/* * acpi.c - Architecture-Specific Low-Level ACPI Support * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999,2000 Walt Drummond <drummond@valinux.com> * Copyright (C) 2000, 2002-2003 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 2000 Intel Corp. * Copyright (C) 2000,2001 J.I. Lee <jung-ik.lee@intel.com> * Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (C) 2001 Jenna Hall <jenna.s.hall@intel.com> * Copyright (C) 2001 Takayoshi Kochi <t-kochi@bq.jp.nec.com> * Copyright (C) 2002 Erich Focht <efocht@ess.nec.de> * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/string.h> #include <linux/types.h> #include <linux/irq.h> #include <linux/acpi.h> #include <linux/efi.h> #include <linux/mmzone.h> #include <linux/nodemask.h> #include <acpi/processor.h> #include <asm/io.h> #include <asm/iosapic.h> #include <asm/machvec.h> #include <asm/page.h> #include <asm/system.h> #include <asm/numa.h> #include <asm/sal.h> #include <asm/cyclone.h> #include <asm/xen/hypervisor.h> #define BAD_MADT_ENTRY(entry, end) ( \ (!entry) || (unsigned long)entry + sizeof(*entry) > end || \ ((struct acpi_subtable_header *)entry)->length < sizeof(*entry)) #define PREFIX "ACPI: " u32 acpi_rsdt_forced; unsigned int acpi_cpei_override; unsigned int acpi_cpei_phys_cpuid; unsigned long acpi_wakeup_address = 0; #ifdef CONFIG_IA64_GENERIC static unsigned long __init acpi_find_rsdp(void) { unsigned long rsdp_phys = 0; if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) rsdp_phys = efi.acpi20; else if (efi.acpi != EFI_INVALID_TABLE_ADDR) printk(KERN_WARNING PREFIX "v1.0/r0.71 tables no longer supported\n"); return rsdp_phys; } const char __init * acpi_get_sysname(void) { unsigned long rsdp_phys; struct acpi_table_rsdp *rsdp; struct acpi_table_xsdt *xsdt; struct acpi_table_header *hdr; #ifdef CONFIG_DMAR u64 i, nentries; #endif rsdp_phys = acpi_find_rsdp(); if (!rsdp_phys) { printk(KERN_ERR "ACPI 2.0 RSDP not found, default to \"dig\"\n"); return "dig"; } rsdp = (struct acpi_table_rsdp *)__va(rsdp_phys); if (strncmp(rsdp->signature, ACPI_SIG_RSDP, sizeof(ACPI_SIG_RSDP) - 1)) { printk(KERN_ERR "ACPI 2.0 RSDP signature incorrect, default to \"dig\"\n"); return "dig"; } xsdt = (struct acpi_table_xsdt *)__va(rsdp->xsdt_physical_address); hdr = &xsdt->header; if (strncmp(hdr->signature, ACPI_SIG_XSDT, sizeof(ACPI_SIG_XSDT) - 1)) { printk(KERN_ERR "ACPI 2.0 XSDT signature incorrect, default to \"dig\"\n"); return "dig"; } if (!strcmp(hdr->oem_id, "HP")) { return "hpzx1"; } else if (!strcmp(hdr->oem_id, "SGI")) { if (!strcmp(hdr->oem_table_id + 4, "UV")) return "uv"; else return "sn2"; } else if (xen_pv_domain() && !strcmp(hdr->oem_id, "XEN")) { return "xen"; } #ifdef CONFIG_DMAR /* Look for Intel IOMMU */ nentries = (hdr->length - sizeof(*hdr)) / sizeof(xsdt->table_offset_entry[0]); for (i = 0; i < nentries; i++) { hdr = __va(xsdt->table_offset_entry[i]); if (strncmp(hdr->signature, ACPI_SIG_DMAR, sizeof(ACPI_SIG_DMAR) - 1) == 0) return "dig_vtd"; } #endif return "dig"; } #endif /* CONFIG_IA64_GENERIC */ #define ACPI_MAX_PLATFORM_INTERRUPTS 256 /* Array to record platform interrupt vectors for generic interrupt routing. */ int platform_intr_list[ACPI_MAX_PLATFORM_INTERRUPTS] = { [0 ... ACPI_MAX_PLATFORM_INTERRUPTS - 1] = -1 }; enum acpi_irq_model_id acpi_irq_model = ACPI_IRQ_MODEL_IOSAPIC; /* * Interrupt routing API for device drivers. Provides interrupt vector for * a generic platform event. Currently only CPEI is implemented. */ int acpi_request_vector(u32 int_type) { int vector = -1; if (int_type < ACPI_MAX_PLATFORM_INTERRUPTS) { /* corrected platform error interrupt */ vector = platform_intr_list[int_type]; } else printk(KERN_ERR "acpi_request_vector(): invalid interrupt type\n"); return vector; } char *__init __acpi_map_table(unsigned long phys_addr, unsigned long size) { return __va(phys_addr); } void __init __acpi_unmap_table(char *map, unsigned long size) { } /* -------------------------------------------------------------------------- Boot-time Table Parsing -------------------------------------------------------------------------- */ static int available_cpus __initdata; struct acpi_table_madt *acpi_madt __initdata; static u8 has_8259; static int __init acpi_parse_lapic_addr_ovr(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_local_apic_override *lapic; lapic = (struct acpi_madt_local_apic_override *)header; if (BAD_MADT_ENTRY(lapic, end)) return -EINVAL; if (lapic->address) { iounmap(ipi_base_addr); ipi_base_addr = ioremap(lapic->address, 0); } return 0; } static int __init acpi_parse_lsapic(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_local_sapic *lsapic; lsapic = (struct acpi_madt_local_sapic *)header; /*Skip BAD_MADT_ENTRY check, as lsapic size could vary */ if (lsapic->lapic_flags & ACPI_MADT_ENABLED) { #ifdef CONFIG_SMP smp_boot_data.cpu_phys_id[available_cpus] = (lsapic->id << 8) | lsapic->eid; #endif ++available_cpus; } total_cpus++; return 0; } static int __init acpi_parse_lapic_nmi(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_local_apic_nmi *lacpi_nmi; lacpi_nmi = (struct acpi_madt_local_apic_nmi *)header; if (BAD_MADT_ENTRY(lacpi_nmi, end)) return -EINVAL; /* TBD: Support lapic_nmi entries */ return 0; } static int __init acpi_parse_iosapic(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_io_sapic *iosapic; iosapic = (struct acpi_madt_io_sapic *)header; if (BAD_MADT_ENTRY(iosapic, end)) return -EINVAL; return iosapic_init(iosapic->address, iosapic->global_irq_base); } static unsigned int __initdata acpi_madt_rev; static int __init acpi_parse_plat_int_src(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_interrupt_source *plintsrc; int vector; plintsrc = (struct acpi_madt_interrupt_source *)header; if (BAD_MADT_ENTRY(plintsrc, end)) return -EINVAL; /* * Get vector assignment for this interrupt, set attributes, * and program the IOSAPIC routing table. */ vector = iosapic_register_platform_intr(plintsrc->type, plintsrc->global_irq, plintsrc->io_sapic_vector, plintsrc->eid, plintsrc->id, ((plintsrc->inti_flags & ACPI_MADT_POLARITY_MASK) == ACPI_MADT_POLARITY_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, ((plintsrc->inti_flags & ACPI_MADT_TRIGGER_MASK) == ACPI_MADT_TRIGGER_EDGE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); platform_intr_list[plintsrc->type] = vector; if (acpi_madt_rev > 1) { acpi_cpei_override = plintsrc->flags & ACPI_MADT_CPEI_OVERRIDE; } /* * Save the physical id, so we can check when its being removed */ acpi_cpei_phys_cpuid = ((plintsrc->id << 8) | (plintsrc->eid)) & 0xffff; return 0; } #ifdef CONFIG_HOTPLUG_CPU unsigned int