Age | Commit message (Collapse) | Author |
|
'handler_enabled' is a global flag indicating whether the TIPC
signal handling service is enabled or not. The lack of lock
protection for this flag incurs a risk for contention, so that
a tipc_k_signal() call might queue a signal handler to a destroyed
signal queue, with unpredictable results. To correct this, we let
the already existing 'qitem_lock' protect the flag, as it already
does with the queue itself. This way, we ensure that the flag
always is consistent across all cores.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The 'signal handler' service in TIPC is a mechanism that makes it
possible to postpone execution of functions, by launcing them into
a job queue for execution in a separate tasklet, independent of
the launching execution thread.
When we do rmmod on the tipc module, this service is stopped after
the network service. At the same time, the stopping of the network
service may itself launch jobs for execution, with the risk that these
functions may be scheduled for execution after the data structures
meant to be accessed by the job have already been deleted. We have
seen this happen, most often resulting in an oops.
This commit ensures that the signal handler is the very first to be
stopped when TIPC is shut down, so there are no surprises during
the cleanup of the other services.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch now always passes msg->msg_namelen as 0. recvmsg handlers must
set msg_namelen to the proper size <= sizeof(struct sockaddr_storage)
to return msg_name to the user.
This prevents numerous uninitialized memory leaks we had in the
recvmsg handlers and makes it harder for new code to accidentally leak
uninitialized memory.
Optimize for the case recvfrom is called with NULL as address. We don't
need to copy the address at all, so set it to NULL before invoking the
recvmsg handler. We can do so, because all the recvmsg handlers must
cope with the case a plain read() is called on them. read() also sets
msg_name to NULL.
Also document these changes in include/linux/net.h as suggested by David
Miller.
Changes since RFC:
Set msg->msg_name = NULL if user specified a NULL in msg_name but had a
non-null msg_namelen in verify_iovec/verify_compat_iovec. This doesn't
affect sendto as it would bail out earlier while trying to copy-in the
address. It also more naturally reflects the logic by the callers of
verify_iovec.
With this change in place I could remove "
if (!uaddr || msg_sys->msg_namelen == 0)
msg->msg_name = NULL
".
This change does not alter the user visible error logic as we ignore
msg_namelen as long as msg_name is NULL.
Also remove two unnecessary curly brackets in ___sys_recvmsg and change
comments to netdev style.
Cc: David Miller <davem@davemloft.net>
Suggested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As suggested by David Miller, make genl_register_family_with_ops()
a macro and pass only the array, evaluating ARRAY_SIZE() in the
macro, this is a little safer.
The openvswitch has some indirection, assing ops/n_ops directly in
that code. This might ultimately just assign the pointers in the
family initializations, saving the struct genl_family_and_ops and
code (once mcast groups are handled differently.)
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This fixes the following Smatch warning:
net/tipc/link.c:2364 tipc_link_recv_fragment()
warn: variable dereferenced before check '*head' (see line 2361)
A null pointer might be passed to skb_try_coalesce if
a malicious sender injects orphan fragments on a link.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If appending a received fragment to the pending fragment chain
in a unicast link fails, the current code tries to force a retransmission
of the fragment by decrementing the 'next received sequence number'
field in the link. This is done under the assumption that the failure
is caused by an out-of-memory situation, an assumption that does
not hold true after the previous patch in this series.
A failure to append a fragment can now only be caused by a protocol
violation by the sending peer, and it must hence be assumed that it
is either malicious or buggy. Either way, the correct behavior is now
to reset the link instead of trying to revert its sequence number.
So, this is what we do in this commit.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When the first fragment of a long data data message is received on a link, a
reassembly buffer large enough to hold the data from this and all subsequent
fragments of the message is allocated. The payload of each new fragment is
copied into this buffer upon arrival. When the last fragment is received, the
reassembled message is delivered upwards to the port/socket layer.
Not only is this an inefficient approach, but it may also cause bursts of
reassembly failures in low memory situations. since we may fail to allocate
the necessary large buffer in the first place. Furthermore, after 100 subsequent
such failures the link will be reset, something that in reality aggravates the
situation.
