/* * arch/sparc64/mm/init.c * * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "init_64.h" unsigned long kern_linear_pte_xor[4] __read_mostly; /* A bitmap, two bits for every 256MB of physical memory. These two * bits determine what page size we use for kernel linear * translations. They form an index into kern_linear_pte_xor[]. The * value in the indexed slot is XOR'd with the TLB miss virtual * address to form the resulting TTE. The mapping is: * * 0 ==> 4MB * 1 ==> 256MB * 2 ==> 2GB * 3 ==> 16GB * * All sun4v chips support 256MB pages. Only SPARC-T4 and later * support 2GB pages, and hopefully future cpus will support the 16GB * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there * if these larger page sizes are not supported by the cpu. * * It would be nice to determine this from the machine description * 'cpu' properties, but we need to have this table setup before the * MDESC is initialized. */ #ifndef CONFIG_DEBUG_PAGEALLOC /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. * Space is allocated for this right after the trap table in * arch/sparc64/kernel/head.S */ extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; #endif extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; static unsigned long cpu_pgsz_mask; #define MAX_BANKS 32 static struct linux_prom64_registers pavail[MAX_BANKS]; static int pavail_ents; static int cmp_p64(const void *a, const void *b) { const struct linux_prom64_registers *x = a, *y = b; if (x->phys_addr > y->phys_addr) return 1; if (x->phys_addr < y->phys_addr) return -1; return 0; } static void __init read_obp_memory(const char *property, struct linux_prom64_registers *regs, int *num_ents) { phandle node = prom_finddevice("/memory"); int prop_size = prom_getproplen(node, property); int ents, ret, i; ents = prop_size / sizeof(struct linux_prom64_registers); if (ents > MAX_BANKS) { prom_printf("The machine has more %s property entries than " "this kernel can support (%d).\n", property, MAX_BANKS); prom_halt(); } ret = prom_getproperty(node, property, (char *) regs, prop_size); if (ret == -1) { prom_printf("Couldn't get %s property from /memory.\n", property); prom_halt(); } /* Sanitize what we got from the firmware, by page aligning * everything. */ for (i = 0; i < ents; i++) { unsigned long base, size; base = regs[i].phys_addr; size = regs[i].reg_size; size &= PAGE_MASK; if (base & ~PAGE_MASK) { unsigned long new_base = PAGE_ALIGN(base); size -= new_base - base; if ((long) size < 0L) size = 0UL; base = new_base; } if (size == 0UL) { /* If it is empty, simply get rid of it. * This simplifies the logic of the other * functions that process these arrays. */ memmove(®s[i], ®s[i + 1], (ents - i - 1) * sizeof(regs[0])); i--; ents--; continue; } regs[i].phys_addr = base; regs[i].reg_size = size; } *num_ents = ents; sort(regs, ents, sizeof(struct linux_prom64_registers), cmp_p64, NULL); } /* Kernel physical address base and size in bytes. */ unsigned long kern_base __read_mostly; unsigned long kern_size __read_mostly; /* Initial ramdisk setup */ extern unsigned long sparc_ramdisk_image64; extern unsigned int sparc_ramdisk_image; extern unsigned int sparc_ramdisk_size; struct page *mem_map_zero __read_mostly; EXPORT_SYMBOL(mem_map_zero); unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; unsigned long sparc64_kern_pri_context __read_mostly; unsigned long sparc64_kern_pri_nuc_bits __read_mostly; unsigned long sparc64_kern_sec_context __read_mostly; int num_kernel_image_mappings; #ifdef CONFIG_DEBUG_DCFLUSH atomic_t dcpage_flushes = ATOMIC_INIT(0); #ifdef CONFIG_SMP atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); #endif #endif inline void flush_dcache_page_impl(struct page *page) { BUG_ON(tlb_type == hypervisor); #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif #ifdef DCACHE_ALIASING_POSSIBLE __flush_dcache_page(page_address(page), ((tlb_type == spitfire) && page_mapping(page) != NULL)); #else if (page_mapping(page) != NULL && tlb_type == spitfire) __flush_icache_page(__pa(page_address(page))); #endif } #define PG_dcache_dirty PG_arch_1 #define PG_dcache_cpu_shift 32UL #define PG_dcache_cpu_mask \ ((1UL<flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) static inline void set_dcache_dirty(struct page *page, int this_cpu) { unsigned long mask = this_cpu; unsigned long non_cpu_bits; non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); __asm__ __volatile__("1:\n\t" "ldx [%2], %%g7\n\t" "and %%g7, %1, %%g1\n\t" "or %%g1, %0, %%g1\n\t" "casx [%2], %%g7, %%g1\n\t" "cmp %%g7, %%g1\n\t" "bne,pn %%xcc, 1b\n\t" " nop" : /* no outputs */ : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) : "g1", "g7"); } static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) { unsigned long mask = (1UL << PG_dcache_dirty); __asm__ __volatile__("! test_and_clear_dcache_dirty\n" "1:\n\t" "ldx [%2], %%g7\n\t" "srlx %%g7, %4, %%g1\n\t" "and %%g1, %3, %%g1\n\t" "cmp %%g1, %0\n\t" "bne,pn %%icc, 2f\n\t" " andn %%g7, %1, %%g1\n\t" "casx [%2], %%g7, %%g1\n\t" "cmp %%g7, %%g1\n\t" "bne,pn %%xcc, 1b\n\t" " nop\n" "2:" : /* no outputs */ : "r" (cpu), "r" (mask), "r" (&page->flags), "i" (PG_dcache_cpu_mask), "i" (PG_dcache_cpu_shift) : "g1", "g7"); } static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) { unsigned long tsb_addr = (unsigned long) ent; if (tlb_type == cheetah_plus || tlb_type == hypervisor) tsb_addr = __pa(tsb_addr); __tsb_insert(tsb_addr, tag, pte); } unsigned long _PAGE_ALL_SZ_BITS __read_mostly; static void flush_dcache(unsigned long pfn) { struct page *page; page = pfn_to_page(pfn); if (page) { unsigned long pg_flags; pg_flags = page->flags; if (pg_flags & (1UL << PG_dcache_dirty)) { int cpu = ((pg_flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask); int this_cpu = get_cpu(); /* This is just to optimize away some function calls * in the SMP case. */ if (cpu == this_cpu) flush_dcache_page_impl(page); else smp_flush_dcache_page_impl(page, cpu); clear_dcache_dirty_cpu(page, cpu); put_cpu(); } } } /* mm->context.lock must be held */ static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, unsigned long tsb_hash_shift, unsigned long address, unsigned long tte) { struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; unsigned long tag; if (unlikely(!tsb)) return; tsb += ((address >> tsb_hash_shift) & (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); tag = (address >> 22UL); tsb_insert(tsb, tag, tte); } #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline bool is_hugetlb_pte(pte_t pte) { if ((tlb_type == hypervisor && (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || (tlb_type != hypervisor && (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) return true; return false; } #endif void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { struct mm_struct *mm; unsigned long flags; pte_t pte = *ptep; if (tlb_type != hypervisor) { unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) flush_dcache(pfn); } mm = vma->vm_mm; /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ if (!pte_accessible(mm, pte)) return; spin_lock_irqsave(&mm->context.lock, flags); #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) if (mm->context.huge_pte_count && is_hugetlb_pte(pte)) __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, address, pte_val(pte)); else #endif __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, address, pte_val(pte)); spin_unlock_irqrestore(&mm->context.lock, flags); } void flush_dcache_page(struct page *page) { struct address_space *mapping; int this_cpu; if (tlb_type == hypervisor) return; /* Do not bother with the expensive D-cache flush if it * is merely the zero page. The 'bigcore' testcase in GDB * causes this case to run millions of times. */ if (page == ZERO_PAGE(0)) return; this_cpu = get_cpu(); mapping = page_mapping(page); if (mapping && !mapping_mapped(mapping)) { int dirty = test_bit(PG_dcache_dirty, &page->flags); if (dirty) { int dirty_cpu = dcache_dirty_cpu(page); if (dirty_cpu == this_cpu) goto out; smp_flush_dcache_page_impl(page, dirty_cpu); } set_dcache_dirty(page, this_cpu); } else { /* We could delay the flush for the !page_mapping * case too. But that case is for exec env/arg * pages and those are %99 certainly going to get * faulted into the tlb (and thus flushed) anyways. */ flush_dcache_page_impl(page); } out: put_cpu(); } EXPORT_SYMBOL(flush_dcache_page); void __kprobes flush_icache_range(unsigned long start, unsigned long end) { /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ if (tlb_type == spitfire) { unsigned long kaddr; /* This code only runs on Spitfire cpus so this is * why we can assume _PAGE_PADDR_4U. */ for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { unsigned long paddr, mask = _PAGE_PADDR_4U; if (kaddr >= PAGE_OFFSET) paddr = kaddr & mask; else { pgd_t *pgdp = pgd_offset_k(kaddr); pud_t *pudp = pud_offset(pgdp, kaddr); pmd_t *pmdp = pmd_offset(pudp, kaddr); pte_t *ptep = pte_offset_kernel(pmdp, kaddr); paddr = pte_val(*ptep) & mask; } __flush_icache_page(paddr); } } } EXPORT_SYMBOL(flush_icache_range); void mmu_info(struct seq_file *m) { static const char *pgsz_strings[] = { "8K", "64K", "512K", "4MB", "32MB", "256MB", "2GB", "16GB", }; int i, printed; if (tlb_type == cheetah) seq_printf(m, "MMU Type\t: Cheetah\n"); else if (tlb_type == cheetah_plus) seq_printf(m, "MMU Type\t: Cheetah+\n"); else if (tlb_type == spitfire) seq_printf(m, "MMU Type\t: Spitfire\n"); else if (tlb_type == hypervisor) seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); else seq_printf(m, "MMU Type\t: ???\n"); seq_printf(m, "MMU PGSZs\t: "); printed = 0; for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { if (cpu_pgsz_mask & (1UL << i)) { seq_printf(m, "%s%s", printed ? "," : "", pgsz_strings[i]); printed++; } } seq_putc(m, '\n'); #ifdef CONFIG_DEBUG_DCFLUSH seq_printf(m, "DCPageFlushes\t: %d\n", atomic_read(&dcpage_flushes)); #ifdef CONFIG_SMP seq_printf(m, "DCPageFlushesXC\t: %d\n", atomic_read(&dcpage_flushes_xcall)); #endif /* CONFIG_SMP */ #endif /* CONFIG_DEBUG_DCFLUSH */ } struct linux_prom_translation prom_trans[512] __read_mostly; unsigned int prom_trans_ents __read_mostly; unsigned long kern_locked_tte_data; /* The obp translations are saved based on 8k pagesize, since obp can * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> * HI_OBP_ADDRESS range are handled in ktlb.S. */ static inline int in_obp_range(unsigned long vaddr) { return (vaddr >= LOW_OBP_ADDRESS && vaddr < HI_OBP_ADDRESS); } static int cmp_ptrans(const void *a, const void *b) { const struct linux_prom_translation *x = a, *y = b; if (x->virt > y->virt) return 1; if (x->virt < y->virt) return -1; return 0; } /* Read OBP translations property into 'prom_trans[]'. */ static void __init read_obp_translations(void) { int n, node, ents, first, last, i; node = prom_finddevice("/virtual-memory"); n = prom_getproplen(node, "translations"); if (unlikely(n == 0 || n == -1)) { prom_printf("prom_mappings: Couldn't get size.\n"); prom_halt(); } if (unlikely(n > sizeof(prom_trans))) { prom_printf("prom_mappings: Size %d is too big.\n", n); prom_halt(); } if ((n = prom_getproperty(node, "translations", (char *)&prom_trans[0], sizeof(prom_trans))) == -1) { prom_printf("prom_mappings: Couldn't get property.\n"); prom_halt(); } n = n / sizeof(struct linux_prom_translation); ents = n; sort(prom_trans, ents, sizeof(struct linux_prom_translation), cmp_ptrans, NULL); /* Now kick out all the non-OBP entries. */ for (i = 0; i < ents; i++) { if (in_obp_range(prom_trans[i].virt)) break; } first = i; for (; i < ents; i++) { if (!in_obp_range(prom_trans[i].virt)) break; } last = i; for (i = 0; i < (last - first); i++) { struct linux_prom_translation *src = &prom_trans[i + first]; struct linux_prom_translation *dest = &prom_trans[i]; *dest = *src; } for (; i < ents; i++) { struct linux_prom_translation *dest = &prom_trans[i]; dest->virt = dest->size = dest->data = 0x0UL; } prom_trans_ents = last - first; if (tlb_type == spitfire) { /* Clear diag TTE bits. */ for (i = 0; i < prom_trans_ents; i++) prom_trans[i].data &= ~0x0003fe0000000000UL; } /* Force execute bit on. */ for (i = 0; i < prom_trans_ents; i++) prom_trans[i].data |= (tlb_type == hypervisor ? _PAGE_EXEC_4V : _PAGE_EXEC_4U); } static void __init hypervisor_tlb_lock(unsigned long vaddr, unsigned long pte, unsigned long mmu) { unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); if (ret != 0) { prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " "errors with %lx\n", vaddr, 0, pte, mmu, ret); prom_halt(); } } static unsigned long kern_large_tte(unsigned long paddr); static void __init remap_kernel(void) { unsigned long phys_page, tte_vaddr, tte_data; int i, tlb_ent = sparc64_highest_locked_tlbent(); tte_vaddr = (unsigned long) KERNBASE; phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; tte_data = kern_large_tte(phys_page); kern_locked_tte_data = tte_data; /* Now lock us into the TLBs via Hypervisor or OBP. */ if (tlb_type == hypervisor) { for (i = 0; i < num_kernel_image_mappings; i++) { hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); tte_vaddr += 0x400000; tte_data += 0x400000; } } else { for (i = 0; i < num_kernel_image_mappings; i++) { prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); tte_vaddr += 0x400000; tte_data += 0x400000; } sparc64_highest_unlocked_tlb_ent = tlb_ent - i; } if (tlb_type == cheetah_plus) { sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | CTX_CHEETAH_PLUS_NUC); sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; } } static void __init inherit_prom_mappings(void) { /* Now fixup OBP's idea about where we really are mapped. */ printk("Remapping the kernel... "); remap_kernel(); printk("done.