can_cpei_retarget(void) { extern int cpe_vector; extern unsigned int force_cpei_retarget; /* * Only if CPEI is supported and the override flag * is present, otherwise return that its re-targettable * if we are in polling mode. */ if (cpe_vector > 0) { if (acpi_cpei_override || force_cpei_retarget) return 1; else return 0; } return 1; } unsigned int is_cpu_cpei_target(unsigned int cpu) { unsigned int logical_id; logical_id = cpu_logical_id(acpi_cpei_phys_cpuid); if (logical_id == cpu) return 1; else return 0; } void set_cpei_target_cpu(unsigned int cpu) { acpi_cpei_phys_cpuid = cpu_physical_id(cpu); } #endif unsigned int get_cpei_target_cpu(void) { return acpi_cpei_phys_cpuid; } static int __init acpi_parse_int_src_ovr(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_interrupt_override *p; p = (struct acpi_madt_interrupt_override *)header; if (BAD_MADT_ENTRY(p, end)) return -EINVAL; iosapic_override_isa_irq(p->source_irq, p->global_irq, ((p->inti_flags & ACPI_MADT_POLARITY_MASK) == ACPI_MADT_POLARITY_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, ((p->inti_flags & ACPI_MADT_TRIGGER_MASK) == ACPI_MADT_TRIGGER_EDGE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); return 0; } static int __init acpi_parse_nmi_src(struct acpi_subtable_header * header, const unsigned long end) { struct acpi_madt_nmi_source *nmi_src; nmi_src = (struct acpi_madt_nmi_source *)header; if (BAD_MADT_ENTRY(nmi_src, end)) return -EINVAL; /* TBD: Support nimsrc entries */ return 0; } static void __init acpi_madt_oem_check(char *oem_id, char *oem_table_id) { if (!strncmp(oem_id, "IBM", 3) && (!strncmp(oem_table_id, "SERMOW", 6))) { /* * Unfortunately ITC_DRIFT is not yet part of the * official SAL spec, so the ITC_DRIFT bit is not * set by the BIOS on this hardware. */ sal_platform_features |= IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT; cyclone_setup(); } } static int __init acpi_parse_madt(struct acpi_table_header *table) { if (!table) return -EINVAL; acpi_madt = (struct acpi_table_madt *)table; acpi_madt_rev = acpi_madt->header.revision; /* remember the value for reference after free_initmem() */ #ifdef CONFIG_ITANIUM has_8259 = 1; /* Firmware on old Itanium systems is broken */ #else has_8259 = acpi_madt->flags & ACPI_MADT_PCAT_COMPAT; #endif iosapic_system_init(has_8259); /* Get base address of IPI Message Block */ if (acpi_madt->address) ipi_base_addr = ioremap(acpi_madt->address, 0); printk(KERN_INFO PREFIX "Local APIC address %p\n", ipi_base_addr); acpi_madt_oem_check(acpi_madt->header.oem_id, acpi_madt->header.oem_table_id); return 0; } #ifdef CONFIG_ACPI_NUMA #undef SLIT_DEBUG #define PXM_FLAG_LEN ((MAX_PXM_DOMAINS + 1)/32) static int __initdata srat_num_cpus; /* number of cpus */ static u32 __devinitdata pxm_flag[PXM_FLAG_LEN]; #define pxm_bit_set(bit) (set_bit(bit,(void *)pxm_flag)) #define pxm_bit_test(bit) (test_bit(bit,(void *)pxm_flag)) static struct acpi_table_slit __initdata *slit_table; cpumask_t early_cpu_possible_map = CPU_MASK_NONE; static int get_processor_proximity_domain(struct acpi_srat_cpu_affinity *pa) { int pxm; pxm = pa->proximity_domain_lo; if (ia64_platform_is("sn2")) pxm += pa->proximity_domain_hi[0] << 8; return pxm; } static int get_memory_proximity_domain(struct acpi_srat_mem_affinity *ma) { int pxm; pxm = ma->proximity_domain; if (!ia64_platform_is("sn2")) pxm &= 0xff; return pxm; } /* * ACPI 2.0 SLIT (System Locality Information Table) * http://devresource.hp.com/devresource/Docs/TechPapers/IA64/slit.pdf */ void __init acpi_numa_slit_init(struct acpi_table_slit *slit) { u32 len; len = sizeof(struct acpi_table_header) + 8 + slit->locality_count * slit->locality_count; if (slit->header.length != len) { printk(KERN_ERR "ACPI 2.0 SLIT: size mismatch: %d expected, %d actual\n", len, slit->header.length); return; } slit_table = slit; } void __init acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) { int pxm; if (!(pa->flags & ACPI_SRAT_CPU_ENABLED)) return; pxm = get_processor_proximity_domain(pa); /* record this node in proximity bitmap */ pxm_bit_set(pxm); node_cpuid[srat_num_cpus].phys_id = (pa->apic_id << 8) | (pa->local_sapic_eid); /* nid should be overridden as logical node id later */ node_cpuid[srat_num_cpus].nid = pxm; cpu_set(srat_num_cpus, early_cpu_possible_map); srat_num_cpus++; } void __init acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) { unsigned long paddr, size; int pxm; struct node_memblk_s *p, *q, *pend; pxm = get_memory_proximity_domain(ma); /* fill node memory chunk structure */ paddr = ma->base_address; size = ma->length; /* Ignore disabled entries */ if (!(ma->flags & ACPI_SRAT_MEM_ENABLED)) return; /* record this node in proximity bitmap */ pxm_bit_set(pxm); /* Insertion sort based on base address */ pend = &node_memblk[num_node_memblks]; for (p = &node_memblk[0]; p < pend; p++) { if (paddr < p->start_paddr) break; } if (p < pend) { for (q = pend - 1; q >= p; q--) *(q + 1) = *q; } p->start_paddr = paddr; p->size = size; p->nid = pxm; num_node_memblks++; } void __init acpi_numa_arch_fixup(void) { int i, j, node_from, node_to; /* If there's no SRAT, fix the phys_id and mark node 0 online */ if (srat_num_cpus == 0) { node_set_online(0); node_cpuid[0].phys_id = hard_smp_processor_id(); return; } /* * MCD - This can probably be dropped now. No need for pxm ID to node ID * mapping with sparse node numbering iff MAX_PXM_DOMAINS <= MAX_NUMNODES. */ nodes_clear(node_online_map); for (i = 0; i < MAX_PXM_DOMAINS; i++) { if (pxm_bit_test(i)) { int nid = acpi_map_pxm_to_node(i); node_set_online(nid); } } /* set logical node id in memory chunk structure */ for (i = 0; i < num_node_memblks; i++) node_memblk[i].nid = pxm_to_node(node_memblk[i].nid); /* assign memory bank numbers for each chunk on each node */ for_each_online_node(i) { int bank; bank = 0; for (j = 0; j < num_node_memblks; j++) if (node_memblk[j].nid == i) node_memblk[j].bank = bank++; } /* set logical node id in cpu structure */ for_each_possible_early_cpu(i) node_cpuid[i].nid = pxm_to_node(node_cpuid[i].nid); printk(KERN_INFO "Number of logical nodes in system = %d\n", num_online_nodes()); printk(KERN_INFO "Number of memory chunks in system = %d\n", num_node_memblks); if (!slit_table) { for (i = 0; i < MAX_NUMNODES; i++) for (j = 0; j < MAX_NUMNODES; j++) node_distance(i, j) = i == j ? LOCAL_DISTANCE : REMOTE_DISTANCE; return; } memset(numa_slit, -1, sizeof(numa_slit)); for (i = 0; i < slit_table->locality_count; i++) { if (!pxm_bit_test(i)) continue; node_from = pxm_to_node(i); for (j = 0; j < slit_table->locality_count; j++) { if (!pxm_bit_test(j)) continue; node_to = pxm_to_node(j); node_distance(node_from, node_to) = slit_table->entry[i * slit_table->locality_count + j]; } } #ifdef SLIT_DEBUG printk("ACPI 2.0 SLIT locality table:\n"); for_each_online_node(i) { for_each_online_node(j) printk("%03d ", node_distance(i, j)); printk("\n"); } #endif } #endif /* CONFIG_ACPI_NUMA */ /* * success: return IRQ number (>=0) * failure: return < 0 */ int acpi_register_gsi(struct device *dev, u32 gsi, int triggering, int polarity) { if (acpi_irq_model == ACPI_IRQ_MODEL_PLATFORM) return gsi; if (has_8259 && gsi < 16) return isa_irq_to_vector(gsi); return iosapic_register_intr(gsi, (polarity == ACPI_ACTIVE_HIGH) ? IOSAPIC_POL_HIGH : IOSAPIC_POL_LOW, (triggering == ACPI_EDGE_SENSITIVE) ? IOSAPIC_EDGE : IOSAPIC_LEVEL); } void acpi_unregister_gsi(u32 gsi) { if (acpi_irq_model == ACPI_IRQ_MODEL_PLATFORM) return; if (has_8259 && gsi < 16) return; iosapic_unregister_intr(gsi); } static int __init acpi_parse_fadt(struct acpi_table_header *table) { struct acpi_table_header *fadt_header; struct acpi_table_fadt *fadt; if (!table) return -EINVAL; fadt_header = (struct acpi_table_header *)table; if (fadt_header->revision != 3) return -ENODEV; /* Only deal with ACPI 2.0 FADT */ fadt = (struct acpi_table_fadt *)fadt_header; acpi_register_gsi(NULL, fadt->sci_interrupt, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW); return 0; } int __init early_acpi_boot_init(void) { int ret; /* * do a partial walk of MADT to determine how many CPUs * we have including offline CPUs */ if (acpi_table_parse(ACPI_SIG_MADT, acpi_parse_madt)) { printk(KERN_ERR PREFIX "Can't find MADT\n"); return 0; } ret = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_SAPIC, acpi_parse_lsapic, NR_CPUS); if (ret < 1) printk(KERN_ERR PREFIX "Error parsing MADT - no LAPIC entries\n"); #ifdef CONFIG_SMP if (available_cpus == 0) { printk(KERN_INFO "ACPI: Found 0 CPUS; assuming 1\n"); printk(KERN_INFO "CPU 0 (0x%04x)", hard_smp_processor_id()); smp_boot_data.cpu_phys_id[available_cpus] = hard_smp_processor_id(); available_cpus = 1; /* We've got at least one of these, no? */ } smp_boot_data.cpu_count = available_cpus; #endif /* Make boot-up look pretty */ printk(KERN_INFO "%d CPUs available, %d CPUs total\n", available_cpus, total_cpus); return 0; } int __init acpi_boot_init(void) { /* * MADT * ---- * Parse the Multiple APIC Description Table (MADT), if exists. * Note that this table provides platform SMP configuration * information -- the successor to MPS tables. */ if (acpi_table_parse(ACPI_SIG_MADT, acpi_parse_madt)) { printk(KERN_ERR PREFIX "Can't find MADT\n"); goto skip_madt; } /* Local APIC */ if (acpi_table_parse_madt (ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE, acpi_parse_lapic_addr_ovr, 0) < 0) printk(KERN_ERR PREFIX "Error parsing LAPIC address override entry\n"); if (acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_APIC_NMI, acpi_parse_lapic_nmi, 0) < 0) printk(KERN_ERR PREFIX "Error parsing LAPIC NMI entry\n"); /* I/O APIC */ if (acpi_table_parse_madt (ACPI_MADT_TYPE_IO_SAPIC, acpi_parse_iosapic, NR_IOSAPICS) < 1) { if (!ia64_platform_is("sn2")) printk(KERN_ERR PREFIX "Error parsing MADT - no IOSAPIC entries\n"); } /* System-Level Interrupt Routing */ if (acpi_table_parse_madt (ACPI_MADT_TYPE_INTERRUPT_SOURCE, acpi_parse_plat_int_src, ACPI_MAX_PLATFORM_INTERRUPTS) < 