/* * Freescale MPC85xx/MPC86xx RapidIO support * * Copyright 2009 Sysgo AG * Thomas Moll * - fixed maintenance access routines, check for aligned access * * Copyright 2009 Integrated Device Technology, Inc. * Alex Bounine * - Added Port-Write message handling * - Added Machine Check exception handling * * Copyright (C) 2007, 2008 Freescale Semiconductor, Inc. * Zhang Wei * * Copyright 2005 MontaVista Software, Inc. * Matt Porter * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG_PW /* Port-Write debugging */ /* RapidIO definition irq, which read from OF-tree */ #define IRQ_RIO_BELL(m) (((struct rio_priv *)(m->priv))->bellirq) #define IRQ_RIO_TX(m) (((struct rio_priv *)(m->priv))->txirq) #define IRQ_RIO_RX(m) (((struct rio_priv *)(m->priv))->rxirq) #define IRQ_RIO_PW(m) (((struct rio_priv *)(m->priv))->pwirq) #define RIO_ATMU_REGS_OFFSET 0x10c00 #define RIO_P_MSG_REGS_OFFSET 0x11000 #define RIO_S_MSG_REGS_OFFSET 0x13000 #define RIO_GCCSR 0x13c #define RIO_ESCSR 0x158 #define RIO_CCSR 0x15c #define RIO_LTLEDCSR 0x0608 #define RIO_LTLEDCSR_IER 0x80000000 #define RIO_LTLEDCSR_PRT 0x01000000 #define RIO_LTLEECSR 0x060c #define RIO_EPWISR 0x10010 #define RIO_ISR_AACR 0x10120 #define RIO_ISR_AACR_AA 0x1 /* Accept All ID */ #define RIO_MAINT_WIN_SIZE 0x400000 #define RIO_DBELL_WIN_SIZE 0x1000 #define RIO_MSG_OMR_MUI 0x00000002 #define RIO_MSG_OSR_TE 0x00000080 #define RIO_MSG_OSR_QOI 0x00000020 #define RIO_MSG_OSR_QFI 0x00000010 #define RIO_MSG_OSR_MUB 0x00000004 #define RIO_MSG_OSR_EOMI 0x00000002 #define RIO_MSG_OSR_QEI 0x00000001 #define RIO_MSG_IMR_MI 0x00000002 #define RIO_MSG_ISR_TE 0x00000080 #define RIO_MSG_ISR_QFI 0x00000010 #define RIO_MSG_ISR_DIQI 0x00000001 #define RIO_IPWMR_SEN 0x00100000 #define RIO_IPWMR_QFIE 0x00000100 #define RIO_IPWMR_EIE 0x00000020 #define RIO_IPWMR_CQ 0x00000002 #define RIO_IPWMR_PWE 0x00000001 #define RIO_IPWSR_QF 0x00100000 #define RIO_IPWSR_TE 0x00000080 #define RIO_IPWSR_QFI 0x00000010 #define RIO_IPWSR_PWD 0x00000008 #define RIO_IPWSR_PWB 0x00000004 #define RIO_EPWISR_PINT 0x80000000 #define RIO_EPWISR_PW 0x00000001 #define RIO_MSG_DESC_SIZE 32 #define RIO_MSG_BUFFER_SIZE 4096 #define RIO_MIN_TX_RING_SIZE 2 #define RIO_MAX_TX_RING_SIZE 2048 #define RIO_MIN_RX_RING_SIZE 2 #define RIO_MAX_RX_RING_SIZE 2048 #define DOORBELL_DMR_DI 0x00000002 #define DOORBELL_DSR_TE 0x00000080 #define DOORBELL_DSR_QFI 0x00000010 #define DOORBELL_DSR_DIQI 0x00000001 #define DOORBELL_TID_OFFSET 0x02 #define DOORBELL_SID_OFFSET 0x04 #define DOORBELL_INFO_OFFSET 0x06 #define DOORBELL_MESSAGE_SIZE 0x08 #define DBELL_SID(x) (*(u16 *)(x + DOORBELL_SID_OFFSET)) #define DBELL_TID(x) (*(u16 *)(x + DOORBELL_TID_OFFSET)) #define DBELL_INF(x) (*(u16 *)(x + DOORBELL_INFO_OFFSET)) struct rio_atmu_regs { u32 rowtar; u32 rowtear; u32 rowbar; u32 pad2; u32 rowar; u32 pad3[3]; }; struct rio_msg_regs { u32 omr; /* 0xD_3000 - Outbound message 0 mode register */ u32 osr; /* 0xD_3004 - Outbound message 0 status register */ u32 pad1; u32 odqdpar; /* 0xD_300C - Outbound message 0 descriptor queue dequeue pointer address register */ u32 pad2; u32 osar; /* 0xD_3014 - Outbound message 0 source address register */ u32 odpr; /* 0xD_3018 - Outbound message 0 destination port register */ u32 odatr; /* 0xD_301C - Outbound message 0 destination attributes Register*/ u32 odcr; /* 0xD_3020 - Outbound message 0 double-word count register */ u32 pad3; u32 odqepar; /* 0xD_3028 - Outbound message 0 descriptor queue enqueue pointer address register */ u32 pad4[13]; u32 imr; /* 0xD_3060 - Inbound message 0 mode register */ u32 isr; /* 0xD_3064 - Inbound message 0 status register */ u32 pad5; u32 ifqdpar; /* 0xD_306C - Inbound message 0 frame queue dequeue pointer address register*/ u32 pad6; u32 ifqepar; /* 0xD_3074 - Inbound message 0 frame queue enqueue pointer address register */ u32 pad7[226]; u32 odmr; /* 0xD_3400 - Outbound doorbell mode register */ u32 odsr; /* 0xD_3404 - Outbound doorbell status register */ u32 res0[4]; u32 oddpr; /* 0xD_3418 - Outbound doorbell destination port register */ u32 oddatr; /* 0xD_341c - Outbound doorbell destination attributes register */ u32 res1[3]; u32 odretcr; /* 0xD_342C - Outbound doorbell retry error threshold configuration register */ u32 res2[12]; u32 dmr; /* 0xD_3460 - Inbound doorbell mode register */ u32 dsr; /* 0xD_3464 - Inbound doorbell status register */ u32 pad8; u32 dqdpar; /* 0xD_346C - Inbound doorbell queue dequeue Pointer address register */ u32 pad9; u32 dqepar; /* 0xD_3474 - Inbound doorbell Queue enqueue pointer address register */ u32 pad10[26]; u32 pwmr; /* 0xD_34E0 - Inbound port-write mode register */ u32 pwsr; /* 0xD_34E4 - Inbound port-write status register */ u32 epwqbar; /* 0xD_34E8 - Extended Port-Write Queue Base Address register */ u32 pwqbar; /* 0xD_34EC - Inbound port-write queue base address register */ }; struct rio_tx_desc { u32 res1; u32 saddr; u32 dport; u32 dattr; u32 res2; u32 res3; u32 dwcnt; u32 res4; }; struct rio_dbell_ring { void *virt; dma_addr_t phys; }; struct rio_msg_tx_ring { void *virt; dma_addr_t phys; void *virt_buffer[RIO_MAX_TX_RING_SIZE]; dma_addr_t phys_buffer[RIO_MAX_TX_RING_SIZE]; int tx_slot; int size; void *dev_id; }; struct rio_msg_rx_ring { void *virt; dma_addr_t phys; void *virt_buffer[RIO_MAX_RX_RING_SIZE]; int rx_slot; int size; void *dev_id; }; struct rio_port_write_msg { void *virt; dma_addr_t phys; u32 msg_count; u32 err_count; u32 discard_count; }; struct rio_priv { struct device *dev; void __iomem *regs_win; struct rio_atmu_regs __iomem *atmu_regs; struct rio_atmu_regs __iomem *maint_atmu_regs; struct rio_atmu_regs __iomem *dbell_atmu_regs; void __iomem *dbell_win; void __iomem *maint_win; struct rio_msg_regs __iomem *msg_regs; struct rio_dbell_ring dbell_ring; struct rio_msg_tx_ring msg_tx_ring; struct rio_msg_rx_ring msg_rx_ring; struct rio_port_write_msg port_write_msg; int bellirq; int txirq; int rxirq; int pwirq; struct work_struct pw_work; struct kfifo pw_fifo; spinlock_t pw_fifo_lock; }; #define __fsl_read_rio_config(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" %1,0(%2)\n" \ " eieio\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %1,-1\n" \ " li %0,%3\n" \ " b 2b\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 1b,3b\n" \ ".text" \ : "=r" (err), "=r" (x) \ : "b" (addr), "i" (-EFAULT), "0" (err)) static void __iomem *rio_regs_win; #ifdef CONFIG_E500 int fsl_rio_mcheck_exception(struct pt_regs *regs) { const struct exception_table_entry *entry = NULL; unsigned long reason = mfspr(SPRN_MCSR); if (reason & MCSR_BUS_RBERR) { reason = in_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR)); if (reason & (RIO_LTLEDCSR_IER | RIO_LTLEDCSR_PRT)) { /* Check if we are prepared to handle this fault */ entry = search_exception_tables(regs->nip); if (entry) { pr_debug("RIO: %s - MC Exception handled\n", __func__); out_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR), 0); regs->msr |= MSR_RI; regs->nip = entry->fixup; return 1; } } } return 0; } EXPORT_SYMBOL_GPL(fsl_rio_mcheck_exception); #endif /** * fsl_rio_doorbell_send - Send a MPC85xx doorbell message * @mport: RapidIO master port info * @index: ID of RapidIO interface * @destid: Destination ID of target device * @data: 16-bit info field of RapidIO doorbell message * * Sends a MPC85xx doorbell message. Returns %0 on success or * %-EINVAL on failure. */ static int fsl_rio_doorbell_send(struct rio_mport *mport, int index, u16 destid, u16 data) { struct rio_priv *priv = mport->priv; pr_debug("fsl_doorbell_send: index %d destid %4.4x data %4.4x\n", index, destid, data); switch (mport->phy_type) { case RIO_PHY_PARALLEL: out_be32(&priv->dbell_atmu_regs->rowtar, destid << 22); out_be16(priv->dbell_win, data); break; case RIO_PHY_SERIAL: /* In the serial version silicons, such as MPC8548, MPC8641, * below operations is must be. */ out_be32(&priv->msg_regs->odmr, 0x00000000); out_be32(&priv->msg_regs->odretcr, 0x00000004); out_be32(&priv->msg_regs->oddpr, destid << 16); out_be32(&priv->msg_regs->oddatr, data); out_be32(&priv->msg_regs->odmr, 0x00000001); break; } return 0; } /** * fsl_local_config_read - Generate a MPC85xx local config space read * @mport: RapidIO master port info * @index: ID of RapdiIO interface * @offset: Offset into configuration space * @len: Length (in bytes) of the maintenance transaction * @data: Value to be read into * * Generates a MPC85xx local configuration space read. Returns %0 on * success or %-EINVAL on failure. */ static int fsl_local_config_read(struct rio_mport *mport, int index, u32 offset, int len, u32 *data) { struct rio_priv *priv = mport->priv; pr_debug("fsl_local_config_read: index %d offset %8.8x\n", index, offset); *data = in_be32(priv->regs_win + offset); return 0; } /** * fsl_local_config_write - Generate a MPC85xx local config space write * @mport: RapidIO master port info * @index: ID of RapdiIO interface * @offset: Offset into configuration space * @len: Length (in bytes) of the maintenance transaction * @data: Value to be written * * Generates a MPC85xx local configuration space write. Returns %0 on * success or %-EINVAL on failure. */ static int fsl_local_config_write(struct rio_mport *mport, int index, u32 offset, int len, u32 data) { struct rio_priv *priv = mport->priv; pr_debug ("fsl_local_config_write: index %d offset %8.8x data %8.8x\n", index, offset, data); out_be32(priv->regs_win + offset, data); return 0; } /** * fsl_rio_config_read - Generate a MPC85xx read maintenance transaction * @mport: RapidIO master port info * @index: ID of RapdiIO interface * @destid: Destination ID of transaction * @hopcount: Number of hops to target device * @offset: Offset into configuration space * @len: Length (in bytes) of the maintenance transaction * @val: Location to be read into * * Generates a MPC85xx read maintenance transaction. Returns %0 on * success or %-EINVAL on failure. */ static int fsl_rio_config_read(struct rio_mport *mport, int index, u16 destid, u8 hopcount, u32 offset, int len, u32 *val) { struct rio_priv *priv = mport->priv; u8 *data; u32 rval, err = 0; pr_debug ("fsl_rio_config_read: index %d destid %d hopcount %d offset %8.8x len %d\n", index, destid, hopcount, offset, len); /* 16MB maintenance window possible */ /* allow only aligned access to maintenance registers */ if (offset > (0x1000000 - len) || !IS_ALIGNED(offset, len)) return -EINVAL; out_be32(&priv->maint_atmu_regs->rowtar, (destid << 22) | (hopcount << 12) | (offset >> 12)); out_be32(&priv->maint_atmu_regs->rowtear, (destid >> 10)); data = (u8 *) priv->maint_win + (offset & (RIO_MAINT_WIN_SIZE - 1)); switch (len) { case 1: __fsl_read_rio_config(rval, data, err, "lbz"); break; case 2: __fsl_read_rio_config(rval, data, err, "lhz"); break; case 4: __fsl_read_rio_config(rval, data, err, "lwz"); break; default: return -EINVAL; } if (err) { pr_debug("RIO: cfg_read error %d for %x:%x:%x\n", err, destid, hopcount, offset); } *val = rval; return err; } /** * fsl_rio_config_write - Generate a MPC85xx write maintenance transaction * @mport: RapidIO master port info * @index: ID of RapdiIO interface * @destid: Destination ID of transaction * @hopcount: Number of hops to target device * @offset: Offset into configuration space * @len: Length (in bytes) of the maintenance transaction * @val: Value to be written * * Generates an MPC85xx write maintenance transaction. Returns %0 on * success or %-EINVAL on failure. */ static int fsl_rio_config_write(struct rio_mport *mport, int index, u16 destid, u8 hopcount, u32 offset, int len, u32 val) { struct rio_priv *priv = mport->priv; u8 *data; pr_debug ("fsl_rio_config_write: index %d destid %d hopcount %d offset %8.8x len %d val %8.8x\n", index, destid, hopcount, offset, len, val); /* 16MB maintenance windows possible */ /* allow only aligned access to maintenance registers */ if (offset > (0x1000000 - len) || !IS_ALIGNED(offset, len)) return -EINVAL; out_be32(&priv->maint_atmu_regs->rowtar, (destid << 22) | (hopcount << 12) | (offset >> 12)); out_be32(&priv->maint_atmu_regs->rowtear, (destid >> 10)); data = (u8 *) priv->maint_win + (offset & (RIO_MAINT_WIN_SIZE - 1)); switch (len) { case 1: out_8((u8 *) data, val); break; case 2: out_be16((u16 *) data, val); break; case 4: out_be32((u32 *) data, val); break; default: return -EINVAL; } return 0; } /** * fsl_add_outb_message - Add message to the MPC85xx outbound message queue * @mport: Master port with outbound message queue * @rdev: Target of outbound message * @mbox: Outbound mailbox * @buffer: Message to add to outbound queue * @len: Length of message * * Adds the @buffer message to the MPC85xx outbound message queue. Returns * %0 on success or %-EINVAL on failure. */ static int fsl_add_outb_message(struct rio_mport *mport, struct rio_dev *rdev, int mbox, void *buffer, size_t len) { struct rio_priv *priv = mport->priv; u32 omr; struct rio_tx_desc *desc = (struct rio_tx_desc *)priv->msg_tx_ring.virt + priv->msg_tx_ring.tx_slot; int ret = 0; pr_debug("RIO: fsl_add_outb_message(): destid %4.4x mbox %d buffer " \ "%8.8x len %8.8x\n", rdev->destid, mbox, (int)buffer, len); if ((len < 8) || (len > RIO_MAX_MSG_SIZE)) { ret = -EINVAL; goto out; } /* Copy and clear rest of buffer */ memcpy(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot], buffer, len); if (len < (RIO_MAX_MSG_SIZE - 4)) memset(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot] + len, 0, RIO_MAX_MSG_SIZE - len); switch (mport->phy_type) { case RIO_PHY_PARALLEL: /* Set mbox field for message */ desc->dport = mbox & 0x3; /* Enable EOMI interrupt, set priority, and set destid */ desc->dattr = 0x28000000 | (rdev->destid << 2); break; case RIO_PHY_SERIAL: /* Set mbox field for message, and set destid */ desc->dport = (rdev->destid << 16) | (mbox & 0x3); /* Enable EOMI interrupt and priority */ desc->dattr = 0x28000000; break; } /* Set transfer size aligned to next power of 2 (in double words) */ desc->dwcnt = is_power_of_2(len) ? len : 1 << get_bitmask_order(len); /* Set snooping and source buffer address */ desc->saddr = 0x00000004 | priv->msg_tx_ring.phys_buffer[priv->msg_tx_ring.tx_slot]; /* Increment enqueue pointer */ omr = in_be32(&priv->msg_regs->omr); out_be32(&priv->msg_regs->omr, omr | RIO_MSG_OMR_MUI); /* Go to next descriptor */ if (++priv->msg_tx_ring.tx_slot == priv->msg_tx_ring.size) priv->msg_tx_ring.tx_slot = 0; out: return ret; } /** * fsl_rio_tx_handler - MPC85xx outbound message interrupt handler * @irq: Linux interrupt number * @dev_instance: Pointer to interrupt-specific data * * Handles outbound message interrupts. Executes a register outbound * mailbox event handler and acks the interrupt occurrence. */ static irqreturn_t fsl_rio_tx_handler(int irq, void *dev_instance) { int osr; struct rio_mport *port = (struct rio_mport *)dev_instance; struct rio_priv *priv = port->priv; osr = in_be32(&priv->msg_regs->osr); if (osr & RIO_MSG_OSR_TE) { pr_info("RIO: outbound message transmission error\n"); out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_TE); goto out; } if (osr & RIO_MSG_OSR_QOI) { pr_info("RIO: outbound message queue overflow\n"); out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_QOI); goto out; } if (osr & RIO_MSG_OSR_EOMI) { u32 dqp = in_be32(&priv->msg_regs->odqdpar); int slot = (dqp - priv->msg_tx_ring.phys) >> 5; port->outb_msg[0].mcback(port, priv->msg_tx_ring.dev_id, -1, slot); /* Ack the end-of-message interrupt */ out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_EOMI); } out: return IRQ_HANDLED; } /** * fsl_open_outb_mbox - Initialize MPC85xx outbound mailbox * @mport: Master port implementing the outbound message unit * @dev_id: Device specific pointer to pass on event * @mbox: Mailbox to open * @entries: Number of entries in the outbound mailbox ring * * Initializes