/* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(fmt...) printk(KERN_ERR fmt) #else #define DBG(fmt...) #endif #ifdef CONFIG_PPC64 int __initdata iommu_is_off; int __initdata iommu_force_on; unsigned long tce_alloc_start, tce_alloc_end; u64 ppc64_rma_size; #endif static phys_addr_t first_memblock_size; static int __initdata boot_cpu_count; static int __init early_parse_mem(char *p) { if (!p) return 1; memory_limit = PAGE_ALIGN(memparse(p, &p)); DBG("memory limit = 0x%llx\n", (unsigned long long)memory_limit); return 0; } early_param("mem", early_parse_mem); /* * overlaps_initrd - check for overlap with page aligned extension of * initrd. */ static inline int overlaps_initrd(unsigned long start, unsigned long size) { #ifdef CONFIG_BLK_DEV_INITRD if (!initrd_start) return 0; return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) && start <= _ALIGN_UP(initrd_end, PAGE_SIZE); #else return 0; #endif } /** * move_device_tree - move tree to an unused area, if needed. * * The device tree may be allocated beyond our memory limit, or inside the * crash kernel region for kdump, or within the page aligned range of initrd. * If so, move it out of the way. */ static void __init move_device_tree(void) { unsigned long start, size; void *p; DBG("-> move_device_tree\n"); start = __pa(initial_boot_params); size = be32_to_cpu(initial_boot_params->totalsize); if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { p = __va(memblock_alloc(size, PAGE_SIZE)); memcpy(p, initial_boot_params, size); initial_boot_params = (struct boot_param_header *)p; DBG("Moved device tree to 0x%p\n", p); } DBG("<- move_device_tree\n"); } /* * ibm,pa-features is a per-cpu property that contains a string of * attribute descriptors, each of which has a 2 byte header plus up * to 254 bytes worth of processor attribute bits. First header * byte specifies the number of bytes following the header. * Second header byte is an "attribute-specifier" type, of which * zero is the only currently-defined value. * Implementation: Pass in the byte and bit offset for the feature * that we are interested in. The function will return -1 if the * pa-features property is missing, or a 1/0 to indicate if the feature * is supported/not supported. Note that the bit numbers are * big-endian to match the definition in PAPR. */ static struct ibm_pa_feature { unsigned long cpu_features; /* CPU_FTR_xxx bit */ unsigned long mmu_features; /* MMU_FTR_xxx bit */ unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ unsigned char pabyte; /* byte number in ibm,pa-features */ unsigned char pabit; /* bit number (big-endian) */ unsigned char invert; /* if 1, pa bit set => clear feature */ } ibm_pa_features[] __initdata = { {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, {0, MMU_FTR_SLB, 0, 0, 2, 0}, {CPU_FTR_CTRL, 0, 0, 0, 3, 0}, {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0}, {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1}, {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0}, }; static void __init scan_features(unsigned long node, unsigned char *ftrs, unsigned long tablelen, struct ibm_pa_feature *fp, unsigned long ft_size) { unsigned long i, len, bit; /* find descriptor with type == 0 */ for (;;) { if (tablelen < 3) return; len = 2 + ftrs[0]; if (tablelen < len) return; /* descriptor 0 not found */ if (ftrs[1] == 0) break; tablelen -= len; ftrs += len; } /* loop over bits we know about */ for (i = 0; i < ft_size; ++i, ++fp) { if (fp->pabyte >= ftrs[0]) continue; bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; if (bit ^ fp->invert) { cur_cpu_spec->cpu_features |= fp->cpu_features; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; cur_cpu_spec->mmu_features |= fp->mmu_features; } else { cur_cpu_spec->cpu_features &= ~fp->cpu_features; cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; cur_cpu_spec->mmu_features &= ~fp->mmu_features; } } } static void __init check_cpu_pa_features(unsigned long node) { unsigned char *pa_ftrs; unsigned long tablelen; pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); if (pa_ftrs == NULL) return; scan_features(node, pa_ftrs, tablelen, ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); } #ifdef CONFIG_PPC_STD_MMU_64 static void __init check_cpu_slb_size(unsigned long node) { u32 *slb_size_ptr; slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL); if (slb_size_ptr != NULL) { mmu_slb_size = *slb_size_ptr; return; } slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL); if (slb_size_ptr != NULL) { mmu_slb_size = *slb_size_ptr; } } #else #define check_cpu_slb_size(node) do { } while(0) #endif