aboutsummaryrefslogtreecommitdiff
path: root/security
AgeCommit message (Collapse)Author
2009-01-08remove lots of double-semicolonsFernando Carrijo
Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: Theodore Ts'o <tytso@mit.edu> Acked-by: Mark Fasheh <mfasheh@suse.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: James Morris <jmorris@namei.org> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08devices cgroup: allow mkfifoSerge E. Hallyn
The devcgroup_inode_permission() hook in the devices whitelist cgroup has always bypassed access checks on fifos. But the mknod hook did not. The devices whitelist is only about block and char devices, and fifos can't even be added to the whitelist, so fifos can't be created at all except by tasks which have 'a' in their whitelist (meaning they have access to all devices). Fix the behavior by bypassing access checks to mkfifo. Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: James Morris <jmorris@namei.org> Reported-by: Daniel Lezcano <dlezcano@fr.ibm.com> Cc: <stable@kernel.org> [2.6.27.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08devcgroup: use list_for_each_entry_rcu()Lai Jiangshan
We should use list_for_each_entry_rcu in RCU read site. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Paul Menage <menage@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07Merge branch 'next' into for-linusJames Morris
2009-01-07CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3]David Howells
Fix a regression in cap_capable() due to: commit 3b11a1decef07c19443d24ae926982bc8ec9f4c0 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:26 2008 +1100 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change passes the set of credentials to be tested down into the commoncap and SELinux code. The security functions called by capable() and has_capability() select the appropriate set of credentials from the process being checked. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: J. Bruce Fields <bfields@citi.umich.edu> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-07Revert "CRED: Fix regression in cap_capable() as shown up by sys_faccessat() ↵James Morris
[ver #2]" This reverts commit 14eaddc967b16017d4a1a24d2be6c28ecbe06ed8. David has a better version to come.
2009-01-05Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6 * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: inotify: fix type errors in interfaces fix breakage in reiserfs_new_inode() fix the treatment of jfs special inodes vfs: remove duplicate code in get_fs_type() add a vfs_fsync helper sys_execve and sys_uselib do not call into fsnotify zero i_uid/i_gid on inode allocation inode->i_op is never NULL ntfs: don't NULL i_op isofs check for NULL ->i_op in root directory is dead code affs: do not zero ->i_op kill suid bit only for regular files vfs: lseek(fd, 0, SEEK_CUR) race condition
2009-01-05zero i_uid/i_gid on inode allocationAl Viro
... and don't bother in callers. Don't bother with zeroing i_blocks, while we are at it - it's already been zeroed. i_mode is not worth the effort; it has no common default value. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-05inode->i_op is never NULLAl Viro
We used to have rather schizophrenic set of checks for NULL ->i_op even though it had been eliminated years ago. You'd need to go out of your way to set it to NULL explicitly _and_ a bunch of code would die on such inodes anyway. After killing two remaining places that still did that bogosity, all that crap can go away. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-05SELinux: shrink sizeof av_inhert selinux_class_perm and contextEric Paris
I started playing with pahole today and decided to put it against the selinux structures. Found we could save a little bit of space on x86_64 (and no harm on i686) just reorganizing some structs. Object size changes: av_inherit: 24 -> 16 selinux_class_perm: 48 -> 40 context: 80 -> 72 Admittedly there aren't many of av_inherit or selinux_class_perm's in the kernel (33 and 1 respectively) But the change to the size of struct context reverberate out a bit. I can get some hard number if they are needed, but I don't see why they would be. We do change which cacheline context->len and context->str would be on, but I don't see that as a problem since we are clearly going to have to load both if the context is to be of any value. I've run with the patch and don't seem to be having any problems. An example of what's going on using struct av_inherit would be: form: to: struct av_inherit { struct av_inherit { u16 tclass; const char **common_pts; const char **common_pts; u32 common_base; u32 common_base; u16 tclass; }; (notice all I did was move u16 tclass to the end of the struct instead of the beginning) Memory layout before the change: struct av_inherit { u16 tclass; /* 2 */ /* 6 bytes hole */ const char** common_pts; /* 8 */ u32 common_base; /* 4 */ /* 4 byes padding */ /* size: 24, cachelines: 1 */ /* sum members: 14, holes: 1, sum holes: 6 */ /* padding: 4 */ }; Memory layout after the change: struct av_inherit { const char ** common_pts; /* 8 */ u32 common_base; /* 4 */ u16 tclass; /* 2 */ /* 2 bytes padding */ /* size: 16, cachelines: 1 */ /* sum members: 14, holes: 0, sum holes: 0 */ /* padding: 2 */ }; Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-05CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]David Howells