\n"); } void prom_world(int enter) { if (!enter) set_fs(get_fs()); __asm__ __volatile__("flushw"); } void __flush_dcache_range(unsigned long start, unsigned long end) { unsigned long va; if (tlb_type == spitfire) { int n = 0; for (va = start; va < end; va += 32) { spitfire_put_dcache_tag(va & 0x3fe0, 0x0); if (++n >= 512) break; } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { start = __pa(start); end = __pa(end); for (va = start; va < end; va += 32) __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (va), "i" (ASI_DCACHE_INVALIDATE)); } } EXPORT_SYMBOL(__flush_dcache_range); /* get_new_mmu_context() uses "cache + 1". */ DEFINE_SPINLOCK(ctx_alloc_lock); unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; #define MAX_CTX_NR (1UL << CTX_NR_BITS) #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); /* Caller does TLB context flushing on local CPU if necessary. * The caller also ensures that CTX_VALID(mm->context) is false. * * We must be careful about boundary cases so that we never * let the user have CTX 0 (nucleus) or we ever use a CTX * version of zero (and thus NO_CONTEXT would not be caught * by version mis-match tests in mmu_context.h). * * Always invoked with interrupts disabled. */ void get_new_mmu_context(struct mm_struct *mm) { unsigned long ctx, new_ctx; unsigned long orig_pgsz_bits; int new_version; spin_lock(&ctx_alloc_lock); orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); ctx = (tlb_context_cache + 1) & CTX_NR_MASK; new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); new_version = 0; if (new_ctx >= (1 << CTX_NR_BITS)) { new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); if (new_ctx >= ctx) { int i; new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; if (new_ctx == 1) new_ctx = CTX_FIRST_VERSION; /* Don't call memset, for 16 entries that's just * plain silly... */ mmu_context_bmap[0] = 3; mmu_context_bmap[1] = 0; mmu_context_bmap[2] = 0; mmu_context_bmap[3] = 0; for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { mmu_context_bmap[i + 0] = 0; mmu_context_bmap[i + 1] = 0; mmu_context_bmap[i + 2] = 0; mmu_context_bmap[i + 3] = 0; } new_version = 1; goto out; } } mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); out: tlb_context_cache = new_ctx; mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; spin_unlock(&ctx_alloc_lock); if (unlikely(new_version)) smp_new_mmu_context_version(); } static int numa_enabled = 1; static int numa_debug; static int __init early_numa(char *p) { if (!p) return 0; if (strstr(p, "off")) numa_enabled = 0; if (strstr(p, "debug")) numa_debug = 1; return 0; } early_param("numa", early_numa); #define numadbg(f, a...) \ do { if (numa_debug) \ printk(KERN_INFO f, ## a); \ } while (0) static void __init find_ramdisk(unsigned long phys_base) { #ifdef CONFIG_BLK_DEV_INITRD if (sparc_ramdisk_image || sparc_ramdisk_image64) { unsigned long ramdisk_image; /* Older versions of the bootloader only supported a * 32-bit physical address for the ramdisk image * location, stored at sparc_ramdisk_image. Newer * SILO versions set sparc_ramdisk_image to zero and * provide a full 64-bit physical address at * sparc_ramdisk_image64. */ ramdisk_image = sparc_ramdisk_image; if (!ramdisk_image) ramdisk_image = sparc_ramdisk_image64; /* Another bootloader quirk. The bootloader normalizes * the physical address to KERNBASE, so we have to * factor that back out and add in the lowest valid * physical page address to get the true physical address. */ ramdisk_image -= KERNBASE; ramdisk_image += phys_base; numadbg("Found ramdisk at physical address 0x%lx, size %u\n", ramdisk_image, sparc_ramdisk_size); initrd_start = ramdisk_image; initrd_end = ramdisk_image + sparc_ramdisk_size; memblock_reserve(initrd_start, sparc_ramdisk_size); initrd_start += PAGE_OFFSET; initrd_end += PAGE_OFFSET; } #endif } struct node_mem_mask { unsigned long mask; unsigned long val; }; static struct node_mem_mask node_masks[MAX_NUMNODES]; static int num_node_masks; #ifdef CONFIG_NEED_MULTIPLE_NODES int numa_cpu_lookup_table[NR_CPUS]; cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; struct mdesc_mblock { u64 base; u64 size; u64 offset; /* RA-to-PA */ }; static struct mdesc_mblock *mblocks; static int num_mblocks; static unsigned long ra_to_pa(unsigned long addr) { int i; for (i = 0; i < num_mblocks; i++) { struct mdesc_mblock *m = &mblocks[i]; if (addr >= m->base && addr < (m->base + m->size)) { addr += m->offset; break; } } return addr; } static int find_node(unsigned long addr) { int i; addr = ra_to_pa(addr); for (i = 0; i < num_node_masks; i++) { struct node_mem_mask *p = &node_masks[i]; if ((addr & p->mask) == p->val) return i; } /* The following condition has been observed on LDOM guests.*/ WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node" " rule. Some physical memory will be owned by node 0."); return 0; } static u64 memblock_nid_range(u64 start, u64 end, int *nid) { *nid = find_node(start); start += PAGE_SIZE; while (start < end) { int n = find_node(start); if (n != *nid) break; start += PAGE_SIZE; } if (start > end) start = end; return start; } #endif /* This must be invoked after performing all of the necessary * memblock_set_node() calls for 'nid'. We need to be able to get * correct data from get_pfn_range_for_nid(). */ static void __init allocate_node_data(int nid) { struct pglist_data *p; unsigned long start_pfn, end_pfn; #ifdef CONFIG_NEED_MULTIPLE_NODES unsigned long paddr; paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); if (!paddr) { prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); prom_halt(); } NODE_DATA(nid) = __va(paddr); memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); NODE_DATA(nid)->node_id = nid; #endif p = NODE_DATA(nid); get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); p->node_start_pfn = start_pfn; p->node_spanned_pages = end_pfn - start_pfn; } static void init_node_masks_nonnuma(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int i; #endif numadbg("Initializing tables for non-numa.\n"); node_masks[0].mask = node_masks[0].val = 0; num_node_masks = 1; #ifdef CONFIG_NEED_MULTIPLE_NODES for (i = 0; i < NR_CPUS; i++) numa_cpu_lookup_table[i] = 0; cpumask_setall(&numa_cpumask_lookup_table[0]); #endif } #ifdef CONFIG_NEED_MULTIPLE_NODES struct pglist_data *node_data[MAX_NUMNODES]; EXPORT_SYMBOL(numa_cpu_lookup_table); EXPORT_SYMBOL(numa_cpumask_lookup_table); EXPORT_SYMBOL(node_data); struct mdesc_mlgroup { u64 node; u64 latency; u64 match; u64 mask; }; static struct mdesc_mlgroup *mlgroups; static int num_mlgroups; static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, u32 cfg_handle) { u64 arc; mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { u64 target = mdesc_arc_target(md, arc); const u64 *val; val = mdesc_get_property(md, target, "cfg-handle", NULL); if (val && *val == cfg_handle) return 0; } return -ENODEV; } static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, u32 cfg_handle) { u64 arc, candidate, best_latency = ~(u64)0; candidate = MDESC_NODE_NULL; mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { u64 target = mdesc_arc_target(md, arc); const char *name = mdesc_node_name(md, target); const u64 *val; if (strcmp(name, "pio-latency-group")) continue; val = mdesc_get_property(md, target, "latency", NULL); if (!val) continue; if (*val < best_latency) { candidate = target; best_latency = *val; } } if (candidate == MDESC_NODE_NULL) return -ENODEV; return scan_pio_for_cfg_handle(md, candidate, cfg_handle); } int of_node_to_nid(struct device_node *dp) { const struct linux_prom64_registers *regs; struct mdesc_handle *md; u32 cfg_handle; int count, nid; u64 grp; /* This is the right thing to do on currently supported * SUN4U NUMA platforms as well, as the PCI controller does * not sit behind any particular memory controller. */ if (!mlgroups) return -1; regs = of_get_property(dp, "reg", NULL); if (!regs) return -1; cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; md = mdesc_grab(); count = 0; nid = -1; mdesc_for_each_node_by_name(md, grp, "group") { if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { nid = count; break; } count++; } mdesc_release(md); return nid; } static void __init add_node_ranges(void) { struct memblock_region *reg; for_each_memblock(memory, reg) { unsigned long size = reg->size; unsigned long start, end; start = reg->base; end = start + size; while (start < end) { unsigned long this_end; int nid; this_end = memblock_nid_range(start, end, &nid); numadbg("Setting memblock NUMA node nid[%d] " "start[%lx] end[%lx]\n", nid, start, this_end); memblock_set_node(start, this_end - start, &memblock.memory, nid); start = this_end; } } } static int __init grab_mlgroups(struct mdesc_handle *md) { unsigned long paddr; int count = 0; u64 node; mdesc_for_each_node_by_name(md, node, "memory-latency-group") count++; if (!count) return -ENOENT; paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), SMP_CACHE_BYTES); if (!paddr) return -ENOMEM; mlgroups = __va(paddr); num_mlgroups = count; count = 0; mdesc_for_each_node_by_name(md, node, "memory-latency-group") { struct mdesc_mlgroup *m = &mlgroups[count++]; const u64 *val; m->node = node; val = mdesc_get_property(md, node, "latency", NULL); m->latency = *val; val = mdesc_get_property(md, node, "address-match", NULL); m->match = *val; val = mdesc_get_property(md, node, "address-mask", NULL); m->mask = *val; numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " "match[%llx] mask[%llx]\n", count - 1, m->node, m->latency, m->match, m->mask); } return 0; } static int __init grab_mblocks(struct mdesc_handle *md) { unsigned long paddr; int count = 0; u64 node; mdesc_for_each_node_by_name(md, node, "mblock") count++; if (!count) return -ENOENT; paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), SMP_CACHE_BYTES); if (!paddr) return -ENOMEM; mblocks = __va(paddr); num_mblocks = count; count = 0; mdesc_for_each_node_by_name(md, node, "mblock") { struct mdesc_mblock *m = &mblocks[count++]; const u64 *val; val = mdesc_get_property(md, node, "base", NULL); m->base = *val; val = mdesc_get_property(md, node, "size", NULL); m->size = *val; val = mdesc_get_property(md, node, "address-congruence-offset", NULL); /* The address-congruence-offset property is optional. * Explicity zero it be identifty this. */ if (val) m->offset = *val; else m->offset = 0UL; numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", count - 1, m->base, m->size, m->offset); } return 0; } static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, u64 grp, cpumask_t *mask) { u64 arc; cpumask_clear(mask); mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { u64 target = mdesc_arc_target(md, arc); const char *name = mdesc_node_name(md, target); const u64 *id; if (strcmp(name, "cpu")) continue; id = mdesc_get_property(md, target, "id", NULL); if (*id < nr_cpu_ids) cpumask_set_cpu(*id, mask); } } static struct mdesc_mlgroup * __init find_mlgroup(u64 node) { int i; for (i = 0; i < num_mlgroups; i++) { struct mdesc_mlgroup *m = &mlgroups[i]; if (m->node == node) return m; } return NULL; } static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, int index) { struct mdesc_mlgroup *candidate = NULL; u64 arc, best_latency = ~(u64)0; struct node_mem_mask *n; mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { u64 target = mdesc_arc_target(md, arc); struct mdesc_mlgroup *m = find_mlgroup(target); if (!m) continue; if (m->latency < best_latency) { candidate = m; best_latency = m->latency; } } if (!candidate) return -ENOENT; if (num_node_masks != index) { printk(KERN_ERR "Inconsistent NUMA state, " "index[%d] != num_node_masks[%d]\n", index, num_node_masks); return -EINVAL; } n = &node_masks[num_node_masks++]; n->mask = candidate->mask; n->val = candidate->match; numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", index, n->mask, n->val, candidate->latency); return 0; } static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, int index) { cpumask_t mask; int cpu; numa_parse_mdesc_group_cpus(md, grp, &mask); for_each_cpu(cpu, &mask) numa_cpu_lookup_table[cpu] = index; cpumask_copy(&numa_cpumask_lookup_table[index], &mask); if (numa_debug) { printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); for_each_cpu(cpu, &mask) printk("%d ", cpu); printk("]\n"); } return numa_attach_mlgroup(md, grp, index); } static int __init numa_parse_mdesc(void) { struct mdesc_handle *md = mdesc_grab(); int i, err, count; u64 node; node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); if (node == MDESC_NODE_NULL) { mdesc_release(md); return -ENOENT; } err = grab_mblocks(md); if (err < 0) goto out; err = grab_mlgroups(md); if (err < 0) goto out; count = 0; mdesc_for_each_node_by_name(md, node, "group") { err = numa_parse_mdesc_group(md, node, count); if (err < 0) break; count++; } add_node_ranges(); for (i = 0; i < num_node_masks; i++) { allocate_node_data(i); node_set_online(i); } err = 0; out: mdesc_release(md); return err; } static int __init numa_parse_jbus(void) { unsigned long cpu, index; /* NUMA node id is encoded in bits 36 and higher, and there is * a 1-to-1 mapping from CPU ID to NUMA node ID. */ index = 0; for_each_present_cpu(cpu) { numa_cpu_lookup_table[cpu] = index; cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); node_masks[index].mask = ~((1UL << 36UL) - 1UL); node_masks[index].val = cpu << 36UL; index++; } num_node_masks = index; add_node_ranges(); for (index = 0; index < num_node_masks; index++) { allocate_node_data(index); node_set_online(index); } return 0; } static int __init numa_parse_sun4u(void) { if (tlb_type == cheetah || tlb_type == cheetah_plus) { unsigned long ver; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID) return numa_parse_jbus(); } return -1; } static int __init bootmem_init_numa(void) { int err = -1; numadbg("bootmem_init_numa()\n"); if (numa_enabled) { if (tlb_type == hypervisor) err = numa_parse_mdesc(); else err = numa_parse_sun4u(); } return err; } #else static int bootmem_init_numa(void) { return -1; } #endif static void __init bootmem_init_nonnuma(void) { unsigned long top_of_ram = memblock_end_of_DRAM(); unsigned long total_ram = memblock_phys_mem_size(); numadbg("bootmem_init_nonnuma()\n"); printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); init_node_masks_nonnuma(); memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); allocate_node_data(0); node_set_online(0); } static unsigned long __init bootmem_init(unsigned long phys_base) { unsigned long end_pfn; end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; max_pfn = max_low_pfn = end_pfn; min_low_pfn = (phys_base >> PAGE_SHIFT); if (bootmem_init_numa() < 0) bootmem_init_nonnuma(); /* Dump memblock with node info. */ memblock_dump_all(); /* XXX cpu notifier XXX */ sparse_memory_present_with_active_regions(MAX_NUMNODES); sparse_init(); return end_pfn; } static struct linux_prom64_registers pall[MAX_BANKS] __initdata; static int pall_ents __initdata; static unsigned long max_phys_bits = 40; bool kern_addr_valid(unsigned long addr) { unsigned long above = ((long)addr) >> max_phys_bits; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if (above != 0 && above != -1UL) return false; if (addr >= (unsigned long) KERNBASE && addr < (unsigned long)&_end) return true; if (addr >= PAGE_OFFSET) { unsigned long pa = __pa(addr); return pfn_valid(pa >> PAGE_SHIFT); } pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) return 