0) printk(KERN_ERR PREFIX "Error parsing platform interrupt source entry\n"); if (acpi_table_parse_madt (ACPI_MADT_TYPE_INTERRUPT_OVERRIDE, acpi_parse_int_src_ovr, 0) < 0) printk(KERN_ERR PREFIX "Error parsing interrupt source overrides entry\n"); if (acpi_table_parse_madt(ACPI_MADT_TYPE_NMI_SOURCE, acpi_parse_nmi_src, 0) < 0) printk(KERN_ERR PREFIX "Error parsing NMI SRC entry\n"); skip_madt: /* * FADT says whether a legacy keyboard controller is present. * The FADT also contains an SCI_INT line, by which the system * gets interrupts such as power and sleep buttons. If it's not * on a Legacy interrupt, it needs to be setup. */ if (acpi_table_parse(ACPI_SIG_FADT, acpi_parse_fadt)) printk(KERN_ERR PREFIX "Can't find FADT\n"); #ifdef CONFIG_ACPI_NUMA #ifdef CONFIG_SMP if (srat_num_cpus == 0) { int cpu, i = 1; for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) if (smp_boot_data.cpu_phys_id[cpu] != hard_smp_processor_id()) node_cpuid[i++].phys_id = smp_boot_data.cpu_phys_id[cpu]; } #endif build_cpu_to_node_map(); #endif return 0; } int acpi_gsi_to_irq(u32 gsi, unsigned int *irq) { int tmp; if (has_8259 && gsi < 16) *irq = isa_irq_to_vector(gsi); else { tmp = gsi_to_irq(gsi); if (tmp == -1) return -1; *irq = tmp; } return 0; } /* * ACPI based hotplug CPU support */ #ifdef CONFIG_ACPI_HOTPLUG_CPU static int acpi_map_cpu2node(acpi_handle handle, int cpu, int physid) { #ifdef CONFIG_ACPI_NUMA int pxm_id; int nid; pxm_id = acpi_get_pxm(handle); /* * We don't have cpu-only-node hotadd. But if the system equips * SRAT table, pxm is already found and node is ready. * So, just pxm_to_nid(pxm) is OK. * This code here is for the system which doesn't have full SRAT * table for possible cpus. */ nid = acpi_map_pxm_to_node(pxm_id); node_cpuid[cpu].phys_id = physid; node_cpuid[cpu].nid = nid; #endif return (0); } int additional_cpus __initdata = -1; static __init int setup_additional_cpus(char *s) { if (s) additional_cpus = simple_strtol(s, NULL, 0); return 0; } early_param("additional_cpus", setup_additional_cpus); /* * cpu_possible_map should be static, it cannot change as CPUs * are onlined, or offlined. The reason is per-cpu data-structures * are allocated by some modules at init time, and dont expect to * do this dynamically on cpu arrival/departure. * cpu_present_map on the other hand can change dynamically. * In case when cpu_hotplug is not compiled, then we resort to current * behaviour, which is cpu_possible == cpu_present. * - Ashok Raj * * Three ways to find out the number of additional hotplug CPUs: * - If the BIOS specified disabled CPUs in ACPI/mptables use that. * - The user can overwrite it with additional_cpus=NUM * - Otherwise don't reserve additional CPUs. */ __init void prefill_possible_map(void) { int i; int possible, disabled_cpus; disabled_cpus = total_cpus - available_cpus; if (additional_cpus == -1) { if (disabled_cpus > 0) additional_cpus = disabled_cpus; else additional_cpus = 0; } possible = available_cpus + additional_cpus; if (possible > nr_cpu_ids) possible = nr_cpu_ids; printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", possible, max((possible - available_cpus), 0)); for (i = 0; i < possible; i++) set_cpu_possible(i, true); } int acpi_map_lsapic(acpi_handle handle, int *pcpu) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; struct acpi_madt_local_sapic *lsapic; cpumask_t tmp_map; int cpu, physid; if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer))) return -EINVAL; if (!buffer.length || !buffer.pointer) return -EINVAL; obj = buffer.pointer; if (obj->type != ACPI_TYPE_BUFFER) { kfree(buffer.pointer); return -EINVAL; } lsapic = (struct acpi_madt_local_sapic *)obj->buffer.pointer; if ((lsapic->header.type != ACPI_MADT_TYPE_LOCAL_SAPIC) || (!