buffer ring, request the outbound message interrupt, * and enables the outbound message unit. Returns %0 on success and * %-EINVAL or %-ENOMEM on failure. */ static int fsl_open_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries) { int i, j, rc = 0; struct rio_priv *priv = mport->priv; if ((entries < RIO_MIN_TX_RING_SIZE) || (entries > RIO_MAX_TX_RING_SIZE) || (!is_power_of_2(entries))) { rc = -EINVAL; goto out; } /* Initialize shadow copy ring */ priv->msg_tx_ring.dev_id = dev_id; priv->msg_tx_ring.size = entries; for (i = 0; i < priv->msg_tx_ring.size; i++) { priv->msg_tx_ring.virt_buffer[i] = dma_alloc_coherent(priv->dev, RIO_MSG_BUFFER_SIZE, &priv->msg_tx_ring.phys_buffer[i], GFP_KERNEL); if (!priv->msg_tx_ring.virt_buffer[i]) { rc = -ENOMEM; for (j = 0; j < priv->msg_tx_ring.size; j++) if (priv->msg_tx_ring.virt_buffer[j]) dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE, priv->msg_tx_ring. virt_buffer[j], priv->msg_tx_ring. phys_buffer[j]); goto out; } } /* Initialize outbound message descriptor ring */ priv->msg_tx_ring.virt = dma_alloc_coherent(priv->dev, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE, &priv->msg_tx_ring.phys, GFP_KERNEL); if (!priv->msg_tx_ring.virt) { rc = -ENOMEM; goto out_dma; } memset(priv->msg_tx_ring.virt, 0, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE); priv->msg_tx_ring.tx_slot = 0; /* Point dequeue/enqueue pointers at first entry in ring */ out_be32(&priv->msg_regs->odqdpar, priv->msg_tx_ring.phys); out_be32(&priv->msg_regs->odqepar, priv->msg_tx_ring.phys); /* Configure for snooping */ out_be32(&priv->msg_regs->osar, 0x00000004); /* Clear interrupt status */ out_be32(&priv->msg_regs->osr, 0x000000b3); /* Hook up outbound message handler */ rc = request_irq(IRQ_RIO_TX(mport), fsl_rio_tx_handler, 0, "msg_tx", (void *)mport); if (rc < 0) goto out_irq; /* * Configure outbound message unit * Snooping * Interrupts (all enabled, except QEIE) * Chaining mode * Disable */ out_be32(&priv->msg_regs->omr, 0x00100220); /* Set number of entries */ out_be32(&priv->msg_regs->omr, in_be32(&priv->msg_regs->omr) | ((get_bitmask_order(entries) - 2) << 12)); /* Now enable the unit */ out_be32(&priv->msg_regs->omr, in_be32(&priv->msg_regs->omr) | 0x1); out: return rc; out_irq: dma_free_coherent(priv->dev, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE, priv->msg_tx_ring.virt, priv->msg_tx_ring.phys); out_dma: for (i = 0; i < priv->msg_tx_ring.size; i++) dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE, priv->msg_tx_ring.virt_buffer[i], priv->msg_tx_ring.phys_buffer[i]); return rc; } /** * fsl_close_outb_mbox - Shut down MPC85xx outbound mailbox * @mport: Master port implementing the outbound message unit * @mbox: Mailbox to close * * Disables the outbound message unit, free all buffers, and * frees the outbound message interrupt. */ static void fsl_close_outb_mbox(struct rio_mport *mport, int mbox) { struct rio_priv *priv = mport->priv; /* Disable inbound message unit */ out_be32(&priv->msg_regs->omr, 0); /* Free ring */ dma_free_coherent(priv->dev, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE, priv->msg_tx_ring.virt, priv->msg_tx_ring.phys); /* Free interrupt */ free_irq(IRQ_RIO_TX(mport), (void *)mport); } /** * fsl_rio_rx_handler - MPC85xx inbound message interrupt handler * @irq: Linux interrupt number * @dev_instance: Pointer to interrupt-specific data * * Handles inbound message interrupts. Executes a registered inbound * mailbox event handler and acks the interrupt occurrence. */ static irqreturn_t fsl_rio_rx_handler(int irq, void *dev_instance) { int isr; struct rio_mport *port = (struct rio_mport *)dev_instance; struct rio_priv *priv = port->priv; isr = in_be32(&priv->msg_regs->isr); if (isr & RIO_MSG_ISR_TE) { pr_info("RIO: inbound message reception error\n"); out_be32((void *)&priv->msg_regs->isr, RIO_MSG_ISR_TE); goto out; } /* XXX Need to check/dispatch until queue empty */ if (isr & RIO_MSG_ISR_DIQI) { /* * We implement *only* mailbox 0, but can receive messages * for any mailbox/letter to that mailbox destination. So, * make the callback with an unknown/invalid mailbox number * argument. */ port->inb_msg[0].mcback(port, priv->msg_rx_ring.dev_id, -1, -1); /* Ack the queueing interrupt */ out_be32(&priv->msg_regs->isr, RIO_MSG_ISR_DIQI); } out: return IRQ_HANDLED; } /** * fsl_open_inb_mbox - Initialize MPC85xx inbound mailbox * @mport: Master port implementing the inbound message unit * @dev_id: Device specific pointer to pass on event * @mbox: Mailbox to open * @entries: Number of entries in the inbound mailbox ring * * Initializes buffer ring, request the inbound message interrupt, * and enables the inbound message unit. Returns %0 on success * and %-EINVAL or %-ENOMEM on failure. */ static int fsl_open_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries) { int i, rc = 0; struct rio_priv *priv = mport->priv; if ((entries < RIO_MIN_RX_RING_SIZE) || (entries > RIO_MAX_RX_RING_SIZE) || (!is_power_of_2(entries))) { rc = -EINVAL; goto out; } /* Initialize client buffer ring */ priv->msg_rx_ring.dev_id = dev_id; priv->msg_rx_ring.size = entries; priv->msg_rx_ring.rx_slot = 0; for (i = 0; i < priv->msg_rx_ring.size; i++) priv->msg_rx_ring.virt_buffer[i] = NULL; /* Initialize