static struct feature_property { const char *name; u32 min_value; unsigned long cpu_feature; unsigned long cpu_user_ftr; } feature_properties[] __initdata = { #ifdef CONFIG_ALTIVEC {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_VSX /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, #endif /* CONFIG_VSX */ #ifdef CONFIG_PPC64 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, {"ibm,purr", 1, CPU_FTR_PURR, 0}, {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, #endif /* CONFIG_PPC64 */ }; #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) static inline void identical_pvr_fixup(unsigned long node) { unsigned int pvr; char *model = of_get_flat_dt_prop(node, "model", NULL); /* * Since 440GR(x)/440EP(x) processors have the same pvr, * we check the node path and set bit 28 in the cur_cpu_spec * pvr for EP(x) processor version. This bit is always 0 in * the "real" pvr. Then we call identify_cpu again with * the new logical pvr to enable FPU support. */ if (model && strstr(model, "440EP")) { pvr = cur_cpu_spec->pvr_value | 0x8; identify_cpu(0, pvr); DBG("Using logical pvr %x for %s\n", pvr, model); } } #else #define identical_pvr_fixup(node) do { } while(0) #endif static void __init check_cpu_feature_properties(unsigned long node) { unsigned long i; struct feature_property *fp = feature_properties; const u32 *prop; for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) { prop = of_get_flat_dt_prop(node, fp->name, NULL); if (prop && *prop >= fp->min_value) { cur_cpu_spec->cpu_features |= fp->cpu_feature; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; } } } static int __init early_init_dt_scan_cpus(unsigned long node, const char *uname, int depth, void *data) { char *type = of_get_flat_dt_prop(node, "device_type", NULL); const u32 *prop; const u32 *intserv; int i, nthreads; unsigned long len; int found = -1; int found_thread = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Get physical cpuid */ intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); if (intserv) { nthreads = len / sizeof(int); } else { intserv = of_get_flat_dt_prop(node, "reg", NULL); nthreads = 1; } /* * Now see if any of these threads match our boot cpu. * NOTE: This must match the parsing done in smp_setup_cpu_maps. */ for (i = 0; i < nthreads; i++) { /* * version 2 of the kexec param format adds the phys cpuid of * booted proc. */ if (initial_boot_params->version >= 2) { if (intserv[i] == initial_boot_params->boot_cpuid_phys) { found = boot_cpu_count; found_thread = i; } } else { /* * Check if it's the boot-cpu, set it's hw index now, * unfortunately this format did not support booting * off secondary threads. */ if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) found = boot_cpu_count; } #ifdef CONFIG_SMP /* logical cpu id is always 0 on UP kernels */ boot_cpu_count++; #endif } if (found >= 0) { DBG("boot cpu: logical %d physical %d\n", found, intserv[found_thread]); boot_cpuid = found; set_hard_smp_processor_id(found, intserv[found_thread]); /* * PAPR defines "logical" PVR values for cpus that * meet various levels of the architecture: * 0x0f000001 Architecture version 2.04 * 0x0f000002 Architecture version 2.05 * If the cpu-version property in the cpu node contains * such a value, we call identify_cpu again with the * logical PVR value in order to use the cpu feature * bits appropriate for the architecture level. * * A POWER6 partition in "POWER6 architected" mode * uses the 0x0f000002 PVR value; in POWER5+ mode * it uses 0x0f000001. */ prop = of_get_flat_dt_prop(node, "cpu-version", NULL); if (prop && (*prop & 0xff000000) == 0x0f000000) identify_cpu(0, *prop); identical_pvr_fixup(node); } check_cpu_feature_properties(node); check_cpu_pa_features(node); check_cpu_slb_size(node); #ifdef CONFIG_PPC_PSERIES if (nthreads > 1) cur_cpu_spec->cpu_features |= CPU_FTR_SMT; else cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; #endif return 0; } int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname, int depth, void *data) { unsigned long *lprop; /* Use common scan routine to determine if this is the chosen node */ if (early_init_dt_scan_chosen(node, uname, depth, data) == 0) return 0; #ifdef CONFIG_PPC64 /* check if iommu is forced on or off */ if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) iommu_is_off = 1; if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) iommu_force_on = 1; #endif /* mem=x on the command line is the preferred mechanism */ lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); if (lprop) memory_limit = *lprop; #ifdef CONFIG_PPC64 