Fix a regression in cap_capable() due to: commit 5ff7711e635b32f0a1e558227d030c7e45b4a465 Author: David Howells <dhowells@redhat.com> Date: Wed Dec 31 02:52:28 2008 +0000 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change splits capable() from has_capability() down into the commoncap and SELinux code. The capable() security op now only deals with the current process, and uses the current process's subjective creds. A new security op - task_capable() - is introduced that can check any task's objective creds. strictly the capable() security op is superfluous with the presence of the task_capable() op, however it should be faster to call the capable() op since two fewer arguments need be passed down through the various layers. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-01-05Merge branch 'master' of ↵James Morris
git://git.infradead.org/users/pcmoore/lblnet-2.6_next into next
2009-01-04audit: validate comparison operations, store them in sane formAl Viro
Don't store the field->op in the messy (and very inconvenient for e.g. audit_comparator()) form; translate to dense set of values and do full validation of userland-submitted value while we are at it. ->audit_init_rule() and ->audit_match_rule() get new values now; in-tree instances updated. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-03Merge branch 'cpus4096-for-linus-3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'cpus4096-for-linus-3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (77 commits) x86: setup_per_cpu_areas() cleanup cpumask: fix compile error when CONFIG_NR_CPUS is not defined cpumask: use alloc_cpumask_var_node where appropriate cpumask: convert shared_cpu_map in acpi_processor* structs to cpumask_var_t x86: use cpumask_var_t in acpi/boot.c x86: cleanup some remaining usages of NR_CPUS where s/b nr_cpu_ids sched: put back some stack hog changes that were undone in kernel/sched.c x86: enable cpus display of kernel_max and offlined cpus ia64: cpumask fix for is_affinity_mask_valid() cpumask: convert RCU implementations, fix xtensa: define __fls mn10300: define __fls m32r: define __fls h8300: define __fls frv: define __fls cris: define __fls cpumask: CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS cpumask: zero extra bits in alloc_cpumask_var_node cpumask: replace for_each_cpu_mask_nr with for_each_cpu in kernel/time/ cpumask: convert mm/ ...
2009-01-01cpumask: prepare for iterators to only go to nr_cpu_ids/nr_cpumask_bits.: coreRusty Russell
Impact: cleanup In future, all cpumask ops will only be valid (in general) for bit numbers < nr_cpu_ids. So use that instead of NR_CPUS in iterators and other comparisons. This is always safe: no cpu number can be >= nr_cpu_ids, and nr_cpu_ids is initialized to NR_CPUS at boot. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Mike Travis <travis@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: James Morris <jmorris@namei.org> Cc: Eric Biederman <ebiederm@xmission.com>
2009-01-01keys: fix sparse warning by adding __user annotation to castJames Morris
Fix the following sparse warning: CC security/keys/key.o security/keys/keyctl.c:1297:10: warning: incorrect type in argument 2 (different address spaces) security/keys/keyctl.c:1297:10: expected char [noderef] <asn:1>*buffer security/keys/keyctl.c:1297:10: got char *<noident> which appears to be caused by lack of __user annotation to the cast of a syscall argument. Signed-off-by: James Morris <jmorris@namei.org> Acked-by: David Howells <dhowells@redhat.com>
2008-12-31introduce new LSM hooks where vfsmount is available.Kentaro Takeda
Add new LSM hooks for path-based checks. Call them on directory-modifying operations at the points where we still know the vfsmount involved. Signed-off-by: Kentaro Takeda <takedakn@nttdata.co.jp> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Toshiharu Harada <haradats@nttdata.co.jp> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-12-31smack: Add support for unlabeled network hosts and networksCasey Schaufler
