From d37ea5d56293b7a883d2a993df5d8b9fb660ed3b Mon Sep 17 00:00:00 2001 From: Auke Kok Date: Tue, 27 Jun 2006 09:08:17 -0700 Subject: e1000: add ich8lan core functions This implements the core new functions needed for ich8's internal NIC. This includes: * ich8 specific read/write code * flash/nvm access code * software semaphore flag functions * 10/100 PHY (fe - no gigabit speed) support for low-end versions * A workaround for a powerdown sequence problem discovered that affects a small number of motherboard. Signed-off-by: Jesse Brandeburg Signed-off-by: Auke Kok --- drivers/net/e1000/e1000_hw.c | 1000 ++++++++++++++++++++++++++++++++++++++- drivers/net/e1000/e1000_hw.h | 386 ++++++++++++++- drivers/net/e1000/e1000_osdep.h | 13 + 3 files changed, 1392 insertions(+), 7 deletions(-) (limited to 'drivers/net/e1000') diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 784f9505864..a3f5ccdfafc 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c @@ -3616,12 +3616,121 @@ e1000_phy_reset(struct e1000_hw *hw) return E1000_SUCCESS; } +/****************************************************************************** +* Work-around for 82566 power-down: on D3 entry- +* 1) disable gigabit link +* 2) write VR power-down enable +* 3) read it back +* if successful continue, else issue LCD reset and repeat +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +void +e1000_phy_powerdown_workaround(struct e1000_hw *hw) +{ + int32_t reg; + uint16_t phy_data; + int32_t retry = 0; + + DEBUGFUNC("e1000_phy_powerdown_workaround"); + + if (hw->phy_type != e1000_phy_igp_3) + return; + + do { + /* Disable link */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* Write VR power-down enable */ + e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data | + IGP3_VR_CTRL_MODE_SHUT); + + /* Read it back and test */ + e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); + + return; + +} + +/****************************************************************************** +* Work-around for 82566 Kumeran PCS lock loss: +* On link status change (i.e. PCI reset, speed change) and link is up and +* speed is gigabit- +* 0) if workaround is optionally disabled do nothing +* 1) wait 1ms for Kumeran link to come up +* 2) check Kumeran Diagnostic register PCS lock loss bit +* 3) if not set the link is locked (all is good), otherwise... +* 4) reset the PHY +* 5) repeat up to 10 times +* Note: this is only called for IGP3 copper when speed is 1gb. +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +int32_t +e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) +{ + int32_t ret_val; + int32_t reg; + int32_t cnt; + uint16_t phy_data; + + if (hw->kmrn_lock_loss_workaround_disabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouls up link + * stability */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + + if (phy_data & MII_SR_LINK_STATUS) { + for (cnt = 0; cnt < 10; cnt++) { + /* read once to clear */ + ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + e1000_phy_hw_reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* unable to acquire PCS lock */ + return E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + /****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code ******************************************************************************/ -static int32_t +int32_t e1000_detect_gig_phy(struct e1000_hw *hw) { int32_t phy_init_status, ret_val; @@ -3803,6 +3912,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, return E1000_SUCCESS; } +/****************************************************************************** +* Get PHY information from various PHY registers for ife PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +e1000_phy_ife_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, polarity; + + DEBUGFUNC("e1000_phy_ife_get_info"); + + phy_info->downshift = (e1000_downshift)hw->speed_downgraded; + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; + + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + phy_info->polarity_correction = + (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> + IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT; + + if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced. */ + polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >> + IFE_PSC_FORCE_POLARITY_SHIFT; + } + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> + IFE_PMC_MDIX_MODE_SHIFT; + + return E1000_SUCCESS; +} + /****************************************************************************** * Get PHY information from various PHY registers fot m88 PHY only. * @@ -7630,4 +7786,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) } +/****************************************************************************** + * Configure PCI-Ex no-snoop + * + * hw - Struct containing variables accessed by shared code. + * no_snoop - Bitmap of no-snoop events. + * + * returns: E1000_SUCCESS + * + *****************************************************************************/ +int32_t +e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop) +{ + uint32_t gcr_reg = 0; + + DEBUGFUNC("e1000_set_pci_ex_no_snoop"); + + if (hw->bus_type == e1000_bus_type_unknown) + e1000_get_bus_info(hw); + + if (hw->bus_type != e1000_bus_type_pci_express) + return E1000_SUCCESS; + + if (no_snoop) { + gcr_reg = E1000_READ_REG(hw, GCR); + gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); + gcr_reg |= no_snoop; + E1000_WRITE_REG(hw, GCR, gcr_reg); + } + if (hw->mac_type == e1000_ich8lan) { + uint32_t ctrl_ext; + + E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); + + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Get software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_get_software_flag(struct e1000_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t extcnf_ctrl; + + DEBUGFUNC("e1000_get_software_flag"); + + if (hw->mac_type == e1000_ich8lan) { + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW locks the resource too long.\n"); + return -E1000_ERR_CONFIG; + } + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Release software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +void +e1000_release_software_flag(struct e1000_hw *hw) +{ + uint32_t extcnf_ctrl; + + DEBUGFUNC("e1000_release_software_flag"); + + if (hw->mac_type == e1000_ich8lan) { + extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + } + + return; +} + +/*************************************************************************** + * + * Disable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_ife_disable_dynamic_power_down"); + + if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/*************************************************************************** + * + * Enable dynamic power down mode in ife PHY. + * It can be used to workaround band-gap problem. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +int32_t +e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw) +{ + uint16_t phy_data; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_ife_enable_dynamic_power_down"); + + if (hw->phy_type == e1000_phy_ife) { + ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN; + ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data); + } + + return ret_val; +} + +/****************************************************************************** + * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access + * register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +int32_t +e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + int32_t error = E1000_SUCCESS; + uint32_t flash_bank = 0; + uint32_t act_offset = 0; + uint32_t bank_offset = 0; + uint16_t word = 0; + uint16_t i = 0; + + /* We need to know which is the valid flash bank. In the event + * that we didn't allocate eeprom_shadow_ram, we may not be + * managing flash_bank. So it cannot be trusted and needs + * to be updated with each read. + */ + /* Value of bit 22 corresponds to the flash bank we're on. */ + flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; + + /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ + bank_offset = flash_bank * (hw->flash_bank_size * 2); + + error = e1000_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + for (i = 0; i < words; i++) { + if (hw->eeprom_shadow_ram != NULL && + hw->eeprom_shadow_ram[offset+i].modified == TRUE) { + data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; + } else { + /* The NVM part needs a byte offset, hence * 2 */ + act_offset = bank_offset + ((offset + i) * 2); + error = e1000_read_ich8_word(hw, act_offset, &word); + if (error != E1000_SUCCESS) + break; + data[i] = word; + } + } + + e1000_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access + * register. Actually, writes are written to the shadow ram cache in the hw + * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to + * the NVM, which occurs when the NVM checksum is updated. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to write + * words - number of words to write + * data - words to write to the EEPROM + *****************************************************************************/ +int32_t +e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + + error = e1000_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + /* A driver can write to the NVM only if it has eeprom_shadow_ram + * allocated. Subsequent reads to the modified words are read from + * this cached structure as well. Writes will only go into this + * cached structure unless it's followed by a call to + * e1000_update_eeprom_checksum() where it will commit the changes + * and clear the "modified" field. + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < words; i++) { + if ((offset + i) < E1000_SHADOW_RAM_WORDS) { + hw->eeprom_shadow_ram[offset+i].modified = TRUE; + hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; + } else { + error = -E1000_ERR_EEPROM; + break; + } + } + } else { + /* Drivers have the option to not allocate eeprom_shadow_ram as long + * as they don't perform any NVM writes. An attempt in doing so + * will result in this error. + */ + error = -E1000_ERR_EEPROM; + } + + e1000_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +e1000_ich8_cycle_init(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + int32_t i = 0; + + DEBUGFUNC("e1000_ich8_cycle_init"); + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* May be check the Flash Des Valid bit in Hw status */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); + return error; + } + + /* Clear FCERR in Hw status by writing 1 */ + /* Clear DAEL in Hw status by writing a 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress bit to check + * against, in order to start a new cycle or FDONE bit should be changed + * in the hardware so that it is 1 after harware reset, which can then be + * used as an indication whether a cycle is in progress or has been + * completed .. we should also have some software semaphore mechanism to + * guard FDONE or the cycle in progress bit so that two threads access to + * those bits can be sequentiallized or a way so that 2 threads dont + * start the cycle at the same time */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* There is no cycle running at present, so we can start a cycle */ + /* Begin by setting Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + error = E1000_SUCCESS; + } else { + /* otherwise poll for sometime so the current cycle has a chance + * to end before giving up. */ + for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + error = E1000_SUCCESS; + break; + } + udelay(1); + } + if (error == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + return error; +} + +/****************************************************************************** + * This function starts a flash cycle and waits for its completion + * + * hw - The pointer to the hw structure + ****************************************************************************/ +int32_t +e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + uint32_t i = 0; + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + udelay(1); + i++; + } while (i < timeout); + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { + error = E1000_SUCCESS; + } + return error; +} + +/****************************************************************************** + * Reads a byte or word from the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte or word to read. + * size - Size of data to read, 1=byte 2=word + * data - Pointer to the word to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, + uint32_t size, uint16_t* data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("e1000_read_ich8_data"); + + if (size < 1 || size > 2 || data == 0x0 || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + udelay(1); + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + /* TODO: TBD maybe check the index against the size of flash */ + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it and try the whole + * sequence a few more times, else read in (shift in) the Flash Data0, + * the order is least significant byte first msb to lsb */ + if (error == E1000_SUCCESS) { + flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0); + if (size == 1) { + *data = (uint8_t)(flash_data & 0x000000FF); + } else if (size == 2) { + *data = (uint16_t)(flash_data & 0x0000FFFF); + } + break; + } else { + /* If we've gotten here, then things are probably completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Writes One /two bytes to the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte/word to read. + * size - Size of data to read, 1=byte 2=word + * data - The byte(s) to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, + uint16_t data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("e1000_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + index > ICH8_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + udelay(1); + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + if (size == 1) + flash_data = (uint32_t)data & 0x00FF; + else + flash_data = (uint32_t)data; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it and try the whole + * sequence a few more times else done */ + error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT); + if (error == E1000_SUCCESS) { + break; + } else { + /* If we're here, then things are most likely completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Reads a single byte from the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to read. + * data - Pointer to a byte to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = 0; + + status = e1000_read_ich8_data(hw, index, 1, &word); + if (status == E1000_SUCCESS) { + *data = (uint8_t)word; + } + + return status; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * Performs verification by reading back the value and then going through + * a retry algorithm before giving up. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to write. + * byte - The byte to write to the NVM. + *****************************************************************************/ +int32_t +e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte) +{ + int32_t error = E1000_SUCCESS; + int32_t program_retries; + uint8_t temp_byte; + + e1000_write_ich8_byte(hw, index, byte); + udelay(100); + + for (program_retries = 0; program_retries < 100; program_retries++) { + e1000_read_ich8_byte(hw, index, &temp_byte); + if (temp_byte == byte) + break; + udelay(10); + e1000_write_ich8_byte(hw, index, byte); + udelay(100); + } + if (program_retries == 100) + error = E1000_ERR_EEPROM; + + return error; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The index of the byte to read. + * data - The byte to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = (uint16_t)data; + + status = e1000_write_ich8_data(hw, index, 1, word); + + return status; +} + +/****************************************************************************** + * Reads a word from the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The starting byte index of the word to read. + * data - Pointer to a word to store the value read. + *****************************************************************************/ +int32_t +e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data) +{ + int32_t status = E1000_SUCCESS; + status = e1000_read_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Writes a word to the NVM using the ICH8 flash access registers. + * + * hw - pointer to e1000_hw structure + * index - The starting byte index of the word to read. + * data - The word to write to the NVM. + *****************************************************************************/ +int32_t +e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data) +{ + int32_t status = E1000_SUCCESS; + status = e1000_write_ich8_data(hw, index, 2, data); + return status; +} + +/****************************************************************************** + * Erases the bank specified. Each bank is a 4k block. Segments are 0 based. + * segment N is 4096 * N + flash_reg_addr. + * + * hw - pointer to e1000_hw structure + * segment - 0 for first segment, 1 for second segment, etc. + *****************************************************************************/ +int32_t +e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + int32_t count = 0; + int32_t error = E1000_ERR_EEPROM; + int32_t iteration, seg_size; + int32_t sector_size; + int32_t j = 0; + int32_t error_flag = 0; + + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ + /* 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector can be + * calculated as = segment * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = segment * 4096 + * 10: Error condition + * 11: The Hw sector size is much bigger than the size asked to + * erase...error condition */ + if (hsfsts.hsf_status.berasesz == 0x0) { + /* Hw sector size 256 */ + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256; + iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256; + } else if (hsfsts.hsf_status.berasesz == 0x1) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K; + iteration = 1; + } else if (hsfsts.hsf_status.berasesz == 0x3) { + sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K; + iteration = 1; + } else { + return error; + } + + for (j = 0; j < iteration ; j++) { + do { + count++; + /* Steps */ + error = e1000_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) { + error_flag = 1; + break; + } + + /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash + * Control */ + hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE; + E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of an index within the block into Flash + * Linear address field in Flash Address. This probably needs to + * be calculated here based off the on-chip segment size and the + * software segment size assumed (4K) */ + /* TBD */ + flash_linear_address = segment * sector_size + j * seg_size; + flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK; + flash_linear_address += hw->flash_base_addr; + + E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address); + + error = e1000_ich8_flash_cycle(hw, 1000000); + /* Check if FCERR is set to 1. If 1, clear it and try the whole + * sequence a few more times else Done */ + if (error == E1000_SUCCESS) { + break; + } else { + hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* repeat for some time before giving up */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + error_flag = 1; + break; + } + } + } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); + if (error_flag == 1) + break; + } + if (error_flag != 1) + error = E1000_SUCCESS; + return error; +} + +/****************************************************************************** + * + * Reverse duplex setting without breaking the link. + * + * hw: Struct containing variables accessed by shared code + * + *****************************************************************************/ +int32_t +e1000_duplex_reversal(struct e1000_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + if (hw->phy_type != e1000_phy_igp_3) + return E1000_SUCCESS; + + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data ^= MII_CR_FULL_DUPLEX; + + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET; + ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data); + + return ret_val; +} + +int32_t +e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, + uint32_t cnf_base_addr, uint32_t cnf_size) +{ + uint32_t ret_val = E1000_SUCCESS; + uint16_t word_addr, reg_data, reg_addr; + uint16_t i; + + /* cnf_base_addr is in DWORD */ + word_addr = (uint16_t)(cnf_base_addr << 1); + + /* cnf_size is returned in size of dwords */ + for (i = 0; i < cnf_size; i++) { + ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); + if (ret_val) + return ret_val; + + ret_val = e1000_get_software_flag(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); + + e1000_release_software_flag(hw); + } + + return ret_val; +} + + +int32_t +e1000_init_lcd_from_nvm(struct e1000_hw *hw) +{ + uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; + + if (hw->phy_type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Check if SW needs configure the PHY */ + reg_data = E1000_READ_REG(hw, FEXTNVM); + if (!(reg_data & FEXTNVM_SW_CONFIG)) + return E1000_SUCCESS; + + /* Wait for basic configuration completes before proceeding*/ + loop = 0; + do { + reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; + udelay(100); + loop++; + } while ((!reg_data) && (loop < 50)); + + /* Clear the Init Done bit for the next init event */ + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, STATUS, reg_data); + + /* Make sure HW does not configure LCD from PHY extended configuration + before SW configuration */ + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { + reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); + cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; + cnf_size >>= 16; + if (cnf_size) { + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; + /* cnf_base_addr is in DWORD */ + cnf_base_addr >>= 16; + + /* Configure LCD from extended configuration region. */ + ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, + cnf_size); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + + diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index 1908e0d3110..f9341e3276b 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h @@ -62,6 +62,7 @@ typedef enum { e1000_82572, e1000_82573, e1000_80003es2lan, + e1000_ich8lan, e1000_num_macs } e1000_mac_type; @@ -70,6 +71,7 @@ typedef enum { e1000_eeprom_spi, e1000_eeprom_microwire, e1000_eeprom_flash, + e1000_eeprom_ich8, e1000_eeprom_none, /* No NVM support */ e1000_num_eeprom_types } e1000_eeprom_type; @@ -98,6 +100,11 @@ typedef enum { e1000_fc_default = 0xFF } e1000_fc_type; +struct e1000_shadow_ram { + uint16_t eeprom_word; + boolean_t modified; +}; + /* PCI bus types */ typedef enum { e1000_bus_type_unknown = 0, @@ -218,6 +225,8 @@ typedef enum { e1000_phy_igp, e1000_phy_igp_2, e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, e1000_phy_undefined = 0xFF } e1000_phy_type; @@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); int32_t e1000_phy_hw_reset(struct e1000_hw *hw); int32_t e1000_phy_reset(struct e1000_hw *hw); +void e1000_phy_powerdown_workaround(struct e1000_hw *hw); +int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); +int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); +int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw); int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); @@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ #define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_ICH_IAMT_MODE 0x2 #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ @@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); int32_t e1000_read_mac_addr(struct e1000_hw * hw); int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); +void e1000_release_software_flag(struct e1000_hw *hw); +int32_t e1000_get_software_flag(struct e1000_hw *hw); /* Filters (multicast, vlan, receive) */ void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); @@ -423,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw); int32_t e1000_get_software_semaphore(struct e1000_hw *hw); void e1000_release_software_semaphore(struct e1000_hw *hw); int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); +int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop); + +int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, + uint8_t *data); +int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, + uint8_t byte); +int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, + uint8_t byte); +int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, + uint16_t *data); +int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, + uint32_t size, uint16_t *data); +int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, + uint16_t words, uint16_t *data); +int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, + uint16_t words, uint16_t *data); +int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment); + + +#define E1000_READ_REG_IO(a, reg) \ + e1000_read_reg_io((a), E1000_##reg) +#define E1000_WRITE_REG_IO(a, reg, val) \ + e1000_write_reg_io((a), E1000_##reg, val) /* PCI Device IDs */ #define E1000_DEV_ID_82542 