inbound message ring */ priv->msg_rx_ring.virt = dma_alloc_coherent(priv->dev, priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE, &priv->msg_rx_ring.phys, GFP_KERNEL); if (!priv->msg_rx_ring.virt) { rc = -ENOMEM; goto out; } /* Point dequeue/enqueue pointers at first entry in ring */ out_be32(&priv->msg_regs->ifqdpar, (u32) priv->msg_rx_ring.phys); out_be32(&priv->msg_regs->ifqepar, (u32) priv->msg_rx_ring.phys); /* Clear interrupt status */ out_be32(&priv->msg_regs->isr, 0x00000091); /* Hook up inbound message handler */ rc = request_irq(IRQ_RIO_RX(mport), fsl_rio_rx_handler, 0, "msg_rx", (void *)mport); if (rc < 0) { dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE, priv->msg_tx_ring.virt_buffer[i], priv->msg_tx_ring.phys_buffer[i]); goto out; } /* * Configure inbound message unit: * Snooping * 4KB max message size * Unmask all interrupt sources * Disable */ out_be32(&priv->msg_regs->imr, 0x001b0060); /* Set number of queue entries */ setbits32(&priv->msg_regs->imr, (get_bitmask_order(entries) - 2) << 12); /* Now enable the unit */ setbits32(&priv->msg_regs->imr, 0x1); out: return rc; } /** * fsl_close_inb_mbox - Shut down MPC85xx inbound mailbox * @mport: Master port implementing the inbound message unit * @mbox: Mailbox to close * * Disables the inbound message unit, free all buffers, and * frees the inbound message interrupt. */ static void fsl_close_inb_mbox(struct rio_mport *mport, int mbox) { struct rio_priv *priv = mport->priv; /* Disable inbound message unit */ out_be32(&priv->msg_regs->imr, 0); /* Free ring */ dma_free_coherent(priv->dev, priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE, priv->msg_rx_ring.virt, priv->msg_rx_ring.phys); /* Free interrupt */ free_irq(IRQ_RIO_RX(mport), (void *)mport); } /** * fsl_add_inb_buffer - Add buffer to the MPC85xx inbound message queue * @mport: Master port implementing the inbound message unit * @mbox: Inbound mailbox number * @buf: Buffer to add to inbound queue * * Adds the @buf buffer to the MPC85xx inbound message queue. Returns * %0 on success or %-EINVAL on failure. */ static int fsl_add_inb_buffer(struct rio_mport *mport, int mbox, void *buf) { int rc = 0; struct rio_priv *priv = mport->priv; pr_debug("RIO: fsl_add_inb_buffer(), msg_rx_ring.rx_slot %d\n", priv->msg_rx_ring.rx_slot); if (priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot]) { printk(KERN_ERR "RIO: error adding inbound buffer %d, buffer exists\n", priv->msg_rx_ring.rx_slot); rc = -EINVAL; goto out; } priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot] = buf; if (++priv->msg_rx_ring.rx_slot == priv->msg_rx_ring.size) priv->msg_rx_ring.rx_slot = 0; out: return rc; } /** * fsl_get_inb_message - Fetch inbound message from the MPC85xx message unit * @mport: Master port implementing the inbound message unit * @mbox: Inbound mailbox number * * Gets the next available inbound message from the inbound message queue. * A pointer to the message is returned on success or NULL on failure. */ static void *fsl_get_inb_message(struct rio_mport *mport, int mbox) { struct rio_priv *priv = mport->priv; u32 phys_buf, virt_buf; void *buf = NULL; int buf_idx; phys_buf = in_be32(&priv->msg_regs->ifqdpar); /* If no more messages, then bail out */ if (phys_buf == in_be32(&priv->msg_regs->ifqepar)) goto out2; virt_buf = (u32) priv->msg_rx_ring.virt + (phys_buf - priv->msg_rx_ring.phys); buf_idx = (phys_buf - priv->msg_rx_ring.phys) / RIO_MAX_MSG_SIZE; buf = priv->msg_rx_ring.virt_buffer[buf_idx]; if (!buf) { printk(KERN_ERR "RIO: inbound message copy failed, no buffers\n"); goto out1; } /* Copy max message size, caller is expected to allocate that big */ memcpy(buf, (void *)virt_buf, RIO_MAX_MSG_SIZE); /* Clear the available buffer */ priv->msg_rx_ring.virt_buffer[buf_idx] = NULL; out1: setbits32(&priv->msg_regs->imr, RIO_MSG_IMR_MI); out2: return buf; } /** * fsl_rio_dbell_handler - MPC85xx doorbell interrupt handler * @irq: Linux interrupt number * @dev_instance: Pointer to interrupt-specific data * * Handles doorbell interrupts. Parses a list of registered * doorbell event handlers and executes a matching event handler. */ static irqreturn_t fsl_rio_dbell_handler(int irq, void *dev_instance) { int dsr; struct rio_mport *port = (struct rio_mport *)dev_instance; struct rio_priv *priv = port->priv; dsr = in_be32(&priv->msg_regs->dsr); if (dsr & DOORBELL_DSR_TE) { pr_info("RIO: doorbell reception error\n"); out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_TE); goto out; } if (dsr & DOORBELL_DSR_QFI) { pr_info("RIO: doorbell queue full\n"); out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_QFI); } /* XXX Need to check/dispatch until queue empty */ if (dsr & DOORBELL_DSR_DIQI) { u32 dmsg = (u32) priv->dbell_ring.virt + (in_be32(&priv->msg_regs->dqdpar) & 0xfff); struct rio_dbell *dbell; int found = 0; pr_debug ("RIO: processing doorbell, sid %2.2x tid %2.2x info %4.4x\n", DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg)); list_for_each_entry(dbell, &port->dbells, node) { if ((dbell->res->start <= DBELL_INF(dmsg)) && (dbell->res->end >= DBELL_INF(dmsg))) { found = 1; break; } } if (found) { dbell->dinb(port, dbell->dev_id, DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg)); } else { pr_debug ("RIO: spurious doorbell, sid %2.2x tid %2.2x info %4.4x\n", DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg)); } setbits32(&priv->msg_regs->dmr, DOORBELL_DMR_DI); out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_DIQI); } out: return IRQ_HANDLED; } /** * fsl_rio_doorbell_init - MPC85xx doorbell interface init * @mport: Master port implementing the inbound doorbell unit * * Initializes doorbell unit hardware and inbound DMA buffer * ring. Called from fsl_rio_setup(). Returns %0 on success * or %-ENOMEM on failure. */ static int fsl_rio_doorbell_init(struct rio_mport *mport) { struct rio_priv *priv = mport->priv; int rc = 0; /* Map outbound doorbell window immediately after maintenance window */ priv->dbell_win = ioremap(mport->iores.start + RIO_MAINT_WIN_SIZE, RIO_DBELL_WIN_SIZE); if (!priv->dbell_win) { printk(KERN_ERR "RIO: unable to map outbound doorbell window\n"); rc = -ENOMEM; goto out; } /* Initialize inbound doorbells */ priv->dbell_ring.virt = dma_alloc_coherent(priv->dev, 512 * DOORBELL_MESSAGE_SIZE, &priv->dbell_ring.phys, GFP_KERNEL); if (!priv->dbell_ring.virt) { printk(KERN_ERR "RIO: unable allocate inbound doorbell ring\n"); rc = -ENOMEM; iounmap(priv->dbell_win); goto out; } /* Point dequeue/enqueue pointers at first entry in ring */ out_be32(&priv->msg_regs->dqdpar, (u32) priv->dbell_ring.phys); out_be32(&priv->msg_regs->dqepar, (u32) priv->dbell_ring.phys); /* Clear interrupt status */ out_be32(&priv->msg_regs->dsr, 0x00000091); /* Hook up doorbell handler */ rc = request_irq(IRQ_RIO_BELL(mport), fsl_rio_dbell_handler, 0, "dbell_rx", (void *)mport); if (rc < 0) { iounmap(priv->dbell_win); dma_free_coherent(priv->dev, 512 * DOORBELL_MESSAGE_SIZE, priv->dbell_ring.virt, priv->dbell_ring.phys); printk(KERN_ERR "MPC85xx RIO: unable to request inbound doorbell irq"); goto out; } /* Configure doorbells for snooping, 512 entries, and enable */ out_be32(&priv->msg_regs->dmr, 0x00108161); out: return rc; } /** * fsl_rio_port_write_handler - MPC85xx port write interrupt handler * @irq: Linux interrupt number * @dev_instance: Pointer to interrupt-specific data * * Handles port write interrupts. Parses a list of registered * port write event handlers and executes a matching event handler. */ static irqreturn_t fsl_rio_port_write_handler(int irq, void *dev_instance) { u32 ipwmr, ipwsr; struct rio_mport *port = (struct rio_mport *)dev_instance; struct rio_priv *priv = port->priv; u32 epwisr, tmp; epwisr = in_be32(priv->regs_win + RIO_EPWISR); if (!(epwisr & RIO_EPWISR_PW)) goto pw_done; ipwmr = in_be32(&priv->msg_regs->pwmr); ipwsr = in_be32(&priv->msg_regs->pwsr); #ifdef DEBUG_PW pr_debug("PW Int->IPWMR: 0x%08x IPWSR: 0x%08x (", ipwmr, ipwsr); if (ipwsr & RIO_IPWSR_QF) pr_debug(" QF"); if (ipwsr & RIO_IPWSR_TE) pr_debug(" TE"); if (ipwsr & RIO_IPWSR_QFI) pr_debug(" QFI"); if (ipwsr & RIO_IPWSR_PWD) pr_debug(" PWD"); if (ipwsr & RIO_IPWSR_PWB) pr_debug(" PWB"); pr_debug(" )\n"); #endif /* Schedule deferred processing if PW was received */ if (ipwsr & RIO_IPWSR_QFI) { /* Save PW message (if there is room in FIFO), * otherwise discard it. */ if (kfifo_avail(&priv->pw_fifo) >= RIO_PW_MSG_SIZE) { priv->port_write_msg.msg_count++; kfifo_in(&priv->pw_fifo, priv->port_write_msg.virt, RIO_PW_MSG_SIZE); } else { priv->port_write_msg.discard_count++; pr_debug("RIO: ISR Discarded Port-Write Msg(s) (%d)\n", priv->port_write_msg.discard_count); } /* Clear interrupt and issue Clear Queue command. This allows * another port-write to be received. */ out_be32(&priv->msg_regs->pwsr, RIO_IPWSR_QFI); out_be32(&priv->msg_regs->pwmr, ipwmr | RIO_IPWMR_CQ); schedule_work(&priv->pw_work); } if ((ipwmr & RIO_IPWMR_EIE) && (ipwsr & RIO_IPWSR_TE)) { priv->port_write_msg.err_count++; pr_debug("RIO: Port-Write Transaction Err (%d)\n", priv->port_write_msg.err_count); /* Clear Transaction Error: port-write controller should be * disabled when clearing this error */ out_be32(&priv->msg_regs->pwmr, ipwmr & ~RIO_IPWMR_PWE); out_be32(&priv->msg_regs->pwsr, RIO_IPWSR_TE); out_be32(&priv->msg_regs->pwmr, ipwmr); } if (ipwsr & RIO_IPWSR_PWD) { priv->port_write_msg.discard_count++; pr_debug("RIO: Port Discarded Port-Write Msg(s) (%d)\n", priv->port_write_msg.discard_count); out_be32(&priv->msg_regs->pwsr, RIO_IPWSR_PWD); } pw_done: if (epwisr & RIO_EPWISR_PINT) { tmp = in_be32(priv->regs_win + RIO_LTLEDCSR); pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp); out_be32(priv->regs_win + RIO_LTLEDCSR, 0); } return IRQ_HANDLED; } static void fsl_pw_dpc(struct work_struct *work) { struct rio_priv *priv = container_of(work, struct rio_priv, pw_work); unsigned long flags; u32 msg_buffer[RIO_PW_MSG_SIZE/sizeof(u32)]; /* * Process port-write messages */ spin_lock_irqsave(&priv->pw_fifo_lock, flags); while (kfifo_out(&priv->pw_fifo, (unsigned char *)msg_buffer, RIO_PW_MSG_SIZE)) { /* Process one message */ spin_unlock_irqrestore(&priv->pw_fifo_lock, flags); #ifdef DEBUG_PW { u32 i; pr_debug("%s : Port-Write Message:", __func__); for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32); i++) { if ((i%4) == 0) pr_debug("\n0x%02x: 0x%08x", i*4, msg_buffer[i]); else pr_debug(" 0x%08x", msg_buffer[i]); } pr_debug("\n"); } #endif /* Pass the port-write message to RIO