Add support for unlabeled network hosts and networks. Relies heavily on Paul Moore's netlabel support. Creates a new entry in /smack called netlabel. Writes to /smack/netlabel take the form: A.B.C.D LABEL or A.B.C.D/N LABEL where A.B.C.D is a network address, N is an integer between 0-32, and LABEL is the Smack label to be used. If /N is omitted /32 is assumed. N designates the netmask for the address. Entries are matched by the most specific address/mask pair. 0.0.0.0/0 will match everything, while 192.168.1.117/32 will match exactly one host. A new system label "@", pronounced "web", is defined. Processes can not be assigned the web label. An address assigned the web label can be written to by any process, and packets coming from a web address can be written to any socket. Use of the web label is a violation of any strict MAC policy, but the web label has been requested many times. The nltype entry has been removed from /smack. It did not work right and the netlabel interface can be used to specify that all hosts be treated as unlabeled. CIPSO labels on incoming packets will be honored, even from designated single label hosts. Single label hosts can only be written to by processes with labels that can write to the label of the host. Packets sent to single label hosts will always be unlabeled. Once added a single label designation cannot be removed, however the label may be changed. The behavior of the ambient label remains unchanged. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Paul Moore <paul.moore@hp.com>
2008-12-31selinux: Deprecate and schedule the removal of the the compat_net functionalityPaul Moore
This patch is the first step towards removing the old "compat_net" code from the kernel. Secmark, the "compat_net" replacement was first introduced in 2.6.18 (September 2006) and the major Linux distributions with SELinux support have transitioned to Secmark so it is time to start deprecating the "compat_net" mechanism. Testing a patched version of 2.6.28-rc6 with the initial release of Fedora Core 5 did not show any problems when running in enforcing mode. This patch adds an entry to the feature-removal-schedule.txt file and removes the SECURITY_SELINUX_ENABLE_SECMARK_DEFAULT configuration option, forcing Secmark on by default although it can still be disabled at runtime. The patch also makes the Secmark permission checks "dynamic" in the sense that they are only executed when Secmark is configured; this should help prevent problems with older distributions that have not yet migrated to Secmark. Signed-off-by: Paul Moore <paul.moore@hp.com> Acked-by: James Morris <jmorris@namei.org>
2008-12-31netlabel: Update kernel configuration APIPaul Moore
Update the NetLabel kernel API to expose the new features added in kernel releases 2.6.25 and 2.6.28: the static/fallback label functionality and network address based selectors. Signed-off-by: Paul Moore <paul.moore@hp.com>
2008-12-29KEYS: Fix variable uninitialisation warningsDavid Howells
Fix variable uninitialisation warnings introduced in: commit 8bbf4976b59fc9fc2861e79cab7beb3f6d647640 Author: David Howells <dhowells@redhat.com> Date: Fri Nov 14 10:39:14 2008 +1100 KEYS: Alter use of key instantiation link-to-keyring argument As: security/keys/keyctl.c: In function 'keyctl_negate_key': security/keys/keyctl.c:976: warning: 'dest_keyring' may be used uninitialized in this function security/keys/keyctl.c: In function 'keyctl_instantiate_key': security/keys/keyctl.c:898: warning: 'dest_keyring' may be used uninitialized in this function Some versions of gcc notice that get_instantiation_key() doesn't always set *_dest_keyring, but fail to observe that if this happens then *_dest_keyring will not be read by the caller. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-12-29Merge branch 'next' into for-linusJames Morris
2008-12-28Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6Linus Torvalds
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1429 commits) net: Allow dependancies of FDDI & Tokenring to be modular. igb: Fix build warning when DCA is disabled. net: Fix warning fallout from recent NAPI interface changes. gro: Fix potential use after free sfc: If AN is enabled, always read speed/duplex from the AN advertising bits sfc: When disabling the NIC, close the device rather than unregistering it sfc: SFT9001: Add cable diagnostics sfc: Add support for multiple PHY self-tests sfc: Merge top-level functions for self-tests sfc: Clean up PHY mode management in loopback self-test sfc: Fix unreliable link detection in some loopback modes sfc: Generate unique names for per-NIC workqueues 802.3ad: use standard ethhdr instead of ad_header 802.3ad: generalize out mac address initializer 802.3ad: initialize ports LACPDU from const initializer 802.3ad: remove typedef around ad_system 802.3ad: turn ports is_individual into a bool 802.3ad: turn ports is_enabled into a bool 802.3ad: make ntt bool ixgbe: Fix set_ringparam in ixgbe to use the same memory pools. ... Fixed trivial IPv4/6 address printing conflicts in fs/cifs/connect.c due to the conversion to %pI (in this networking merge) and the addition of doing IPv6 addresses (from the earlier merge of CIFS).