0x1000 @@ -447,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D #define E1000_DEV_ID_82541EI 0x1013 #define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 #define E1000_DEV_ID_82541ER 0x1078 #define E1000_DEV_ID_82547GI 0x1075 #define E1000_DEV_ID_82541GI 0x1076 @@ -458,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); #define E1000_DEV_ID_82546GB_PCIE 0x108A #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 #define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A #define E1000_DEV_ID_82571EB_COPPER 0x105E #define E1000_DEV_ID_82571EB_FIBER 0x105F #define E1000_DEV_ID_82571EB_SERDES 0x1060 #define E1000_DEV_ID_82572EI_COPPER 0x107D #define E1000_DEV_ID_82572EI_FIBER 0x107E #define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 #define E1000_DEV_ID_82573E 0x108B #define E1000_DEV_ID_82573E_IAMT 0x108C #define E1000_DEV_ID_82573L 0x109A #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB + +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IGP_M 0x104D #define NODE_ADDRESS_SIZE 6 @@ -540,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); E1000_IMS_RXSEQ | \ E1000_IMS_LSC) +/* Additional interrupts need to be handled for e1000_ich8lan: + DSW = The FW changed the status of the DISSW bit in FWSM + PHYINT = The LAN connected device generates an interrupt + EPRST = Manageability reset event */ +#define IMS_ICH8LAN_ENABLE_MASK (\ + E1000_IMS_DSW | \ + E1000_IMS_PHYINT | \ + E1000_IMS_EPRST) /* Number of high/low register pairs in the RAR. The RAR (Receive Address * Registers) holds the directed and multicast addresses that we monitor. We @@ -547,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); * E1000_RAR_ENTRIES - 1 multicast addresses. */ #define E1000_RAR_ENTRIES 15 +#define E1000_RAR_ENTRIES_ICH8LAN 7 #define MIN_NUMBER_OF_DESCRIPTORS 8 #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 @@ -768,6 +827,9 @@ struct e1000_data_desc { #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ +#define E1000_NUM_UNICAST_ICH8LAN 7 +#define E1000_MC_TBL_SIZE_ICH8LAN 32 + /* Receive Address Register */ struct e1000_rar { @@ -777,6 +839,7 @@ struct e1000_rar { /* Number of entries in the Multicast Table Array (MTA). */ #define E1000_NUM_MTA_REGISTERS 128 +#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32 /* IPv4 Address Table Entry */ struct e1000_ipv4_at_entry { @@ -787,6 +850,7 @@ struct e1000_ipv4_at_entry { /* Four wakeup IP addresses are supported */ #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX +#define E1000_IP4AT_SIZE_ICH8LAN 3 #define E1000_IP6AT_SIZE 1 /* IPv6 Address Table Entry */ @@ -845,6 +909,7 @@ struct e1000_ffvt_entry { #define E1000_FLA 0x0001C /* Flash Access - RW */ #define E1000_MDIC 0x00020 /* MDI Control - RW */ #define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ #define E1000_FCT 0x00030 /* Flow Control Type - RW */ @@ -873,6 +938,8 @@ struct e1000_ffvt_entry { #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define FEXTNVM_SW_CONFIG 0x0001 #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ #define E1000_PBS 0x01008 /* Packet Buffer Size */ #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ @@ -900,11 +967,13 @@ struct e1000_ffvt_entry { #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ +#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ @@ -1051,6 +1120,7 @@ struct e1000_ffvt_entry { #define E1000_82542_FLA E1000_FLA #define E1000_82542_MDIC E1000_MDIC #define E1000_82542_SCTL E1000_SCTL +#define E1000_82542_FEXTNVM E1000_FEXTNVM #define E1000_82542_FCAL E1000_FCAL #define E1000_82542_FCAH E1000_FCAH #define E1000_82542_FCT E1000_FCT @@ -1074,6 +1144,19 @@ struct e1000_ffvt_entry { #define E1000_82542_RDLEN0 E1000_82542_RDLEN #define E1000_82542_RDH0 E1000_82542_RDH #define E1000_82542_RDT0 E1000_82542_RDT +#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication + * RX Control - RW */ +#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) +#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ +#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ +#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ +#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ +#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ +#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ +#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ +#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ +#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ +#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ #define E1000_82542_RDTR1 0x00130 #define E1000_82542_RDBAL1 0x00138 #define E1000_82542_RDBAH1 0x0013C @@ -1111,11 +1194,14 @@ struct e1000_ffvt_entry { #define E1000_82542_FLOP E1000_FLOP #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE +#define E1000_82542_PHY_CTRL E1000_PHY_CTRL #define E1000_82542_ERT E1000_ERT #define E1000_82542_RXDCTL E1000_RXDCTL +#define E1000_82542_RXDCTL1 E1000_RXDCTL1 #define E1000_82542_RADV E1000_RADV #define E1000_82542_RSRPD E1000_RSRPD #define E1000_82542_TXDMAC E1000_TXDMAC +#define E1000_82542_KABGTXD