0; pud = pud_offset(pgd, addr); if (pud_none(*pud)) return 0; if (pud_large(*pud)) return pfn_valid(pud_pfn(*pud)); pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return 0; if (pmd_large(*pmd)) return pfn_valid(pmd_pfn(*pmd)); pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) return 0; return pfn_valid(pte_pfn(*pte)); } EXPORT_SYMBOL(kern_addr_valid); static unsigned long __ref kernel_map_hugepud(unsigned long vstart, unsigned long vend, pud_t *pud) { const unsigned long mask16gb = (1UL << 34) - 1UL; u64 pte_val = vstart; /* Each PUD is 8GB */ if ((vstart & mask16gb) || (vend - vstart <= mask16gb)) { pte_val ^= kern_linear_pte_xor[2]; pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; return vstart + PUD_SIZE; } pte_val ^= kern_linear_pte_xor[3]; pte_val |= _PAGE_PUD_HUGE; vend = vstart + mask16gb + 1UL; while (vstart < vend) { pud_val(*pud) = pte_val; pte_val += PUD_SIZE; vstart += PUD_SIZE; pud++; } return vstart; } static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, bool guard) { if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) return true; return false; } static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, unsigned long vend, pmd_t *pmd) { const unsigned long mask256mb = (1UL << 28) - 1UL; const unsigned long mask2gb = (1UL << 31) - 1UL; u64 pte_val = vstart; /* Each PMD is 8MB */ if ((vstart & mask256mb) || (vend - vstart <= mask256mb)) { pte_val ^= kern_linear_pte_xor[0]; pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; return vstart + PMD_SIZE; } if ((vstart & mask2gb) || (vend - vstart <= mask2gb)) { pte_val ^= kern_linear_pte_xor[1]; pte_val |= _PAGE_PMD_HUGE; vend = vstart + mask256mb + 1UL; } else { pte_val ^= kern_linear_pte_xor[2]; pte_val |= _PAGE_PMD_HUGE; vend = vstart + mask2gb + 1UL; } while (vstart < vend) { pmd_val(*pmd) = pte_val; pte_val += PMD_SIZE; vstart += PMD_SIZE; pmd++; } return vstart; } static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, bool guard) { if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) return true; return false; } static unsigned long __ref kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot, bool use_huge) { unsigned long vstart = PAGE_OFFSET + pstart; unsigned long vend = PAGE_OFFSET + pend; unsigned long alloc_bytes = 0UL; if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", vstart, vend); prom_halt(); } while (vstart < vend) { unsigned long this_end, paddr = __pa(vstart); pgd_t *pgd = pgd_offset_k(vstart); pud_t *pud; pmd_t *pmd; pte_t *pte; if (pgd_none(*pgd)) { pud_t *new; new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); alloc_bytes += PAGE_SIZE; pgd_populate(&init_mm, pgd, new); } pud = pud_offset(pgd, vstart); if (pud_none(*pud)) { pmd_t *new; if (kernel_can_map_hugepud(vstart, vend, use_huge)) { vstart = kernel_map_hugepud(vstart, vend, pud); continue; } new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); alloc_bytes += PAGE_SIZE; pud_populate(&init_mm, pud, new); } pmd = pmd_offset(pud, vstart); if (pmd_none(*pmd)) { pte_t *new; if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { vstart = kernel_map_hugepmd(vstart, vend, pmd); continue; } new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); alloc_bytes += PAGE_SIZE; pmd_populate_kernel(&init_mm, pmd, new); } pte = pte_offset_kernel(pmd, vstart); this_end = (vstart + PMD_SIZE) & PMD_MASK; if (this_end > vend) this_end = vend; while (vstart < this_end) { pte_val(*pte) = (paddr | pgprot_val(prot)); vstart += PAGE_SIZE; paddr += PAGE_SIZE; pte++; } } return alloc_bytes; } static void __init flush_all_kernel_tsbs(void) { int i; for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { struct tsb *ent = &swapper_tsb[i]; ent->tag = (1UL << TSB_TAG_INVALID_BIT); } #ifndef CONFIG_DEBUG_PAGEALLOC for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { struct tsb *ent = &swapper_4m_tsb[i]; ent->tag = (1UL << TSB_TAG_INVALID_BIT); } #endif } extern unsigned int kvmap_linear_patch[1]; static void __init kernel_physical_mapping_init(void) { unsigned long i, mem_alloced = 0UL; bool use_huge = true; #ifdef CONFIG_DEBUG_PAGEALLOC use_huge = false; #endif for (i = 0; i < pall_ents; i++) { unsigned long phys_start, phys_end; phys_start = pall[i].phys_addr; phys_end = phys_start + pall[i].reg_size; mem_alloced += kernel_map_range(phys_start, phys_end, PAGE_KERNEL, use_huge); } printk("Allocated %ld bytes for kernel page tables.\n", mem_alloced); kvmap_linear_patch[0] = 0x01000000; /* nop */ flushi(&kvmap_linear_patch[0]); flush_all_kernel_tsbs(); __flush_tlb_all(); } #ifdef CONFIG_DEBUG_PAGEALLOC void kernel_map_pages(struct page *page, int numpages, int enable) { unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); kernel_map_range(phys_start, phys_end, (enable ? PAGE_KERNEL : __pgprot(0)), false); flush_tsb_kernel_range(PAGE_OFFSET + phys_start, PAGE_OFFSET + phys_end); /* we should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu. */ __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, PAGE_OFFSET + phys_end); } #endif unsigned long __init find_ecache_flush_span(unsigned long size) { int i; for (i = 0; i < pavail_ents; i++) { if (pavail[i].reg_size >= size) return pavail[i].phys_addr; } return ~0UL; } unsigned long PAGE_OFFSET; EXPORT_SYMBOL(PAGE_OFFSET); unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; static void __init setup_page_offset(void) { if (tlb_type == cheetah || tlb_type == cheetah_plus) { /* Cheetah/Panther support a full 64-bit virtual * address, so we can use all that our page tables * support. */ sparc64_va_hole_top = 0xfff0000000000000UL; sparc64_va_hole_bottom = 0x0010000000000000UL; max_phys_bits = 42; } else if (tlb_type == hypervisor) { switch (sun4v_chip_type) { case SUN4V_CHIP_NIAGARA1: case SUN4V_CHIP_NIAGARA2: /* T1 and T2 support 48-bit virtual addresses. */ sparc64_va_hole_top = 0xffff800000000000UL; sparc64_va_hole_bottom = 0x0000800000000000UL; max_phys_bits = 39; break; case SUN4V_CHIP_NIAGARA3: /* T3 supports 48-bit virtual addresses. */ sparc64_va_hole_top = 0xffff800000000000UL; sparc64_va_hole_bottom = 0x0000800000000000UL; max_phys_bits = 43; break; case SUN4V_CHIP_NIAGARA4: case SUN4V_CHIP_NIAGARA5: case SUN4V_CHIP_SPARC64X: default: /* T4 and later support 52-bit virtual addresses. */ sparc64_va_hole_top = 0xfff8000000000000UL; sparc64_va_hole_bottom = 0x0008000000000000UL; max_phys_bits = 47; break; } } if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", max_phys_bits); prom_halt(); } PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits); pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", PAGE_OFFSET, max_phys_bits); } static void __init tsb_phys_patch(void) { struct tsb_ldquad_phys_patch_entry *pquad; struct tsb_phys_patch_entry *p; pquad = &__tsb_ldquad_phys_patch; while (pquad < &__tsb_ldquad_phys_patch_end) { unsigned long addr = pquad->addr; if (tlb_type == hypervisor) *(unsigned int *) addr = pquad->sun4v_insn; else *(unsigned int *) addr = pquad->sun4u_insn; wmb(); __asm__ __volatile__("flush %0" : /* no outputs */ : "r" (addr)); pquad++; } p = &__tsb_phys_patch; while (p < &__tsb_phys_patch_end) { unsigned long addr = p->addr; *(unsigned int *) addr = p->insn; wmb(); __asm__ __volatile__("flush %0" : /* no outputs */ : "r" (addr)); p++; } } /* Don't