core for processing */ rio_inb_pwrite_handler((union rio_pw_msg *)msg_buffer); spin_lock_irqsave(&priv->pw_fifo_lock, flags); } spin_unlock_irqrestore(&priv->pw_fifo_lock, flags); } /** * fsl_rio_pw_enable - enable/disable port-write interface init * @mport: Master port implementing the port write unit * @enable: 1=enable; 0=disable port-write message handling */ static int fsl_rio_pw_enable(struct rio_mport *mport, int enable) { struct rio_priv *priv = mport->priv; u32 rval; rval = in_be32(&priv->msg_regs->pwmr); if (enable) rval |= RIO_IPWMR_PWE; else rval &= ~RIO_IPWMR_PWE; out_be32(&priv->msg_regs->pwmr, rval); return 0; } /** * fsl_rio_port_write_init - MPC85xx port write interface init * @mport: Master port implementing the port write unit * * Initializes port write unit hardware and DMA buffer * ring. Called from fsl_rio_setup(). Returns %0 on success * or %-ENOMEM on failure. */ static int fsl_rio_port_write_init(struct rio_mport *mport) { struct rio_priv *priv = mport->priv; int rc = 0; /* Following configurations require a disabled port write controller */ out_be32(&priv->msg_regs->pwmr, in_be32(&priv->msg_regs->pwmr) & ~RIO_IPWMR_PWE); /* Initialize port write */ priv->port_write_msg.virt = dma_alloc_coherent(priv->dev, RIO_PW_MSG_SIZE, &priv->port_write_msg.phys, GFP_KERNEL); if (!priv->port_write_msg.virt) { pr_err("RIO: unable allocate port write queue\n"); return -ENOMEM; } priv->port_write_msg.err_count = 0; priv->port_write_msg.discard_count = 0; /* Point dequeue/enqueue pointers at first entry */ out_be32(&priv->msg_regs->epwqbar, 0); out_be32(&priv->msg_regs->pwqbar, (u32) priv->port_write_msg.phys); pr_debug("EIPWQBAR: 0x%08x IPWQBAR: 0x%08x\n", in_be32(&priv->msg_regs->epwqbar), in_be32(&priv->msg_regs->pwqbar)); /* Clear interrupt status IPWSR */ out_be32(&priv->msg_regs->pwsr, (RIO_IPWSR_TE | RIO_IPWSR_QFI | RIO_IPWSR_PWD)); /* Configure port write contoller for snooping enable all reporting, clear queue full */ out_be32(&priv->msg_regs->pwmr, RIO_IPWMR_SEN | RIO_IPWMR_QFIE | RIO_IPWMR_EIE | RIO_IPWMR_CQ); /* Hook up port-write handler */ rc = request_irq(IRQ_RIO_PW(mport), fsl_rio_port_write_handler, 0, "port-write", (void *)mport); if (rc < 0) { pr_err("MPC85xx RIO: unable to request inbound doorbell irq"); goto err_out; } INIT_WORK(&priv->pw_work, fsl_pw_dpc); spin_lock_init(&priv->pw_fifo_lock); if (kfifo_alloc(&priv->pw_fifo, RIO_PW_MSG_SIZE * 32, GFP_KERNEL)) { pr_err("FIFO allocation failed\n"); rc = -ENOMEM; goto err_out_irq; } pr_debug("IPWMR: 0x%08x IPWSR: 0x%08x\n", in_be32(&priv->msg_regs->pwmr), in_be32(&priv->msg_regs->pwsr)); return rc; err_out_irq: free_irq(IRQ_RIO_PW(mport), (void *)mport); err_out: dma_free_coherent(priv->dev, RIO_PW_MSG_SIZE, priv->port_write_msg.virt, priv->port_write_msg.phys); return rc; } static inline void fsl_rio_info(struct device *dev, u32 ccsr) { const char *str; if (ccsr & 1) { /* Serial phy */ switch (ccsr >> 30) { case 0: str = "1"; break; case 1: str = "4"; break; default: str = "Unknown"; break; } dev_info(dev, "Hardware port width: %s\n", str); switch ((ccsr >> 27) & 7) { case 0: str = "Single-lane 0"; break; case 1: str = "Single-lane 2"; break; case 2: str = "Four-lane"; break; default: str = "Unknown"; break; } dev_info(dev, "Training connection status: %s\n", str); } else { /* Parallel phy */ if (!(ccsr & 0x80000000)) dev_info(dev, "Output port operating in 8-bit mode\n"); if (!(ccsr & 0x08000000)) dev_info(dev, "Input port operating in 8-bit mode\n"); } } /** * fsl_rio_setup - Setup Freescale PowerPC RapidIO interface * @dev: platform_device pointer * * Initializes MPC85xx RapidIO hardware interface, configures * master port with system-specific info, and registers the * master port with the RapidIO subsystem. */ int fsl_rio_setup(struct platform_device *dev) { struct rio_ops *ops; struct rio_mport *port; struct rio_priv *priv; int rc = 0; const u32 *dt_range, *cell; struct resource regs; int rlen; u32 ccsr; u64 law_start, law_size; int paw, aw, sw; if (!dev->dev.of_node) { dev_err(&dev->dev, "Device OF-Node is NULL"); return -EFAULT; } rc = of_address_to_resource(dev->dev.of_node, 0, ®s); if (rc) { dev_err(&dev->dev, "Can't get %s property 'reg'\n", dev->dev.of_node->full_name); return -EFAULT; } dev_info(&dev->dev, "Of-device full name %s\n", dev->dev.of_node->full_name); dev_info(&dev->dev, "Regs: %pR\n", ®s); dt_range = of_get_property(dev->dev.of_node, "ranges", &rlen); if (!dt_range) { dev_err(&dev->dev, "Can't get %s property 'ranges'\n", dev->dev.of_node->full_name); return -EFAULT; } /* Get node address wide */ cell = of_get_property(dev->dev.of_node, "#address-cells", NULL); if (cell) aw = *cell; else aw = of_n_addr_cells(dev->dev.of_node); /* Get node size wide */ cell = of_get_property(dev->dev.of_node, "#size-cells", NULL); if (cell) sw = *cell; else sw = of_n_size_cells(dev->dev.of_node); /* Get parent address wide wide */ paw = of_n_addr_cells(dev->dev.of_node); law_start = of_read_number(dt_range + aw, paw); law_size = of_read_number(dt_range + aw + paw, sw); dev_info(&dev->dev, "LAW start 0x%016llx, size 0x%016llx.