(lsapic->lapic_flags & ACPI_MADT_ENABLED))) { kfree(buffer.pointer); return -EINVAL; } physid = ((lsapic->id << 8) | (lsapic->eid)); kfree(buffer.pointer); buffer.length = ACPI_ALLOCATE_BUFFER; buffer.pointer = NULL; cpumask_complement(&tmp_map, cpu_present_mask); cpu = cpumask_first(&tmp_map); if (cpu >= nr_cpu_ids) return -EINVAL; acpi_map_cpu2node(handle, cpu, physid); cpu_set(cpu, cpu_present_map); ia64_cpu_to_sapicid[cpu] = physid; acpi_processor_set_pdc(handle); *pcpu = cpu; return (0); } EXPORT_SYMBOL(acpi_map_lsapic); int acpi_unmap_lsapic(int cpu) { ia64_cpu_to_sapicid[cpu] = -1; cpu_clear(cpu, cpu_present_map); #ifdef CONFIG_ACPI_NUMA /* NUMA specific cleanup's */ #endif return (0); } EXPORT_SYMBOL(acpi_unmap_lsapic); #endif /* CONFIG_ACPI_HOTPLUG_CPU */ #ifdef CONFIG_ACPI_NUMA static acpi_status __devinit acpi_map_iosapic(acpi_handle handle, u32 depth, void *context, void **ret) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; struct acpi_madt_io_sapic *iosapic; unsigned int gsi_base; int pxm, node; /* Only care about objects w/ a method that returns the MADT */ if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer))) return AE_OK; if (!buffer.length || !buffer.pointer) return AE_OK; obj = buffer.pointer; if (obj->type != ACPI_TYPE_BUFFER || obj->buffer.length < sizeof(*iosapic)) { kfree(buffer.pointer); return AE_OK; } iosapic = (struct acpi_madt_io_sapic *)obj->buffer.pointer; if (iosapic->header.type != ACPI_MADT_TYPE_IO_SAPIC) { kfree(buffer.pointer); return AE_OK; } gsi_base = iosapic->global_irq_base; kfree(buffer.pointer); /* * OK, it's an IOSAPIC MADT entry, look for a _PXM value to tell * us which node to associate this with. */ pxm = acpi_get_pxm(handle); if (pxm < 0) return AE_OK; node = pxm_to_node(pxm); if (node >= MAX_NUMNODES || !node_online(node) || cpumask_empty(cpumask_of_node(node))) return AE_OK; /* We know a gsi to node mapping! */ map_iosapic_to_node(gsi_base, node); return AE_OK; } static int __init acpi_map_iosapics (void) { acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL); return 0; } fs_initcall(acpi_map_iosapics); #endif /* CONFIG_ACPI_NUMA */ int __ref acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base) { int err; if ((err = iosapic_init(phys_addr, gsi_base))) return err; #ifdef CONFIG_ACPI_NUMA acpi_map_iosapic(handle, 0, NULL, NULL); #endif /* CONFIG_ACPI_NUMA */ return 0; } EXPORT_SYMBOL(acpi_register_ioapic); int acpi_unregister_ioapic(acpi_handle handle, u32 gsi_base) { return iosapic_remove(gsi_base); } EXPORT_SYMBOL(acpi_unregister_ioapic); /* * acpi_save_state_mem() - save kernel state * * TBD when when IA64 starts to support suspend... */ int acpi_save_state_mem(void) { return 0; } /* * acpi_restore_state() */ void acpi_restore_state_mem(void) {} /* * do_suspend_lowlevel() */ void do_suspend_lowlevel(void) {}