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); if (lprop) tce_alloc_start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); if (lprop) tce_alloc_end = *lprop; #endif #ifdef CONFIG_KEXEC lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); if (lprop) crashk_res.start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); if (lprop) crashk_res.end = crashk_res.start + *lprop - 1; #endif /* break now */ return 1; } #ifdef CONFIG_PPC_PSERIES /* * Interpret the ibm,dynamic-memory property in the * /ibm,dynamic-reconfiguration-memory node. * This contains a list of memory blocks along with NUMA affinity * information. */ static int __init early_init_dt_scan_drconf_memory(unsigned long node) { __be32 *dm, *ls, *usm; unsigned long l, n, flags; u64 base, size, memblock_size; unsigned int is_kexec_kdump = 0, rngs; ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); if (ls == NULL || l < dt_root_size_cells * sizeof(__be32)) return 0; memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls); dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l); if (dm == NULL || l < sizeof(__be32)) return 0; n = *dm++; /* number of entries */ if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32)) return 0; /* check if this is a kexec/kdump kernel. */ usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory", &l); if (usm != NULL) is_kexec_kdump = 1; for (; n != 0; --n) { base = dt_mem_next_cell(dt_root_addr_cells, &dm); flags = dm[3]; /* skip DRC index, pad, assoc. list index, flags */ dm += 4; /* skip this block if the reserved bit is set in flags (0x80) or if the block is not assigned to this partition (0x8) */ if ((flags & 0x80) || !(flags & 0x8)) continue; size = memblock_size; rngs = 1; if (is_kexec_kdump) { /* * For each memblock in ibm,dynamic-memory, a corresponding * entry in linux,drconf-usable-memory property contains * a counter 'p' followed by 'p' (base, size) duple. * Now read the counter from * linux,drconf-usable-memory property */ rngs = dt_mem_next_cell(dt_root_size_cells, &usm); if (!rngs) /* there are no (base, size) duple */ continue; } do { if (is_kexec_kdump) { base = dt_mem_next_cell(dt_root_addr_cells, &usm); size = dt_mem_next_cell(dt_root_size_cells, &usm); } if (iommu_is_off) { if (base >= 0x80000000ul) continue; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } memblock_add(base, size); } while (--rngs); } memblock_dump_all(); return 0; } #else #define early_init_dt_scan_drconf_memory(node) 0 #endif /* CONFIG_PPC_PSERIES */ static int __init early_init_dt_scan_memory_ppc(unsigned long node, const char *uname, int depth, void *data) { if (depth == 1 && strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) return early_init_dt_scan_drconf_memory(node); return early_init_dt_scan_memory(node, uname, depth, data); } void __init early_init_dt_add_memory_arch(u64 base, u64 size) { #ifdef CONFIG_PPC64 if (iommu_is_off) { if (base >= 0x80000000ul) return; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } #endif /* Keep track of the beginning of memory -and- the size of * the very first block in the device-tree as it represents * the RMA on ppc64 server */ if (base < memstart_addr) { memstart_addr = base; first_memblock_size = size; } /* Add the chunk to the MEMBLOCK list */ memblock_add(base, size); } void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) { return __va(memblock_alloc(size, align)); } #ifdef CONFIG_BLK_DEV_INITRD void __init early_init_dt_setup_initrd_arch(unsigned long start, unsigned long end) { initrd_start = (unsigned long)__va(start); initrd_end = (unsigned long)__va(end); initrd_below_start_ok = 1; } #endif static void __init early_reserve_mem(void) { u64 base, size; u64 *reserve_map; unsigned long self_base; unsigned long self_size; reserve_map = (u64 *)(((unsigned long)initial_boot_params) + initial_boot_params->off_mem_rsvmap); /* before we do anything, lets reserve the dt blob */ self_base = __pa((unsigned long)initial_boot_params); self_size = initial_boot_params->totalsize; memblock_reserve(self_base, self_size); #ifdef CONFIG_BLK_DEV_INITRD /* then reserve the initrd, if any */ if (initrd_start && (initrd_end > initrd_start)) memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), _ALIGN_UP(initrd_end, PAGE_SIZE) - _ALIGN_DOWN(initrd_start, PAGE_SIZE)); #endif /* CONFIG_BLK_DEV_INITRD */ #ifdef CONFIG_PPC32 /* * Handle the case where we might be booting from an old kexec * image that setup the mem_rsvmap as pairs of 32-bit values */ if (*reserve_map > 0xffffffffull) { u32 base_32, size_32; u32 *reserve_map_32 = (u32 *)reserve_map; while (1) { base_32 = *(reserve_map_32++); size_32 = *(reserve_map_32++); if (size_32 == 0) break; /* skip if the reservation is for the blob */ if (base_32 == self_base && size_32 == self_size) continue; DBG("reserving: %x -> %x\n", base_32, size_32); memblock_reserve(base_32, size_32); } return; } #endif while (1) { base = *(reserve_map++); size = *(reserve_map++); if (size == 0) break; DBG("reserving: %llx -> %llx\n", base, size); memblock_reserve(base, size); } } #ifdef CONFIG_PHYP_DUMP /** * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg * * Function to find the largest size we need to reserve * during early boot process. * * It either looks for boot param and returns that OR * returns larger of 256 or 5% rounded down to multiples of 256MB. * */ static inline unsigned long phyp_dump_calculate_reserve_size(void) { unsigned long tmp; if (phyp_dump_info->reserve_bootvar) return phyp_dump_info->reserve_bootvar; /* divide by 20 to get 5% of value */ tmp = memblock_end_of_DRAM(); do_div(tmp, 20); /* round it down in multiples of 256 */ tmp = tmp & ~0x0FFFFFFFUL; return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END); } /** * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory * * This routine may reserve memory regions in the kernel only * if the system is supported and a dump was taken in last * boot instance or if the hardware is supported and the * scratch area needs to be setup. In other instances it returns * without reserving anything. The memory in case of dump being * active is freed when the dump is collected (by userland tools). */ static void __init phyp_dump_reserve_mem(void) { unsigned long base, size; unsigned long variable_reserve_size; if (!phyp_dump_info->phyp_dump_configured) { printk(KERN_ERR "Phyp-dump not supported on this hardware\n"); return; } if (!phyp_dump_info->phyp_dump_at_boot) { printk(KERN_INFO "Phyp-dump disabled at boot time\n"); return; } variable_reserve_size = phyp_dump_calculate_reserve_size(); if (phyp_dump_info->phyp_dump_is_active) { /* Reserve *everything* above RMR.Area freed by userland tools*/ base = variable_reserve_size; size = memblock_end_of_DRAM() - base; /* XXX crashed_ram_end is wrong, since it may be beyond * the memory_limit, it will need to be adjusted. */ memblock_reserve(base, size); phyp_dump_info->init_reserve_start = base; phyp_dump_info->init_reserve_size = size; } else { size = phyp_dump_info->cpu_state_size + phyp_dump_info->hpte_region_size + variable_reserve_size; base = memblock_end_of_DRAM() - size; memblock_reserve(base, size); phyp_dump_info->init_reserve_start = base; phyp_dump_info->init_reserve_size = size; } } #else static inline void __init phyp_dump_reserve_mem(void) {} #endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */ void __init early_init_devtree(void *params) { phys_addr_t limit; DBG(" -> early_init_devtree(%p)\n", params); /* Setup flat device-tree pointer */ initial_boot_params = params; #ifdef CONFIG_PPC_RTAS /* Some machines might need RTAS info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_rtas, NULL); #endif #ifdef CONFIG_PPC_POWERNV /* Some machines might need OPAL info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_opal, NULL); #endif #ifdef CONFIG_PHYP_DUMP /* scan tree to see if dump occurred during last boot */ of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL); #endif /* Pre-initialize the cmd_line with the content of boot_commmand_line, * which will be empty except when the content of the variable has * been overriden by a bootloading mechanism. This happens typically * with HAL takeover */ strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); /* Retrieve various informations from the /chosen node of the * device-tree, including the platform type, initrd location and * size, TCE reserve, and more ... */ of_scan_flat_dt(early_init_dt_scan_chosen_ppc, cmd_line); /* Scan memory nodes and rebuild MEMBLOCKs */ of_scan_flat_dt(early_init_dt_scan_root, NULL); of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL); /* Save command line for /proc/cmdline and then parse parameters */ strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE); parse_early_param(); /* make sure we've parsed cmdline for mem= before this */ if (memory_limit) first_memblock_size = min(first_memblock_size, memory_limit); setup_initial_memory_limit(memstart_addr, first_memblock_size); /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); /* If relocatable, reserve first 32k for interrupt vectors etc. */ if (PHYSICAL_START > MEMORY_START) memblock_reserve(MEMORY_START, 0x8000); reserve_kdump_trampoline(); reserve_crashkernel(); early_reserve_mem(); phyp_dump_reserve_mem(); limit = memory_limit; if (! limit) { phys_addr_t memsize; /* Ensure that total memory size is page-aligned, because * otherwise mark_bootmem() gets upset. */ memblock_analyze(); memsize = memblock_phys_mem_size(); if ((memsize & PAGE_MASK) != memsize) limit = memsize & PAGE_MASK; } memblock_enforce_memory_limit(limit); memblock_analyze(); memblock_dump_all(); DBG("Phys. mem: %llx\n", memblock_phys_mem_size()); /* We may need to relocate the flat tree, do it now. * FIXME .. and the initrd too? */ move_device_tree(); allocate_pacas(); DBG("Scanning CPUs ...