E1000_KABGTXD #define E1000_82542_TDFHS E1000_TDFHS #define E1000_82542_TDFTS E1000_TDFTS #define E1000_82542_TDFPC E1000_TDFPC @@ -1311,13 +1397,16 @@ struct e1000_hw_stats { /* Structure containing variables used by the shared code (e1000_hw.c) */ struct e1000_hw { - uint8_t __iomem *hw_addr; + uint8_t *hw_addr; uint8_t *flash_address; e1000_mac_type mac_type; e1000_phy_type phy_type; uint32_t phy_init_script; e1000_media_type media_type; void *back; + struct e1000_shadow_ram *eeprom_shadow_ram; + uint32_t flash_bank_size; + uint32_t flash_base_addr; e1000_fc_type fc; e1000_bus_speed bus_speed; e1000_bus_width bus_width; @@ -1329,6 +1418,7 @@ struct e1000_hw { uint32_t asf_firmware_present; uint32_t eeprom_semaphore_present; uint32_t swfw_sync_present; + uint32_t swfwhw_semaphore_present; unsigned long io_base; uint32_t phy_id; uint32_t phy_revision; @@ -1388,6 +1478,7 @@ struct e1000_hw { boolean_t in_ifs_mode; boolean_t mng_reg_access_disabled; boolean_t leave_av_bit_off; + boolean_t kmrn_lock_loss_workaround_disabled; }; @@ -1436,6 +1527,7 @@ struct e1000_hw { #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ /* Device Status */ #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ @@ -1450,6 +1542,8 @@ struct e1000_hw { #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion + by EEPROM/Flash */ #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ @@ -1507,6 +1601,10 @@ struct e1000_hw { #define E1000_STM_OPCODE 0xDB00 #define E1000_HICR_FW_RESET 0xC0 +#define E1000_SHADOW_RAM_WORDS 2048 +#define E1000_ICH8_NVM_SIG_WORD 0x13 +#define E1000_ICH8_NVM_SIG_MASK 0xC0 + /* EEPROM Read */ #define E1000_EERD_START 0x00000001 /* Start Read */ #define E1000_EERD_DONE 0x00000010 /* Read Done */ @@ -1552,7 +1650,6 @@ struct e1000_hw { #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */ #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ @@ -1592,12 +1689,31 @@ struct e1000_hw { #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 /* In-Band Control */ +#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 /* Half-Duplex Control */ #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 +#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E + +#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 +#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 + +#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 +#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 +#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +#define E1000_PHY_CTRL_SPD_EN 0x00000001 +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 +#define E1000_PHY_CTRL_B2B_EN 0x00000080 + /* LED Control */ #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F #define E1000_LEDCTL_LED0_MODE_SHIFT 0 @@ -1667,6 +1783,9 @@ struct e1000_hw { #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ +#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ +#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ +#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ /* Interrupt Cause Set */ #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ @@ -1693,6 +1812,9 @@ struct e1000_hw { #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICS_DSW E1000_ICR_DSW +#define E1000_ICS_PHYINT E1000_ICR_PHYINT +#define E1000_ICS_EPRST E1000_ICR_EPRST /* Interrupt Mask Set */ #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ @@ -1719,6 +1841,9 @@ struct e1000_hw { #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMS_DSW E1000_ICR_DSW +#define E1000_IMS_PHYINT E1000_ICR_PHYINT +#define E1000_IMS_EPRST E1000_ICR_EPRST /* Interrupt Mask Clear */ #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ @@ -1745,6 +1870,9 @@ struct e1000_hw { #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMC_DSW E1000_ICR_DSW +#define E1000_IMC_PHYINT E1000_ICR_PHYINT +#define E1000_IMC_EPRST E1000_ICR_EPRST /* Receive Control */ #define E1000_RCTL_RST 0x00000001 /* Software reset */ @@ -1919,9 +2047,10 @@ struct e1000_hw { #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 /* Definitions for power management and wakeup registers */ /* Wake Up Control */ @@ -2011,6 +2140,15 @@ struct e1000_hw { #define E1000_FWSM_MODE_SHIFT 1 #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ +#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ +#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ +#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ +#define E1000_FWSM_SKUEL_SHIFT 29 +#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ +#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ +#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ +#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ + /* FFLT Debug Register */ #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ @@ -2083,6 +2221,8 @@ struct e1000_host_command_info { E1000_GCR_TXDSCW_NO_SNOOP | \ E1000_GCR_TXDSCR_NO_SNOOP) +#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL + #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 /* Function Active and Power State to MNG */ #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 @@ -2141,8 +2281,10 @@ struct e1000_host_command_info { #define EEPROM_PHY_CLASS_WORD 0x0007 #define EEPROM_INIT_CONTROL1_REG 0x000A #define EEPROM_INIT_CONTROL2_REG 0x000F +#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 #define EEPROM_INIT_CONTROL3_PORT_B 0x0014 #define EEPROM_INIT_3GIO_3 0x001A +#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 #define EEPROM_INIT_CONTROL3_PORT_A 0x0024 #define EEPROM_CFG 0x0012 #define EEPROM_FLASH_VERSION 0x0032 @@ -2154,10 +2296,16 @@ struct e1000_host_command_info { /* Word definitions for ID LED Settings */ #define ID_LED_RESERVED_0000 0x0000 #define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_RESERVED_82573 0xF746 +#define ID_LED_DEFAULT_82573 0x1811 #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ (ID_LED_OFF1_OFF2 << 8) | \ (ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_DEF1_DEF2)) +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_OFF2 << 8) | \ + (ID_LED_DEF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) #define ID_LED_DEF1_DEF2 0x1 #define ID_LED_DEF1_ON2 0x2 #define ID_LED_DEF1_OFF2 0x3 @@ -2192,6 +2340,11 @@ struct e1000_host_command_info { #define EEPROM_WORD0F_ASM_DIR 0x2000 #define EEPROM_WORD0F_ANE 0x0800 #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 +#define EEPROM_WORD0F_LPLU 0x0001 + +/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ +#define EEPROM_WORD1020_GIGA_DISABLE 0x0010 +#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 /* Mask bits for fields in Word 0x1a of the EEPROM */ #define EEPROM_WORD1A_ASPM_MASK 0x000C @@ -2266,23 +2419,29 @@ struct e1000_host_command_info { #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 /* PBA constants */ +#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ #define E1000_PBA_22K 0x0016 #define E1000_PBA_24K 0x0018 #define E1000_PBA_30K 0x001E #define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 #define E1000_PBA_38K 0x0026 #define E1000_PBA_40K 0x0028 #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ +#define E1000_PBS_16K E1000_PBA_16K + /* Flow Control Constants */ #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 @@ -2337,7 +2496,7 @@ struct e1000_host_command_info { /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ #define AUTO_READ_DONE_TIMEOUT 10 /* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 40 +#define PHY_CFG_TIMEOUT 100 #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) @@ -3002,6 +3161,221 @@ struct e1000_host_command_info { #define L1LXT971A_PHY_ID 0x001378E0 #define GG82563_E_PHY_ID 0x01410CA0 + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) \ + (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) + +#define IGP3_PHY_PORT_CTRL \ + PHY_REG(769, 17) /* Port General Configuration */ +#define IGP3_PHY_RATE_ADAPT_CTRL \ + PHY_REG(769, 25) /* Rate Adapter Control Register */ + +#define IGP3_KMRN_FIFO_CTRL_STATS \ + PHY_REG(770, 16) /* KMRN FIFO's control/status register */ +#define IGP3_KMRN_POWER_MNG_CTRL \ + PHY_REG(770, 17) /* KMRN Power Management Control Register */ +#define IGP3_KMRN_INBAND_CTRL \ + PHY_REG(770, 18) /* KMRN Inband Control Register */ +#define IGP3_KMRN_DIAG \ + PHY_REG(770, 19) /* KMRN Diagnostic register */ +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ +#define IGP3_KMRN_ACK_TIMEOUT \ + PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ + +#define IGP3_VR_CTRL \ + PHY_REG(776, 18) /* Voltage regulator control register */ +#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ + +#define IGP3_CAPABILITY \ + PHY_REG(776, 19) /* IGP3 Capability Register */ + +/* Capabilities for SKU Control */ +#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ +#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ +#define IGP3_CAP_ASF 0x0004 /* Support ASF */ +#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ +#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ +#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ +#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ +#define IGP3_CAP_RSS 0x0080 /* Support RSS */ +#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ +#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ + +#define IGP3_PPC_JORDAN_EN 0x0001 +#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 + +#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 +#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E +#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 +#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 + +#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ +#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ + +#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) +#define IGP3_KMRN_EC_DIS_INBAND 0x0080 + +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ +#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ +#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ +#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ +#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ +#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Re