mark as init, we give this to the Hypervisor. */ #ifndef CONFIG_DEBUG_PAGEALLOC #define NUM_KTSB_DESCR 2 #else #define NUM_KTSB_DESCR 1 #endif static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; /* The swapper TSBs are loaded with a base sequence of: * * sethi %uhi(SYMBOL), REG1 * sethi %hi(SYMBOL), REG2 * or REG1, %ulo(SYMBOL), REG1 * or REG2, %lo(SYMBOL), REG2 * sllx REG1, 32, REG1 * or REG1, REG2, REG1 * * When we use physical addressing for the TSB accesses, we patch the * first four instructions in the above sequence. */ static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) { unsigned long high_bits, low_bits; high_bits = (pa >> 32) & 0xffffffff; low_bits = (pa >> 0) & 0xffffffff; while (start < end) { unsigned int *ia = (unsigned int *)(unsigned long)*start; ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); __asm__ __volatile__("flush %0" : : "r" (ia)); ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); __asm__ __volatile__("flush %0" : : "r" (ia + 1)); ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); __asm__ __volatile__("flush %0" : : "r" (ia + 2)); ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); __asm__ __volatile__("flush %0" : : "r" (ia + 3)); start++; } } static void ktsb_phys_patch(void) { extern unsigned int __swapper_tsb_phys_patch; extern unsigned int __swapper_tsb_phys_patch_end; unsigned long ktsb_pa; ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); patch_one_ktsb_phys(&__swapper_tsb_phys_patch, &__swapper_tsb_phys_patch_end, ktsb_pa); #ifndef CONFIG_DEBUG_PAGEALLOC { extern unsigned int __swapper_4m_tsb_phys_patch; extern unsigned int __swapper_4m_tsb_phys_patch_end; ktsb_pa = (kern_base + ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, &__swapper_4m_tsb_phys_patch_end, ktsb_pa); } #endif } static void __init sun4v_ktsb_init(void) { unsigned long ktsb_pa; /* First KTSB for PAGE_SIZE mappings. */ ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); switch (PAGE_SIZE) { case 8 * 1024: default: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; break; case 64 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; break; case 512 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; break; case 4 * 1024 * 1024: ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; break; } ktsb_descr[0].assoc = 1; ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; ktsb_descr[0].ctx_idx = 0; ktsb_descr[0].tsb_base = ktsb_pa; ktsb_descr[0].resv = 0; #ifndef CONFIG_DEBUG_PAGEALLOC /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ ktsb_pa = (kern_base + ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | HV_PGSZ_MASK_256MB | HV_PGSZ_MASK_2GB | HV_PGSZ_MASK_16GB) & cpu_pgsz_mask); ktsb_descr[1].assoc = 1; ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; ktsb_descr[1].ctx_idx = 0; ktsb_descr[1].tsb_base = ktsb_pa; ktsb_descr[1].resv = 0; #endif } void sun4v_ktsb_register(void) { unsigned long pa, ret; pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); if (ret != 0) { prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " "errors with %lx\n", pa, ret); prom_halt(); } } static void __init sun4u_linear_pte_xor_finalize(void) { #ifndef CONFIG_DEBUG_PAGEALLOC /* This is where we would add Panther support for * 32MB and 256MB pages. */ #endif } static void __init sun4v_linear_pte_xor_finalize(void) { #ifndef CONFIG_DEBUG_PAGEALLOC if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ PAGE_OFFSET; kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); } else { kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; } if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ PAGE_OFFSET; kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); } else { kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; } if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ PAGE_OFFSET; kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); } else { kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; } #endif } /* paging_init() sets up the page tables */ static unsigned long last_valid_pfn; /* These must be page aligned in order to not trigger the * alignment tests of pgd_bad() and pud_bad(). */ pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((aligned (PAGE_SIZE))); static pud_t swapper_pud_dir[PTRS_PER_PUD] __attribute__ ((aligned (PAGE_SIZE))); static void sun4u_pgprot_init(void); static void sun4v_pgprot_init(void); void __init paging_init(void) { unsigned long end_pfn, shift, phys_base; unsigned long real_end, i; pud_t *pud; pmd_t *pmd; int node; setup_page_offset(); /* These build time checkes make sure that the dcache_dirty_cpu() * page->flags usage will work. * * When a page gets marked as dcache-dirty, we store the * cpu number starting at bit 32 in the page->flags. Also, * functions like clear_dcache_dirty_cpu use the cpu mask * in 13-bit signed-immediate instruction fields. */ /* * Page flags must not reach into upper 32 bits that are used * for the cpu number */ BUILD_BUG_ON(NR_PAGEFLAGS > 32); /* * The bit fields placed in the high range must not reach below * the 32 bit boundary. Otherwise we cannot place the cpu field * at the 32 bit boundary. */ BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + ilog2(roundup_pow_of_two(NR_CPUS)) > 32); BUILD_BUG_ON(NR_CPUS > 4096); kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; /* Invalidate both kernel TSBs. */ memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); #ifndef CONFIG_DEBUG_PAGEALLOC memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); #endif if (tlb_type == hypervisor) sun4v_pgprot_init(); else sun4u_pgprot_init(); if (tlb_type == cheetah_plus || tlb_type == hypervisor) { tsb_phys_patch(); ktsb_phys_patch(); } if (tlb_type == hypervisor) sun4v_patch_tlb_handlers(); /* Find available physical memory... * * Read it twice in order to work around a bug in openfirmware. * The call to grab this table itself can cause openfirmware to * allocate memory, which in turn can take away some space from * the list of available memory. Reading it twice makes sure * we really do get the final value. */ read_obp_translations(); read_obp_memory("reg", &pall[0], &pall_ents); read_obp_memory("available", &pavail[0], &pavail_ents); read_obp_memory("available", &pavail[0], &pavail_ents); phys_base = 0xffffffffffffffffUL; for (i = 0; i < pavail_ents; i++) { phys_base = min(phys_base, pavail[i].phys_addr); memblock_add(pavail[i].phys_addr, pavail[i].reg_size); } memblock_reserve(kern_base, kern_size); find_ramdisk(phys_base); memblock_enforce_memory_limit(cmdline_memory_size); memblock_allow_resize(); memblock_dump_all(); set_bit(0, mmu_context_bmap); shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); real_end = (unsigned long)_end; num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); printk("Kernel: Using %d locked TLB entries for main kernel image.