2008-12-25smackfs: check for allocation failures in smk_set_access()Sergio Luis
smackfs: check for allocation failures in smk_set_access() While adding a new subject/object pair to smack_list, smk_set_access() didn't check the return of kzalloc(). This patch changes smk_set_access() to return 0 or -ENOMEM, based on kzalloc()'s return. It also updates its caller, smk_write_load(), to check for smk_set_access()'s return, given it is no longer a void return function. Signed-off-by: Sergio Luis <sergio@larces.uece.br> To: Casey Schaufler <casey@schaufler-ca.com> Cc: Ahmed S. Darwish <darwish.07@gmail.com> Cc: LSM <linux-security-module@vger.kernel.org> Cc: LKLM <linux-kernel@vger.kernel.org> Acked-by: Casey Schaufler <casey@schaufler-ca.com>
2008-12-20SELinux: don't check permissions for kernel mountsJames Morris
Don't bother checking permissions when the kernel performs an internal mount, as this should always be allowed. Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
2008-12-20security: pass mount flags to security_sb_kern_mount()James Morris
Pass mount flags to security_sb_kern_mount(), so security modules can determine if a mount operation is being performed by the kernel. Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
2008-12-20SELinux: correctly detect proc filesystems of the form "proc/foo"Stephen Smalley
Map all of these proc/ filesystem types to "proc" for the policy lookup at filesystem mount time. Signed-off-by: James Morris <jmorris@namei.org>
2008-11-25CRED: fix sparse warningsHannes Eder
Impact: fix sparse warnings Fix the following sparse warnings: security/security.c:228:2: warning: returning void-valued expression security/security.c:233:2: warning: returning void-valued expression security/security.c:616:2: warning: returning void-valued expression Signed-off-by: Hannes Eder <hannes@hanneseder.net> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-15capabilities: define get_vfs_caps_from_disk when file caps are not enabledEric Paris
When CONFIG_SECURITY_FILE_CAPABILITIES is not set the audit system may try to call into the capabilities function vfs_cap_from_file. This patch defines that function so kernels can build and work. Signed-off-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Allow kernel services to override LSM settings for task actionsDavid Howells
Allow kernel services to override LSM settings appropriate to the actions performed by a task by duplicating a set of credentials, modifying it and then using task_struct::cred to point to it when performing operations on behalf of a task. This is used, for example, by CacheFiles which has to transparently access the cache on behalf of a process that thinks it is doing, say, NFS accesses with a potentially inappropriate (with respect to accessing the cache) set of credentials. This patch provides two LSM hooks for modifying a task security record: (*) security_kernel_act_as() which allows modification of the security datum with which a task acts on other objects (most notably files). (*) security_kernel_create_files_as() which allows modification of the security datum that is used to initialise the security data on a file that a task creates. The patch also provides four new credentials handling functions, which wrap the LSM functions: (1) prepare_kernel_cred() Prepare a set of credentials for a kernel service to use, based either on a daemon's credentials or on init_cred. All the keyrings are cleared. (2) set_security_override() Set the LSM security ID in a set of credentials to a specific security context, assuming permission from the LSM policy. (3) set_security_override_from_ctx() As (2), but takes the security context as a string. (4) set_create_files_as() Set the file creation LSM security ID in a set of credentials to be the same as that on a particular inode. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Add a kernel_service object class to SELinuxDavid Howells
Add a 'kernel_service' object class to SELinux and give this object class two access vectors: 'use_as_override' and 'create_files_as'. The first vector is used to grant a process the right to nominate an alternate process security ID for the kernel to use as an override for the SELinux subjective security when accessing stuff on behalf of another process. For example, CacheFiles when accessing the cache on behalf on a process accessing an NFS file needs to use a subjective security ID appropriate to the cache rather then the one the calling process is using. The cachefilesd daemon will nominate the security ID to be used. The second vector is used to grant a process the right to nominate a file creation label for a kernel service to use. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Differentiate objective and effective subjective credentials on a taskDavid Howells
Differentiate the objective and real subjective credentials from the effective subjective credentials on a task by introducing a second credentials pointer into the task_struct. task_struct::real_cred then refers to the objective and apparent real subjective credentials of a task, as perceived by the other tasks in the system. task_struct::cred then refers to the effective subjective credentials of a task, as used by that task when it's actually running. These are not visible to the other tasks in the system. __task_cred(task) then refers to the objective/real credentials of the task in question. current_cred() refers to the effective subjective credentials of the current task. prepare_creds() uses the objective creds as a base and commit_creds() changes both pointers in the task_struct (indeed commit_creds() requires them to be the same). override_creds() and revert_creds() change the subjective creds pointer only, and the former returns the old subjective creds. These are used by NFSD, faccessat() and do_coredump(), and will by used by CacheFiles. In SELinux, current_has_perm() is provided as an alternative to task_has_perm(). This uses the effective subjective context of current, whereas task_has_perm() uses the objective/real context of the subject. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Prettify commoncap.cDavid Howells
Prettify commoncap.c. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Make execve() take advantage of copy-on-write credentialsDavid Howells
Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Inaugurate COW credentialsDavid Howells
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Pass credentials through dentry_open()David Howells
Pass credentials through dentry_open() so that the COW creds patch can have SELinux's flush_unauthorized_files() pass the appropriate creds back to itself when it opens its null chardev. The security_dentry_open() call also now takes a creds pointer, as does the dentry_open hook in struct security_operations. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Make inode_has_perm() and file_has_perm() take a cred pointerDavid Howells
Make inode_has_perm() and file_has_perm() take a cred pointer rather than a task pointer. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Separate per-task-group keyrings from signal_structDavid Howells
Separate per-task-group keyrings from signal_struct and dangle their anchor from the cred struct rather than the signal_struct. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Wrap access to SELinux's task SIDDavid Howells
Wrap access to SELinux's task SID, using task_sid() and current_sid() as appropriate. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Use RCU to access another task's creds and to release a task's own credsDavid Howells
Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Wrap current->cred and a few other accessorsDavid Howells
Wrap current->cred and a few other accessors to hide their actual implementation. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Detach the credentials from task_structDavid Howells