/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include <linux/config.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/highmem.h> #include <linux/initrd.h> #include <linux/pagemap.h> #include <asm/pgalloc.h> #include <asm/prom.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/smp.h> #include <asm/machdep.h> #include <asm/btext.h> #include <asm/tlb.h> #include <asm/prom.h> #include <asm/lmb.h> #include <asm/sections.h> #include <asm/vdso.h> #include "mmu_decl.h" #ifndef CPU_FTR_COHERENT_ICACHE #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ #define CPU_FTR_NOEXECUTE 0 #endif int init_bootmem_done; int mem_init_done; unsigned long memory_limit; extern void hash_preload(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap); /* * This is called by /dev/mem to know if a given address has to * be mapped non-cacheable or not */ int page_is_ram(unsigned long pfn) { unsigned long paddr = (pfn << PAGE_SHIFT); #ifndef CONFIG_PPC64 /* XXX for now */ return paddr < __pa(high_memory); #else int i; for (i=0; i < lmb.memory.cnt; i++) { unsigned long base; base = lmb.memory.region[i].base; if ((paddr >= base) && (paddr < (base + lmb.memory.region[i].size))) { return 1; } } return 0; #endif } EXPORT_SYMBOL(page_is_ram); pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); if (!page_is_ram(pfn)) vma_prot = __pgprot(pgprot_val(vma_prot) | _PAGE_GUARDED | _PAGE_NO_CACHE); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); #ifdef CONFIG_MEMORY_HOTPLUG void online_page(struct page *page) { ClearPageReserved(page); set_page_count(page, 1); __free_page(page); totalram_pages++; num_physpages++; } int __devinit add_memory(u64 start, u64 size) { struct pglist_data *pgdata; struct zone *zone; int nid; unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT; nid = hot_add_scn_to_nid(start); pgdata = NODE_DATA(nid); start = __va(start); create_section_mapping(start, start + size); /* this should work for most non-highmem platforms */ zone = pgdata->node_zones; return __add_pages(zone, start_pfn, nr_pages); return 0; } /* * First pass at this code will check to determine if the remove * request is within the RMO. Do not allow removal within the RMO. */ int __devinit remove_memory(u64 start, u64 size) { struct zone *zone; unsigned long start_pfn, end_pfn, nr_pages; start_pfn = start >> PAGE_SHIFT; nr_pages = size >> PAGE_SHIFT; end_pfn = start_pfn + nr_pages; printk("%s(): Attempting to remove memoy in range " "%lx to %lx\n", __func__, start, start+size); /* * check for range within RMO */ zone = page_zone(pfn_to_page(start_pfn)); printk("%s(): memory will be removed from " "the %s zone\n", __func__, zone->name); /* * not handling removing memory ranges that * overlap multiple zones yet */ if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages)) goto overlap; /* make sure it is NOT in RMO */ if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) { printk("%s(): range to be removed must NOT be in RMO!\n", __func__); goto in_rmo; } return __remove_pages(zone, start_pfn, nr_pages); overlap: printk("%s(): memory range to be removed overlaps " "multiple zones!!!\n", __func__); in_rmo: return -1; } #endif /* CONFIG_MEMORY_HOTPLUG */ void show_mem(void) { unsigned long total = 0, reserved = 0; unsigned long shared = 0, cached = 0; unsigned long highmem = 0; struct page *page; pg_data_t *pgdat; unsigned long i; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { unsigned long flags; pgdat_resize_lock(pgdat, &flags); for (i = 0; i < pgdat->node_spanned_pages; i++) { if (!pfn_valid(pgdat->node_start_pfn + i)) continue; page = pgdat_page_nr(pgdat, i); total++; if (PageHighMem(page)) highmem++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } pgdat_resize_unlock(pgdat, &flags); } printk("%ld pages of RAM\n", total); #ifdef CONFIG_HIGHMEM printk("%ld pages of HIGHMEM\n", highmem); #endif printk("%ld reserved pages\n", reserved); printk("%ld pages shared\n", shared); printk("%ld pages swap cached\n", cached); } /* * Initialize the bootmem system and give it all the memory we * have available. If we are using highmem, we only put the * lowmem into the bootmem system. */ #ifndef CONFIG_NEED_MULTIPLE_NODES void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages; int boot_mapsize; max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM total_pages = total_lowmem >> PAGE_SHIFT; #endif /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); BUG_ON(!start); boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); /* Add all physical memory to the bootmem map, mark each area * present. */ for (i = 0; i < lmb.memory.cnt; i++) { unsigned long base = lmb.memory.region[i].base; unsigned long size = lmb_size_bytes(&lmb.memory, i); #ifdef CONFIG_HIGHMEM if (base >= total_lowmem) continue; if (base + size > total_lowmem) size = total_lowmem - base; #endif free_bootmem(base, size); } /* reserve the sections we're already using */ for (i = 0; i < lmb.reserved.cnt; i++) reserve_bootmem(lmb.reserved.region[i].base, lmb_size_bytes(&lmb.reserved, i)); /* XXX