To remedy this problem, this patch introduces a different approach. Instead of
allocating a big reassembly buffer, we now append the arriving fragments
to a reassembly chain on the link, and deliver the whole chain up to the
socket layer once the last fragment has been received. This is safe because
the retransmission layer of a TIPC link always delivers packets in strict
uninterrupted order, to the reassembly layer as to all other upper layers.
Hence there can never be more than one fragment chain pending reassembly at
any given time in a link, and we can trust (but still verify) that the
fragments will be chained up in the correct order.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When a message fragment is received in a broadcast or unicast link,
the reception code will append the fragment payload to a big reassembly
buffer through a call to the function tipc_recv_fragm(). However, after
the return of that call, the logics goes on and passes the fragment
buffer to the function tipc_net_route_msg(), which will simply drop it.
This behavior is a remnant from the now obsolete multi-cluster
functionality, and has no relevance in the current code base.
Although currently harmless, this unnecessary call would be fatal
after applying the next patch in this series, which introduces
a completely new reassembly algorithm. So we change the code to
eliminate the redundant call.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The message dispatching part of tipc_recv_msg() is wrapped layers of
while/if/if/switch, causing out-of-control indentation and does not
look very good. We reduce two indentation levels by separating the
message dispatching from the blocks that checks link state and
sequence numbers, allowing longer function and arg names to be
consistently indented without wrapping. Additionally we also rename
"cont" label to "discard" and add one new label called "unlock_discard"
to make code clearer. In all, these are cosmetic changes that do not
alter the operation of TIPC in any way.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Cc: David Laight <david.laight@aculab.com>
Cc: Andreas Bofjäll <andreas.bofjall@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There are a mix of function prototypes with and without extern
in the kernel sources. Standardize on not using extern for
function prototypes.
Function prototypes don't need to be written with extern.
extern is assumed by the compiler. Its use is as unnecessary as
using auto to declare automatic/local variables in a block.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When checking statistics or changing parameters on a link, the
link_find_link function is used to locate the link with a given
name. The complex method of deconstructing the name into local
and remote address/interface is error prone and may fail if the
interface names contains special characters. We change the lookup
method to iterate over the list of nodes and compare the link
names.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
link_cmd_set_value() takes commands for link, bearer and media related
configuration. Genereally the function returns 0 when a command is
recognized, and -EINVAL when it is not. However, in the switch for link
related commands it returns 0 even when the command is unrecognized. This
will sometimes make it look as if a failed configuration command has been
successful, but has otherwise no negative effects.
We remove this anomaly by returning -EINVAL even for link commands. We also
rework all three switches to make them conforming to common kernel coding
style.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently, rcv_msg() always returns zero on a packet delivery upcall
from net_device.
To make its behavior more compliant with the way this API should be
used, we change this to let it return NET_RX_SUCCESS (which is zero
anyway) when it is able to handle the packet, and NET_RX_DROP otherwise.
The latter does not imply any functional change, it only enables the
driver to keep more accurate statistics about the fate of delivered
packets.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
tipc_block_bearer() currently takes a bearer name (const char*)
as argument. This requires the function to make a lookup to find
the pointer to the corresponding bearer struct. In the current
code base this is not necessary, since the only two callers
(tipc_continue(),recv_notification()) already have validated
copies of this pointer, and hence can pass it directly in the
function call.
We change tipc_block_bearer() to directly take struct tipc_bearer*
as argument instead.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
TIPC 'bearer' exists as an abstract concept, while 'media'
is deemed a specific implementation of a bearer, such as Ethernet
or Infiniband media. When a component inside TIPC wants to control
a specific media, it only needs to access the generic bearer API
to achieve this. However, in the current media implementations,
the 'bearer' name is also extensively used in media specific
function and variable names.
This may create confusion, so we choose to replace the term 'bearer'
with 'media' in all function names, variable names, and prefixes
where this is what really is meant.
