc += sizeof(tile_bundle_bits)) { BacktraceBundle bundle; int num_info_ops, info_operands[MAX_INFO_OPS_PER_BUNDLE]; int one_ago, jrp_reg; bool has_jrp; if (next_bundle >= num_bundles_prefetched) { /* Prefetch some bytes, but don't cross a page * boundary since that might cause a read failure we * don't care about if we only need the first few * bytes. Note: we don't care what the actual page * size is; using the minimum possible page size will * prevent any problems. */ unsigned int bytes_to_prefetch = 4096 - (pc & 4095); if (bytes_to_prefetch > sizeof prefetched_bundles) bytes_to_prefetch = sizeof prefetched_bundles; if (!read_memory_func(prefetched_bundles, pc, bytes_to_prefetch, read_memory_func_extra)) { if (pc == start_pc) { /* The program probably called a bad * address, such as a NULL pointer. * So treat this as if we are at the * start of the function prolog so the * backtrace will show how we got here. */ location->pc_location = PC_LOC_IN_LR; return; } /* Unreadable address. Give up. */ break; } next_bundle = 0; num_bundles_prefetched = bytes_to_prefetch / sizeof(tile_bundle_bits); } /* Decode the next bundle. */ bundle.bits = prefetched_bundles[next_bundle++]; bundle.num_insns = parse_insn_tile(bundle.bits, pc, bundle.insns); num_info_ops = bt_get_info_ops(&bundle, info_operands); /* First look at any one_ago info ops if they are interesting, * since they should shadow any non-one-ago info ops. */ for (one_ago = (pc != start_pc) ? 1 : 0; one_ago >= 0; one_ago--) { int i; for (i = 0; i < num_info_ops; i++) { int info_operand = info_operands[i]; if (info_operand < CALLER_UNKNOWN_BASE) { /* Weird; reserved value, ignore it. */ continue; } /* Skip info ops which are not in the * "one_ago" mode we want right now. */ if (((info_operand & ONE_BUNDLE_AGO_FLAG) != 0) != (one_ago != 0)) continue; /* Clear the flag to make later checking * easier. */ info_operand &= ~ONE_BUNDLE_AGO_FLAG; /* Default to looking at PC_IN_LR_FLAG. */ if (info_operand & PC_IN_LR_FLAG) location->pc_location = PC_LOC_IN_LR; else location->pc_location = PC_LOC_ON_STACK; switch (info_operand) { case CALLER_UNKNOWN_BASE: location->pc_location = PC_LOC_UNKNOWN; location->sp_location = SP_LOC_UNKNOWN; return; case CALLER_SP_IN_R52_BASE: case CALLER_SP_IN_R52_BASE | PC_IN_LR_FLAG: location->sp_location = SP_LOC_IN_R52; return; default: { const unsigned int val = info_operand - CALLER_SP_OFFSET_BASE; const unsigned int sp_offset = (val >> NUM_INFO_OP_FLAGS) * 8; if (sp_offset < 32768) { /* This is a properly encoded * SP offset. */ location->sp_location = SP_LOC_OFFSET; location->sp_offset = sp_offset; return; } else { /* This looked like an SP * offset, but it's outside * the legal range, so this * must be an unrecognized * info operand. Ignore it. */ } } break; } } } if (seen_terminating_bundle) { /* We saw a terminating bundle during the previous * iteration, so we were only looking for an info op. */ break; } if (bundle.bits == 0) { /* Wacky terminating bundle. Stop looping, and hope * we've already seen enough to find the caller. */ break; } /* * Try to determine caller's SP. */ if (!sp_determined) { int adjust; if (bt_has_addi_sp(&bundle, &adjust)) { location->sp_location = SP_LOC_OFFSET; if (adjust <= 0) { /* We are in prolog about to adjust * SP. */ location->sp_offset = 0; } else { /* We are in epilog restoring SP. */ location->sp_offset = adjust; } sp_determined = true; } else { if (bt_has_move_r52_sp(&bundle)) { /* Maybe in prolog, creating an * alloca-style frame. But maybe in * the middle of a fixed-size frame * clobbering r52 with SP. */ sp_moved_to_r52 = true; } if (bt_modifies_sp(&bundle)) { if (sp_moved_to_r52) { /* We saw SP get saved into * r52 earlier (or now), which * must have been in the * prolog, so we now know that * SP is still holding the * caller's sp value. */ location->sp_location = SP_LOC_OFFSET; location->sp_offset = 0; } else { /* Someone must have saved * aside the caller's SP value * into r52, so r52 holds the * current value. */ location->sp_location = SP_LOC_IN_R52; } sp_determined = true; } } } if (bt_has_iret(&bundle)) { /* This is a terminating bundle. */ seen_terminating_bundle = true; continue; } /* * Try to determine caller's PC. */ jrp_reg = -1; has_jrp = bt_has_jrp(&bundle, &jrp_reg); if (has_jrp) seen_terminating_bundle = true; if (location->pc_location == PC_LOC_UNKNOWN) { if (has_jrp) { if (jrp_reg == TREG_LR && !lr_modified) { /* Looks like a leaf function, or else * lr is already restored. */ location->pc_location = PC_LOC_IN_LR; } else { location->pc_location = PC_LOC_ON_STACK; } } else if (bt_has_sw_sp_lr(&bundle)) { /* In prolog, spilling initial lr to stack. */ location->pc_location = PC_LOC_IN_LR; } else if (bt_modifies_lr(&bundle)) { lr_modified = true; } } } } void backtrace_init(BacktraceIterator *state, BacktraceMemoryReader read_memory_func, void *read_memory_func_extra, VirtualAddress pc, VirtualAddress lr, VirtualAddress sp, VirtualAddress r52) { CallerLocation location; VirtualAddress fp, initial_frame_caller_pc; if (read_memory_func == NULL) { read_memory_func = bt_read_memory; } /* Find out where we are in the initial frame. */ find_caller_pc_and_caller_sp(&location, pc, read_memory_func, read_memory_func_extra); switch (location.sp_location) { case SP_LOC_UNKNOWN: /* Give up. */ fp = -1; break; case SP_LOC_IN_R52: fp = r52; break; case SP_LOC_OFFSET: fp = sp + location.sp_offset; break; default: /* Give up. */ fp = -1; break; } /* The frame pointer should theoretically be aligned mod 8. If * it's not even aligned mod 4 then something terrible happened * and we should mark it as invalid. */ if (fp % 4 != 0) fp = -1; /* -1 means "don't know initial_frame_caller_pc". */ initial_frame_caller_pc = -1; switch (location.pc_location) { case PC_LOC_UNKNOWN: /* Give up. */ fp = -1; break; case PC_LOC_IN_LR: if (lr == 0 || lr % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) { /* Give up. */ fp = -1; } else { initial_frame_caller_pc = lr; } break; case PC_LOC_ON_STACK: /* Leave initial_frame_caller_pc as -1, * meaning check the stack. */ break; default: /* Give up. */ fp = -1; break; } state->pc = pc; state->sp = sp; state->fp = fp; state->initial_frame_caller_pc = initial_frame_caller_pc; state->read_memory_func = read_memory_func; state->read_memory_func_extra = read_memory_func_extra; } bool backtrace_next(BacktraceIterator *state) { VirtualAddress next_fp, next_pc, next_frame[2]; if (state->fp == -1) { /* No parent frame. */ return false; } /* Try to read the frame linkage data chaining to the next function. */ if (!state->read_memory_func(&next_frame, state->fp, sizeof next_frame, state->read_memory_func_extra)) { return false; } next_fp = next_frame[1]; if (next_fp % 4 != 0) { /* Caller's frame pointer is suspect, so give up. * Technically it should be aligned mod 8, but we will * be forgiving here. */ return false; } if (state->initial_frame_caller_pc != -1) { /* We must be in the initial stack frame and already know the * caller PC. */ next_pc = state->initial_frame_caller_pc; /* Force reading stack next time, in case we were in the * initial frame. We don't do this above just to paranoidly * avoid changing the struct at all when we return false. */ state->initial_frame_caller_pc = -1; } else { /* Get the caller PC from the frame linkage area. */ next_pc = next_frame[0]; if (next_pc == 0 || next_pc % TILE_BUNDLE_ALIGNMENT_IN_BYTES != 0) { /* The PC is suspect, so give up. */ return false; } } /* Update state to become the caller's stack frame. */ state->pc = next_pc; state->sp = state->fp; state->fp = next_fp; return true; } #else /* TILE_CHIP < 10 */ void backtrace_init(BacktraceIterator *state, BacktraceMemoryReader read_memory_func, void *read_memory_func_extra, VirtualAddress pc, VirtualAddress lr, VirtualAddress sp, VirtualAddress r52) { state->pc = pc; state->sp = sp; state->fp = -1; state->initial_frame_caller_pc = -1; state->read_memory_func = read_memory_func; state->read_memory_func_extra = read_memory_func_extra; } bool backtrace_next(BacktraceIterator *state) { return false; } #endif /* TILE_CHIP < 10 */