\n", num_kernel_image_mappings); /* Set kernel pgd to upper alias so physical page computations * work. */ init_mm.pgd += ((shift) / (sizeof(pgd_t))); memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); /* The kernel page tables we publish into what the rest of the * world sees must be adjusted so that they see the PAGE_OFFSET * address of these in-kerenel data structures. However right * here we must access them from the kernel image side, because * the trap tables haven't been taken over and therefore we cannot * take TLB misses in the PAGE_OFFSET linear mappings yet. */ pud = swapper_pud_dir + (shift / sizeof(pud_t)); pgd_set(&swapper_pg_dir[0], pud); pmd = swapper_low_pmd_dir + (shift / sizeof(pmd_t)); pud_set(&swapper_pud_dir[0], pmd); inherit_prom_mappings(); /* Ok, we can use our TLB miss and window trap handlers safely. */ setup_tba(); __flush_tlb_all(); prom_build_devicetree(); of_populate_present_mask(); #ifndef CONFIG_SMP of_fill_in_cpu_data(); #endif if (tlb_type == hypervisor) { sun4v_mdesc_init(); mdesc_populate_present_mask(cpu_all_mask); #ifndef CONFIG_SMP mdesc_fill_in_cpu_data(cpu_all_mask); #endif mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); sun4v_linear_pte_xor_finalize(); sun4v_ktsb_init(); sun4v_ktsb_register(); } else { unsigned long impl, ver; cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); impl = ((ver >> 32) & 0xffff); if (impl == PANTHER_IMPL) cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | HV_PGSZ_MASK_256MB); sun4u_linear_pte_xor_finalize(); } /* Flush the TLBs and the 4M TSB so that the updated linear * pte XOR settings are realized for all mappings. */ __flush_tlb_all(); #ifndef CONFIG_DEBUG_PAGEALLOC memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); #endif __flush_tlb_all(); /* Setup bootmem... */ last_valid_pfn = end_pfn = bootmem_init(phys_base); /* Once the OF device tree and MDESC have been setup, we know * the list of possible cpus. Therefore we can allocate the * IRQ stacks. */ for_each_possible_cpu(i) { node = cpu_to_node(i); softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), THREAD_SIZE, THREAD_SIZE, 0); hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), THREAD_SIZE, THREAD_SIZE, 0); } kernel_physical_mapping_init(); { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_zone_pfns[ZONE_NORMAL] = end_pfn; free_area_init_nodes(max_zone_pfns); } printk("Booting Linux...\n"); } int page_in_phys_avail(unsigned long paddr) { int i; paddr &= PAGE_MASK; for (i = 0; i < pavail_ents; i++) { unsigned long start, end; start = pavail[i].phys_addr; end = start + pavail[i].reg_size; if (paddr >= start && paddr < end) return 1; } if (paddr >= kern_base && paddr < (kern_base + kern_size)) return 1; #ifdef CONFIG_BLK_DEV_INITRD if (paddr >= __pa(initrd_start) && paddr < __pa(PAGE_ALIGN(initrd_end))) return 1; #endif return 0; } static void __init register_page_bootmem_info(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int i; for_each_online_node(i) if (NODE_DATA(i)->node_spanned_pages) register_page_bootmem_info_node(NODE_DATA(i)); #endif } void __init mem_init(void) { high_memory = __va(last_valid_pfn << PAGE_SHIFT); register_page_bootmem_info(); free_all_bootmem(); /* * Set up the zero page, mark it reserved, so that page count * is not manipulated when freeing the page from user ptes. */ mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); if (mem_map_zero == NULL) { prom_printf("paging_init: Cannot alloc zero page.\n"); prom_halt(); } mark_page_reserved(mem_map_zero); mem_init_print_info(NULL); if (tlb_type == cheetah || tlb_type == cheetah_plus) cheetah_ecache_flush_init(); } void free_initmem(void) { unsigned long addr, initend; int do_free = 1; /* If the physical memory maps were trimmed by kernel command * line options, don't even try freeing this initmem stuff up. * The kernel image could have been in the trimmed out region * and if so the freeing below will free invalid page structs. */ if (cmdline_memory_size) do_free = 0; /* * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. */ addr = PAGE_ALIGN((unsigned long)(__init_begin)); initend = (unsigned long)(__init_end) & PAGE_MASK; for (; addr < initend; addr += PAGE_SIZE) { unsigned long page; page = (addr + ((unsigned long) __va(kern_base)) - ((unsigned long) KERNBASE)); memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); if (do_free) free_reserved_page(virt_to_page(page)); } } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, "initrd"); } #endif #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) pgprot_t PAGE_KERNEL __read_mostly; EXPORT_SYMBOL(PAGE_KERNEL); pgprot_t PAGE_KERNEL_LOCKED __read_mostly; pgprot_t PAGE_COPY __read_mostly; pgprot_t PAGE_SHARED __read_mostly; EXPORT_SYMBOL(PAGE_SHARED); unsigned long pg_iobits __read_mostly; unsigned long _PAGE_IE __read_mostly; EXPORT_SYMBOL(_PAGE_IE); unsigned long _PAGE_E __read_mostly; EXPORT_SYMBOL(_PAGE_E); unsigned long _PAGE_CACHE __read_mostly; EXPORT_SYMBOL(_PAGE_CACHE); #ifdef CONFIG_SPARSEMEM_VMEMMAP unsigned long vmemmap_table[VMEMMAP_SIZE]; static long __meminitdata addr_start, addr_end; static int __meminitdata node_start; int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, int node) { unsigned long phys_start = (vstart - VMEMMAP_BASE); unsigned long phys_end = (vend - VMEMMAP_BASE); unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK; unsigned long end = VMEMMAP_ALIGN(phys_end); unsigned long pte_base; pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_W_4U); if (tlb_type == hypervisor) pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); for (; addr < end; addr += VMEMMAP_CHUNK) { unsigned long *vmem_pp = vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT); void *block; if (!(*vmem_pp & _PAGE_VALID)) { block = vmemmap_alloc_block(1UL << ILOG2_4MB, node); if (!block) return -ENOMEM; *vmem_pp = pte_base | __pa(block); /* check to see if we have contiguous blocks */ if (addr_end != addr || node_start != node) { if (addr_start) printk(KERN_DEBUG " [%lx-%lx] on node %d\n", addr_start, addr_end-1, node_start); addr_start = addr; node_start = node; } addr_end = addr + VMEMMAP_CHUNK; } } return 0; } void __meminit vmemmap_populate_print_last(void) { if (addr_start) { printk(KERN_DEBUG " [%lx-%lx] on node %d\n", addr_start, addr_end-1, node_start); addr_start = 0; addr_end = 0; node_start = 0; } } void vmemmap_free(unsigned long start, unsigned long end) { } #endif /* CONFIG_SPARSEMEM_VMEMMAP */ static void prot_init_common(unsigned long page_none, unsigned long page_shared, unsigned long page_copy, unsigned long page_readonly, unsigned long page_exec_bit) { PAGE_COPY = __pgprot(page_copy); PAGE_SHARED = __pgprot(page_shared); protection_map[0x0] = __pgprot(page_none); protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); protection_map[0x4] = __pgprot(page_readonly); protection_map[0x5] = __pgprot(page_readonly); protection_map[0x6] = __pgprot(page_copy); protection_map[0x7] = __pgprot(page_copy); protection_map[0x8] = __pgprot(page_none); protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); protection_map[0xc] = __pgprot(page_readonly); protection_map[0xd] = __pgprot(page_readonly); protection_map[0xe] = __pgprot(page_shared); protection_map[0xf] = __pgprot(page_shared); } static void __init sun4u_pgprot_init(void) { unsigned long page_none, page_shared, page_copy, page_readonly; unsigned long page_exec_bit; int i; PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | _PAGE_CACHE_4U | _PAGE_P_4U | __ACCESS_BITS_4U | __DIRTY_BITS_4U | _PAGE_EXEC_4U); PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | _PAGE_CACHE_4U | _PAGE_P_4U | __ACCESS_BITS_4U | __DIRTY_BITS_4U | _PAGE_EXEC_4U | _PAGE_L_4U); _PAGE_IE = _PAGE_IE_4U; _PAGE_E = _PAGE_E_4U; _PAGE_CACHE = _PAGE_CACHE_4U; pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | __ACCESS_BITS_4U | _PAGE_E_4U); #ifdef CONFIG_DEBUG_PAGEALLOC kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; #else kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ PAGE_OFFSET; #endif kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_W_4U); for (i = 1; i < 4; i++) kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_EXEC_4U); page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | __ACCESS_BITS_4U | _PAGE_EXEC_4U); page_exec_bit = _PAGE_EXEC_4U; prot_init_common(page_none, page_shared, page_copy, page_readonly, page_exec_bit); } static void __init sun4v_pgprot_init(void) { unsigned long page_none, page_shared, page_copy, page_readonly; unsigned long page_exec_bit; int i; PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | _PAGE_CACHE_4V | _PAGE_P_4V | __ACCESS_BITS_4V | __DIRTY_BITS_4V | _PAGE_EXEC_4V); PAGE_KERNEL_LOCKED = PAGE_KERNEL; _PAGE_IE = _PAGE_IE_4V; _PAGE_E = _PAGE_E_4V; _PAGE_CACHE = _PAGE_CACHE_4V; #ifdef CONFIG_DEBUG_PAGEALLOC kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; #else kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ PAGE_OFFSET; #endif kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_W_4V); for (i = 1; i < 4; i++) kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | __ACCESS_BITS_4V | _PAGE_E_4V); _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V; page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_EXEC_4V); page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V | __ACCESS_BITS_4V | _PAGE_EXEC_4V); page_exec_bit = _PAGE_EXEC_4V; prot_init_common(page_none, page_shared, page_copy, page_readonly, page_exec_bit); } unsigned long pte_sz_bits(unsigned long sz) { if (tlb_type == hypervisor) { switch (sz) { case 8 * 1024: default: return _PAGE_SZ8K_4V; case 64 * 1024: return _PAGE_SZ64K_4V; case 512 * 1024: return _PAGE_SZ512K_4V; case 4 * 1024 * 1024: return _PAGE_SZ4MB_4V; } } else { switch (sz) { case 8 * 1024: default: return _PAGE_SZ8K_4U; case 64 * 1024: return _PAGE_SZ64K_4U; case 512 * 1024: return _PAGE_SZ512K_4U; case 4 * 1024 * 1024: return _PAGE_SZ4MB_4U; } } } pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) { pte_t pte; pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); pte_val(pte) |= (((unsigned long)space) << 32); pte_val(pte) |= pte_sz_bits(page_size); return pte; } static unsigned long kern_large_tte(unsigned long paddr) { unsigned long val; val = (_PAGE_VALID | _PAGE_SZ4MB_4U | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); if (tlb_type == hypervisor) val = (_PAGE_VALID | _PAGE_SZ4MB_4V | _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V | _PAGE_EXEC_4V | _PAGE_W_4V); return val | paddr; } /* If not locked, zap it. */ void __flush_tlb_all(void) { unsigned long pstate; int i; __asm__ __volatile__("flushw\n\t" "rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); if (tlb_type == hypervisor) { sun4v_mmu_demap_all(); } else if (tlb_type == spitfire) { for (i = 0; i < 64; i++) { /* Spitfire Errata #32 workaround */ /* NOTE: Always runs on spitfire, so no * cheetah+ page size encodings. */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); spitfire_put_dtlb_data(i, 0x0UL); } /* Spitfire Errata #32 workaround */ /* NOTE: Always runs on spitfire, so no * cheetah+ page size encodings. */ __asm__ __volatile__("stxa %0, [%1] %2\n\t" "flush %%g6" : /* No outputs */ : "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" "membar #Sync" : /* no outputs */ : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); spitfire_put_itlb_data(i, 0x0UL); } } } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { cheetah_flush_dtlb_all(); cheetah_flush_itlb_all(); } __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (pstate)); } pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO); pte_t *pte = NULL; if (page) pte = (pte_t *) page_address(page); return pte; } pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address) { struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO); if (!page) return NULL; if (!pgtable_page_ctor(page)) { free_hot_cold_page(page, 0); return NULL; } return (pte_t *) page_address(page); } void pte_free_kernel(struct mm_struct *mm, pte_t *pte) { free_page((unsigned long)pte); } static void __pte_free(pgtable_t pte) { struct page *page = virt_to_page(pte); pgtable_page_dtor(page); __free_page(page); } void pte_free(struct mm_struct *mm, pgtable_t pte) { __pte_free(pte); } void pgtable_free(void *table, bool is_page) { if (is_page) __pte_free(table); else kmem_cache_free(pgtable_cache, table); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { unsigned long pte, flags; struct mm_struct *mm; pmd_t entry = *pmd; if (!pmd_large(entry) || !pmd_young(entry)) return; pte = pmd_val(entry); /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ if (!(pte & _PAGE_VALID)) return; /* We are fabricating 8MB pages using 4MB real hw pages. */ pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); mm = vma->vm_mm; spin_lock_irqsave(&mm->context.lock, flags); if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, addr, pte); spin_unlock_irqrestore(&mm->context.lock, flags); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) static void context_reload(void *__data) { struct mm_struct *mm = __data; if (mm == current->mm) load_secondary_context(mm); } void hugetlb_setup(struct pt_regs *regs) { struct mm_struct *mm = current->mm; struct tsb_config *tp; if (in_atomic() || !mm) { const struct exception_table_entry *entry; entry = search_exception_tables(regs->tpc); if (entry) { regs->tpc = entry->fixup; regs->tnpc = regs->tpc + 4; return; } pr_alert("Unexpected HugeTLB setup in atomic context.\n"); die_if_kernel("HugeTSB in atomic", regs); } tp = &mm->context.tsb_block[MM_TSB_HUGE]; if (likely(tp->tsb == NULL)) tsb_grow(mm, MM_TSB_HUGE, 0); tsb_context_switch(mm); smp_tsb_sync(mm); /* On UltraSPARC-III+ and later, configure the second half of * the Data-TLB for huge pages. */ if (tlb_type == cheetah_plus) { unsigned long ctx; spin_lock(&ctx_alloc_lock); ctx = mm->context.sparc64_ctx_val; ctx &= ~CTX_PGSZ_MASK; ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; if (ctx != mm->context.sparc64_ctx_val) { /* When changing the page size fields, we * must perform a context flush so that no * stale entries match. This flush must * occur with the original context register * settings. */ do_flush_tlb_mm(mm); /* Reload the context register of all processors * also executing in this address space. */ mm->context.sparc64_ctx_val = ctx; on_each_cpu(context_reload, mm, 0); } spin_unlock(&ctx_alloc_lock); } } #endif #ifdef CONFIG_SMP #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range #else #define do_flush_tlb_kernel_range __flush_tlb_kernel_range #endif void flush_tlb_kernel_range(unsigned long start, unsigned long end) { if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { if (start < LOW_OBP_ADDRESS) { flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); } if (end > HI_OBP_ADDRESS) { flush_tsb_kernel_range(HI_OBP_ADDRESS, end); do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); } } else { flush_tsb_kernel_range(start, end); do_flush_tlb_kernel_range(start, end); } }