Note that this change is cosmetic only, and no runtime behaviour
changes are made here.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Eliminate below sparse warnings:
net/tipc/link.c:1210:37: warning: cast removes address space of expression
net/tipc/link.c:1218:59: warning: incorrect type in argument 2 (different address spaces)
net/tipc/link.c:1218:59: expected void const [noderef] <asn:1>*from
net/tipc/link.c:1218:59: got unsigned char const [usertype] *[assigned] sect_crs
net/tipc/socket.c:341:49: warning: Using plain integer as NULL pointer
net/tipc/socket.c:1371:36: warning: Using plain integer as NULL pointer
net/tipc/socket.c:1694:57: warning: Using plain integer as NULL pointer
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Andreas Bofjäll <andreas.bofjall@ericsson.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
tipc_msg_build() now copies message data from iovec to skb_buff
using memcpy_fromiovecend(), which doesn't need to be passed the
iovec length to perform the copying.
So we remove the parameter indicating iovec length in all
functions where TIPC messages are built and sent.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
tipc_msg_build() calls skb_copy_to_linear_data_offset() to copy data
from user space to kernel space. However, the latter function does
in its turn call memcpy() to perform the actual copying. This poses
an obvious security and robustness risk, since memcpy() never makes
any validity check on the pointer it is copying from.
To correct this, we the replace the offending function call with
a call to memcpy_fromiovecend(), which uses copy_from_user() to
perform the copying.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Should a connect fail, if the publication/server is unavailable or
due to some other error, a positive value will be returned and errno
is never set. If the application code checks for an explicit zero
return from connect (success) or a negative return (failure), it
will not catch the error and subsequent send() calls will fail as
shown from the strace snippet below.
socket(0x1e /* PF_??? */, SOCK_SEQPACKET, 0) = 3
connect(3, {sa_family=0x1e /* AF_??? */, sa_data="\2\1\322\4\0\0\322\4\0\0\0\0\0\0"}, 16) = 111
sendto(3, "test", 4, 0, NULL, 0) = -1 EPIPE (Broken pipe)
The reason for this behaviour is that TIPC wrongly inverts error
codes set in sk_err.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We met lockdep warning when enable and disable the bearer for commands such as:
tipc-config -netid=1234 -addr=1.1.3 -be=eth:eth0
tipc-config -netid=1234 -addr=1.1.3 -bd=eth:eth0
---------------------------------------------------
[ 327.693595] ======================================================
[ 327.693994] [ INFO: possible circular locking dependency detected ]
[ 327.694519] 3.11.0-rc3-wwd-default #4 Tainted: G O
[ 327.694882] -------------------------------------------------------
[ 327.695385] tipc-config/5825 is trying to acquire lock:
[ 327.695754] (((timer))#2){+.-...}, at: [<ffffffff8105be80>] del_timer_sync+0x0/0xd0
[ 327.696018]
[ 327.696018] but task is already holding lock:
[ 327.696018] (&(&b_ptr->lock)->rlock){+.-...}, at: [<ffffffffa02be58d>] bearer_disable+ 0xdd/0x120 [tipc]
[ 327.696018]
[ 327.696018] which lock already depends on the new lock.
[ 327.696018]
[ 327.696018]
[ 327.696018] the existing dependency chain (in reverse order) is:
[ 327.696018]