\n", law_start, law_size); ops = kzalloc(sizeof(struct rio_ops), GFP_KERNEL); if (!ops) { rc = -ENOMEM; goto err_ops; } ops->lcread = fsl_local_config_read; ops->lcwrite = fsl_local_config_write; ops->cread = fsl_rio_config_read; ops->cwrite = fsl_rio_config_write; ops->dsend = fsl_rio_doorbell_send; ops->pwenable = fsl_rio_pw_enable; ops->open_outb_mbox = fsl_open_outb_mbox; ops->open_inb_mbox = fsl_open_inb_mbox; ops->close_outb_mbox = fsl_close_outb_mbox; ops->close_inb_mbox = fsl_close_inb_mbox; ops->add_outb_message = fsl_add_outb_message; ops->add_inb_buffer = fsl_add_inb_buffer; ops->get_inb_message = fsl_get_inb_message; port = kzalloc(sizeof(struct rio_mport), GFP_KERNEL); if (!port) { rc = -ENOMEM; goto err_port; } port->index = 0; priv = kzalloc(sizeof(struct rio_priv), GFP_KERNEL); if (!priv) { printk(KERN_ERR "Can't alloc memory for 'priv'\n"); rc = -ENOMEM; goto err_priv; } INIT_LIST_HEAD(&port->dbells); port->iores.start = law_start; port->iores.end = law_start + law_size - 1; port->iores.flags = IORESOURCE_MEM; port->iores.name = "rio_io_win"; if (request_resource(&iomem_resource, &port->iores) < 0) { dev_err(&dev->dev, "RIO: Error requesting master port region" " 0x%016llx-0x%016llx\n", (u64)port->iores.start, (u64)port->iores.end); rc = -ENOMEM; goto err_res; } priv->pwirq = irq_of_parse_and_map(dev->dev.of_node, 0); priv->bellirq = irq_of_parse_and_map(dev->dev.of_node, 2); priv->txirq = irq_of_parse_and_map(dev->dev.of_node, 3); priv->rxirq = irq_of_parse_and_map(dev->dev.of_node, 4); dev_info(&dev->dev, "pwirq: %d, bellirq: %d, txirq: %d, rxirq %d\n", priv->pwirq, priv->bellirq, priv->txirq, priv->rxirq); rio_init_dbell_res(&port->riores[RIO_DOORBELL_RESOURCE], 0, 0xffff); rio_init_mbox_res(&port->riores[RIO_INB_MBOX_RESOURCE], 0, 0); rio_init_mbox_res(&port->riores[RIO_OUTB_MBOX_RESOURCE], 0, 0); strcpy(port->name, "RIO0 mport"); priv->dev = &dev->dev; port->ops = ops; port->priv = priv; port->phys_efptr = 0x100; priv->regs_win = ioremap(regs.start, regs.end - regs.start + 1); rio_regs_win = priv->regs_win; /* Probe the master port phy type */ ccsr = in_be32(priv->regs_win + RIO_CCSR); port->phy_type = (ccsr & 1) ? RIO_PHY_SERIAL : RIO_PHY_PARALLEL; dev_info(&dev->dev, "RapidIO PHY type: %s\n", (port->phy_type == RIO_PHY_PARALLEL) ? "parallel" : ((port->phy_type == RIO_PHY_SERIAL) ? "serial" : "unknown")); /* Checking the port training status */ if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) { dev_err(&dev->dev, "Port is not ready. " "Try to restart connection...\n"); switch (port->phy_type) { case RIO_PHY_SERIAL: /* Disable ports */ out_be32(priv->regs_win + RIO_CCSR, 0); /* Set 1x lane */ setbits32(priv->regs_win + RIO_CCSR, 0x02000000); /* Enable ports */ setbits32(priv->regs_win + RIO_CCSR, 0x00600000); break; case RIO_PHY_PARALLEL: /* Disable ports */ out_be32(priv->regs_win + RIO_CCSR, 0x22000000); /* Enable ports */ out_be32(priv->regs_win + RIO_CCSR, 0x44000000); break; } msleep(100); if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) { dev_err(&dev->dev, "Port restart failed.\n"); rc = -ENOLINK; goto err; } dev_info(&dev->dev, "Port restart success!\n"); } fsl_rio_info(&dev->dev, ccsr); port->sys_size = (in_be32((priv->regs_win + RIO_PEF_CAR)) & RIO_PEF_CTLS) >> 4; dev_info(&dev->dev, "RapidIO Common Transport System size: %d\n", port->sys_size ? 65536 : 256); if (rio_register_mport(port)) goto err; if (port->host_deviceid >= 0) out_be32(priv->regs_win + RIO_GCCSR, RIO_PORT_GEN_HOST | RIO_PORT_GEN_MASTER | RIO_PORT_GEN_DISCOVERED); else out_be32(priv->regs_win + RIO_GCCSR, 0x00000000); priv->atmu_regs = (struct rio_atmu_regs *)(priv->regs_win + RIO_ATMU_REGS_OFFSET); priv->maint_atmu_regs = priv->atmu_regs + 1; priv->dbell_atmu_regs = priv->atmu_regs + 2; priv->msg_regs = (struct rio_msg_regs *)(priv->regs_win + ((port->phy_type == RIO_PHY_SERIAL) ? RIO_S_MSG_REGS_OFFSET : RIO_P_MSG_REGS_OFFSET)); /* Set to receive any dist ID for serial RapidIO controller. */ if (port->phy_type == RIO_PHY_SERIAL) out_be32((priv->regs_win + RIO_ISR_AACR), RIO_ISR_AACR_AA); /* Configure maintenance transaction window */ out_be32(&priv->maint_atmu_regs->rowbar, law_start >> 12); out_be32(&priv->maint_atmu_regs->rowar, 0x80077000 | (ilog2(RIO_MAINT_WIN_SIZE) - 1)); priv->maint_win = ioremap(law_start, RIO_MAINT_WIN_SIZE); /* Configure outbound doorbell window */ out_be32(&priv->dbell_atmu_regs->rowbar, (law_start + RIO_MAINT_WIN_SIZE) >> 12); out_be32(&priv->dbell_atmu_regs->rowar, 0x8004200b); /* 4k */ fsl_rio_doorbell_init(port); fsl_rio_port_write_init(port); return 0; err: iounmap(priv->regs_win); err_res: kfree(priv); err_priv: kfree(port); err_port: kfree(ops); err_ops: return rc; } /* The probe function for RapidIO peer-to-peer network. */ static int __devinit fsl_of_rio_rpn_probe(struct platform_device *dev) { printk(KERN_INFO "Setting up RapidIO peer-to-peer network %s\n", dev->dev.of_node->full_name); return fsl_rio_setup(dev); }; static const struct of_device_id fsl_of_rio_rpn_ids[] = { { .compatible = "fsl,rapidio-delta", }, {}, }; static struct platform_driver fsl_of_rio_rpn_driver = { .driver = { .name = "fsl-of-rio", .owner = THIS_MODULE, .of_match_table = fsl_of_rio_rpn_ids, }, .probe = fsl_of_rio_rpn_probe, }; static __init int fsl_of_rio_rpn_init(void) { return platform_driver_register(&fsl_of_rio_rpn_driver); } subsys_initcall(fsl_of_rio_rpn_init);