From d9ef5a8c26aab09762afce43df64736720b4860e Mon Sep 17 00:00:00 2001 From: Chuck Lever Date: Mon, 20 Mar 2006 13:44:13 -0500 Subject: NFS: introduce mechanism for tracking NFS client metrics Add a per-superblock performance counter facility to the NFS client. This facility mimics the counters available for block devices and for networking. Expose these new counters via the new /proc/self/mountstats interface. Thanks to Andrew Morton and Trond Myklebust for their review and comments. Test plan: fsx and iozone on UP and SMP systems, with and without pre-emption. Watch for memory overwrite bugs, and performance loss (significantly more CPU required per op). Signed-off-by: Chuck Lever Signed-off-by: Trond Myklebust --- fs/nfs/iostat.h | 152 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 152 insertions(+) create mode 100644 fs/nfs/iostat.h (limited to 'fs/nfs/iostat.h') diff --git a/fs/nfs/iostat.h b/fs/nfs/iostat.h new file mode 100644 index 00000000000..dc080e50ec5 --- /dev/null +++ b/fs/nfs/iostat.h @@ -0,0 +1,152 @@ +/* + * linux/fs/nfs/iostat.h + * + * Declarations for NFS client per-mount statistics + * + * Copyright (C) 2005, 2006 Chuck Lever + * + * NFS client per-mount statistics provide information about the health of + * the NFS client and the health of each NFS mount point. Generally these + * are not for detailed problem diagnosis, but simply to indicate that there + * is a problem. + * + * These counters are not meant to be human-readable, but are meant to be + * integrated into system monitoring tools such as "sar" and "iostat". As + * such, the counters are sampled by the tools over time, and are never + * zeroed after a file system is mounted. Moving averages can be computed + * by the tools by taking the difference between two instantaneous samples + * and dividing that by the time between the samples. + */ + +#ifndef _NFS_IOSTAT +#define _NFS_IOSTAT + +#define NFS_IOSTAT_VERS "1.0" + +/* + * NFS byte counters + * + * 1. SERVER - the number of payload bytes read from or written to the + * server by the NFS client via an NFS READ or WRITE request. + * + * 2. NORMAL - the number of bytes read or written by applications via + * the read(2) and write(2) system call interfaces. + * + * 3. DIRECT - the number of bytes read or written from files opened + * with the O_DIRECT flag. + * + * These counters give a view of the data throughput into and out of the NFS + * client. Comparing the number of bytes requested by an application with the + * number of bytes the client requests from the server can provide an + * indication of client efficiency (per-op, cache hits, etc). + * + * These counters can also help characterize which access methods are in + * use. DIRECT by itself shows whether there is any O_DIRECT traffic. + * NORMAL + DIRECT shows how much data is going through the system call + * interface. A large amount of SERVER traffic without much NORMAL or + * DIRECT traffic shows that applications are using mapped files. + * + * NFS page counters + * + * These count the number of pages read or written via nfs_readpage(), + * nfs_readpages(), or their write equivalents. + */ +enum nfs_stat_bytecounters { + NFSIOS_NORMALREADBYTES = 0, + NFSIOS_NORMALWRITTENBYTES, + NFSIOS_DIRECTREADBYTES, + NFSIOS_DIRECTWRITTENBYTES, + NFSIOS_SERVERREADBYTES, + NFSIOS_SERVERWRITTENBYTES, + NFSIOS_READPAGES, + NFSIOS_WRITEPAGES, + __NFSIOS_BYTESMAX, +}; + +/* + * NFS event counters + * + * These counters provide a low-overhead way of monitoring client activity + * without enabling NFS trace debugging. The counters show the rate at + * which VFS requests are made, and how often the client invalidates its + * data and attribute caches. This allows system administrators to monitor + * such things as how close-to-open is working, and answer questions such + * as "why are there so many GETATTR requests on the wire?" + * + * They also count anamolous events such as short reads and writes, silly + * renames due to close-after-delete, and operations that change the size + * of a file (such operations can often be the source of data corruption + * if applications aren't using file locking properly). + */ +enum nfs_stat_eventcounters { + NFSIOS_INODEREVALIDATE = 0, + NFSIOS_DENTRYREVALIDATE, + NFSIOS_DATAINVALIDATE, + NFSIOS_ATTRINVALIDATE, + NFSIOS_VFSOPEN, + NFSIOS_VFSLOOKUP, + NFSIOS_VFSACCESS, + NFSIOS_VFSUPDATEPAGE, + NFSIOS_VFSREADPAGE, + NFSIOS_VFSREADPAGES, + NFSIOS_VFSWRITEPAGE, + NFSIOS_VFSWRITEPAGES, + NFSIOS_VFSGETDENTS, + NFSIOS_VFSSETATTR, + NFSIOS_VFSFLUSH, + NFSIOS_VFSFSYNC, + NFSIOS_VFSLOCK, + NFSIOS_VFSRELEASE, + NFSIOS_CONGESTIONWAIT, + NFSIOS_SETATTRTRUNC, + NFSIOS_EXTENDWRITE, + NFSIOS_SILLYRENAME, + NFSIOS_SHORTREAD, + NFSIOS_SHORTWRITE, + __NFSIOS_COUNTSMAX, +}; + +#ifdef __KERNEL__ + +#include +#include + +struct nfs_iostats { + unsigned long long bytes[__NFSIOS_BYTESMAX]; + unsigned long events[__NFSIOS_COUNTSMAX]; +} ____cacheline_aligned; + +static inline void nfs_inc_stats(struct inode *inode, enum nfs_stat_eventcounters stat) +{ + struct nfs_iostats *iostats; + int cpu; + + cpu = get_cpu(); + iostats = per_cpu_ptr(NFS_SERVER(inode)->io_stats, cpu); + iostats->events[stat] ++; + put_cpu_no_resched(); +} + +static inline void nfs_add_stats(struct inode *inode, enum nfs_stat_bytecounters stat, unsigned long addend) +{ + struct nfs_iostats *iostats; + int cpu; + + cpu = get_cpu(); + iostats = per_cpu_ptr(NFS_SERVER(inode)->io_stats, cpu); + iostats->bytes[stat] += addend; + put_cpu_no_resched(); +} + +static inline struct nfs_iostats *nfs_alloc_iostats(void) +{ + return alloc_percpu(struct nfs_iostats); +} + +static inline void nfs_free_iostats(struct nfs_iostats *stats) +{ + free_percpu(stats); +} + +#endif +#endif -- cgit v1.2.3-18-g5258