need to clip this if using highmem? */ for (i = 0; i < lmb.memory.cnt; i++) memory_present(0, lmb_start_pfn(&lmb.memory, i), lmb_end_pfn(&lmb.memory, i)); init_bootmem_done = 1; } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long total_ram = lmb_phys_mem_size(); unsigned long top_of_ram = lmb_end_of_DRAM(); #ifdef CONFIG_HIGHMEM map_page(PKMAP_BASE, 0, 0); /* XXX gross */ pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN); kmap_prot = PAGE_KERNEL; #endif /* CONFIG_HIGHMEM */ printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); /* * All pages are DMA-able so we put them all in the DMA zone. */ memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; #ifdef CONFIG_HIGHMEM zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT; zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT; #else zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; #endif /* CONFIG_HIGHMEM */ free_area_init_node(0, NODE_DATA(0), zones_size, __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); } #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ void __init mem_init(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int nid; #endif pg_data_t *pgdat; unsigned long i; struct page *page; unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; num_physpages = lmb.memory.size >> PAGE_SHIFT; high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); #ifdef CONFIG_NEED_MULTIPLE_NODES for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages != 0) { printk("freeing bootmem node %x\n", nid); totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); } } #else max_mapnr = max_pfn; totalram_pages += free_all_bootmem(); #endif for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { if (!pfn_valid(pgdat->node_start_pfn + i)) continue; page = pgdat_page_nr(pgdat, i); if (PageReserved(page)) reservedpages++; } } codesize = (unsigned long)&_sdata - (unsigned long)&_stext; datasize = (unsigned long)&_edata - (unsigned long)&_sdata; initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; #ifdef CONFIG_HIGHMEM { unsigned long pfn, highmem_mapnr; highmem_mapnr = total_lowmem >> PAGE_SHIFT; for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); set_page_count(page, 1); __free_page(page); totalhigh_pages++; } totalram_pages += totalhigh_pages; printk(KERN_INFO "High memory: %luk\n", totalhigh_pages << (PAGE_SHIFT-10)); } #endif /* CONFIG_HIGHMEM */ printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " "%luk reserved, %luk data, %luk bss, %luk init)\n", (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, bsssize >> 10, initsize >> 10); mem_init_done = 1; /* Initialize the vDSO */ vdso_init(); } /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void flush_dcache_icache_page(struct page *page) { #ifdef CONFIG_BOOKE void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); __flush_dcache_icache(start); kunmap_atomic(start, KM_PPC_SYNC_ICACHE); #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) /* On 8xx there is no need to kmap since highmem is not supported */ __flush_dcache_icache(page_address(page)); #else __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); #endif } void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); /* * We shouldnt have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ flush_dcache_page(pg); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif flush_dcache_page(pg); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); kunmap(page); } EXPORT_SYMBOL(flush_icache_user_range); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the pte lock held. */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { #ifdef CONFIG_PPC_STD_MMU unsigned long access = 0, trap; #endif unsigned long pfn = pte_pfn(pte); /* handle i-cache coherency */ if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && !cpu_has_feature(CPU_FTR_NOEXECUTE) && pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { if (vma->vm_mm == current->active_mm) { #ifdef CONFIG_8xx /* On 8xx, cache control instructions (particularly * "dcbst" from flush_dcache_icache) fault as write * operation if there is an unpopulated TLB entry * for the address in question. To workaround that, * we invalidate the TLB here, thus avoiding dcbst * misbehaviour. */ _tlbie(address); #endif __flush_dcache_icache((void *) address); } else flush_dcache_icache_page(page); set_bit(PG_arch_1, &page->flags); } } #ifdef CONFIG_PPC_STD_MMU /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte) || address >= TASK_SIZE) return; /* We try to figure out if we are coming from an instruction * access fault and pass that down to __hash_page so we avoid * double-faulting on execution of fresh text. We have to test * for regs NULL since init will get here first thing at boot * * We also avoid filling the hash if not coming from a fault */ if (current->thread.regs == NULL) return; trap = TRAP(current->thread.regs); if (trap == 0x400) access |= _PAGE_EXEC; else if (trap != 0x300) return; hash_preload(vma->vm_mm, address, access, trap); #endif /* CONFIG_PPC_STD_MMU */ }