\n"); /* Retrieve CPU related informations from the flat tree * (altivec support, boot CPU ID, ...) */ of_scan_flat_dt(early_init_dt_scan_cpus, NULL); #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) /* We'll later wait for secondaries to check in; there are * NCPUS-1 non-boot CPUs :-) */ spinning_secondaries = boot_cpu_count - 1; #endif DBG(" <- early_init_devtree()\n"); } /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. The device tree and list * are protected by a rw_lock. * * Note that property management will need some locking as well, * this isn't dealt with yet. * *******/ /** * of_find_next_cache_node - Find a node's subsidiary cache * @np: node of type "cpu" or "cache" * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. Caller should hold a reference * to np. */ struct device_node *of_find_next_cache_node(struct device_node *np) { struct device_node *child; const phandle *handle; handle = of_get_property(np, "l2-cache", NULL); if (!handle) handle = of_get_property(np, "next-level-cache", NULL); if (handle) return of_find_node_by_phandle(*handle); /* OF on pmac has nodes instead of properties named "l2-cache" * beneath CPU nodes. */ if (!strcmp(np->type, "cpu")) for_each_child_of_node(np, child) if (!strcmp(child->type, "cache")) return child; return NULL; } #ifdef CONFIG_PPC_PSERIES /* * Fix up the uninitialized fields in a new device node: * name, type and pci-specific fields */ static int of_finish_dynamic_node(struct device_node *node) { struct device_node *parent = of_get_parent(node); int err = 0; const phandle *ibm_phandle; node->name = of_get_property(node, "name", NULL); node->type = of_get_property(node, "device_type", NULL); if (!node->name) node->name = ""; if (!node->type) node->type = ""; if (!parent) { err = -ENODEV; goto out; } /* We don't support that function on PowerMac, at least * not yet */ if (machine_is(powermac)) return -ENODEV; /* fix up new node's phandle field */ if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL))) node->phandle = *ibm_phandle; out: of_node_put(parent); return err; } static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) { int err; switch (action) { case PSERIES_RECONFIG_ADD: err = of_finish_dynamic_node(node); if (err < 0) printk(KERN_ERR "finish_node returned %d\n", err); break; default: err = 0; break; } return notifier_from_errno(err); } static struct notifier_block prom_reconfig_nb = { .notifier_call = prom_reconfig_notifier, .priority = 10, /* This one needs to run first */ }; static int __init prom_reconfig_setup(void) { return pSeries_reconfig_notifier_register(&prom_reconfig_nb); } __initcall(prom_reconfig_setup); #endif /* Find the device node for a given logical cpu number, also returns the cpu * local thread number (index in ibm,interrupt-server#s) if relevant and * asked for (non NULL) */ struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) { int hardid; struct device_node *np; hardid = get_hard_smp_processor_id(cpu); for_each_node_by_type(np, "cpu") { const u32 *intserv; unsigned int plen, t; /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist * fallback to "reg" property and assume no threads */ intserv = of_get_property(np, "ibm,ppc-interrupt-server#s", &plen); if (intserv == NULL) { const u32 *reg = of_get_property(np, "reg", NULL); if (reg == NULL) continue; if (*reg == hardid) { if (thread) *thread = 0; return np; } } else { plen /= sizeof(u32); for (t = 0; t < plen; t++) { if (hardid == intserv[t]) { if (thread) *thread = t; return np; } } } } return NULL; } EXPORT_SYMBOL(of_get_cpu_node); #if defined(CONFIG_DEBUG_FS) && defined(DEBUG) static struct debugfs_blob_wrapper flat_dt_blob; static int __init export_flat_device_tree(void) { struct dentry *d; flat_dt_blob.data = initial_boot_params; flat_dt_blob.size = initial_boot_params->totalsize; d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR, powerpc_debugfs_root, &flat_dt_blob); if (!d) return 1; return 0; } __initcall(export_flat_device_tree); #endif