[ 327.696018] -> #1 (&(&b_ptr->lock)->rlock){+.-...}:
[ 327.696018] [<ffffffff810b3b4d>] validate_chain+0x6dd/0x870
[ 327.696018] [<ffffffff810b40bb>] __lock_acquire+0x3db/0x670
[ 327.696018] [<ffffffff810b4453>] lock_acquire+0x103/0x130
[ 327.696018] [<ffffffff814d65b1>] _raw_spin_lock_bh+0x41/0x80
[ 327.696018] [<ffffffffa02c5d48>] disc_timeout+0x18/0xd0 [tipc]
[ 327.696018] [<ffffffff8105b92a>] call_timer_fn+0xda/0x1e0
[ 327.696018] [<ffffffff8105bcd7>] run_timer_softirq+0x2a7/0x2d0
[ 327.696018] [<ffffffff8105379a>] __do_softirq+0x16a/0x2e0
[ 327.696018] [<ffffffff81053a35>] irq_exit+0xd5/0xe0
[ 327.696018] [<ffffffff81033005>] smp_apic_timer_interrupt+0x45/0x60
[ 327.696018] [<ffffffff814df4af>] apic_timer_interrupt+0x6f/0x80
[ 327.696018] [<ffffffff8100b70e>] arch_cpu_idle+0x1e/0x30
[ 327.696018] [<ffffffff810a039d>] cpu_idle_loop+0x1fd/0x280
[ 327.696018] [<ffffffff810a043e>] cpu_startup_entry+0x1e/0x20
[ 327.696018] [<ffffffff81031589>] start_secondary+0x89/0x90
[ 327.696018]
[ 327.696018] -> #0 (((timer))#2){+.-...}:
[ 327.696018] [<ffffffff810b33fe>] check_prev_add+0x43e/0x4b0
[ 327.696018] [<ffffffff810b3b4d>] validate_chain+0x6dd/0x870
[ 327.696018] [<ffffffff810b40bb>] __lock_acquire+0x3db/0x670
[ 327.696018] [<ffffffff810b4453>] lock_acquire+0x103/0x130
[ 327.696018] [<ffffffff8105bebd>] del_timer_sync+0x3d/0xd0
[ 327.696018] [<ffffffffa02c5855>] tipc_disc_delete+0x15/0x30 [tipc]
[ 327.696018] [<ffffffffa02be59f>] bearer_disable+0xef/0x120 [tipc]
[ 327.696018] [<ffffffffa02be74f>] tipc_disable_bearer+0x2f/0x60 [tipc]
[ 327.696018] [<ffffffffa02bfb32>] tipc_cfg_do_cmd+0x2e2/0x550 [tipc]
[ 327.696018] [<ffffffffa02c8c79>] handle_cmd+0x49/0xe0 [tipc]
[ 327.696018] [<ffffffff8143e898>] genl_family_rcv_msg+0x268/0x340
[ 327.696018] [<ffffffff8143ed30>] genl_rcv_msg+0x70/0xd0
[ 327.696018] [<ffffffff8143d4c9>] netlink_rcv_skb+0x89/0xb0
[ 327.696018] [<ffffffff8143e617>] genl_rcv+0x27/0x40
[ 327.696018] [<ffffffff8143d21e>] netlink_unicast+0x15e/0x1b0
[ 327.696018] [<ffffffff8143ddcf>] netlink_sendmsg+0x22f/0x400
[ 327.696018] [<ffffffff813f7836>] __sock_sendmsg+0x66/0x80
[ 327.696018] [<ffffffff813f7957>] sock_aio_write+0x107/0x120
[ 327.696018] [<ffffffff8117f76d>] do_sync_write+0x7d/0xc0
[ 327.696018] [<ffffffff8117fc56>] vfs_write+0x186/0x190
[ 327.696018] [<ffffffff811803e0>] SyS_write+0x60/0xb0
[ 327.696018] [<ffffffff814de852>] system_call_fastpath+0x16/0x1b
[ 327.696018]
[ 327.696018] other info that might help us debug this:
[ 327.696018]
[ 327.696018] Possible unsafe locking scenario:
[ 327.696018]
[ 327.696018] CPU0 CPU1
[ 327.696018] ---- ----
[ 327.696018] lock(&(&b_ptr->lock)->rlock);
[ 327.696018] lock(((timer))#2);
[ 327.696018] lock(&(&b_ptr->lock)->rlock);
[ 327.696018] lock(((timer))#2);
[ 327.696018]
[ 327.696018] *** DEADLOCK ***
[ 327.696018]
[ 327.696018] 5 locks held by tipc-config/5825:
[ 327.696018] #0: (cb_lock){++++++}, at: [<ffffffff8143e608>] genl_rcv+0x18/0x40
[ 327.696018] #1: (genl_mutex){+.+.+.}, at: [<ffffffff8143ed66>] genl_rcv_msg+0xa6/0xd0
[ 327.696018] #2: (config_mutex){+.+.+.}, at: [<ffffffffa02bf889>] tipc_cfg_do_cmd+0x39/ 0x550 [tipc]
[ 327.696018] #3: (tipc_net_lock){++.-..}, at: [<ffffffffa02be738>] tipc_disable_bearer+ 0x18/0x60 [tipc]
[ 327.696018] #4: (&(&b_ptr->lock)->rlock){+.-...}, at: [<ffffffffa02be58d>] bearer_disable+0xdd/0x120 [tipc]
[ 327.696018]
[ 327.696018] stack backtrace:
[ 327.696018] CPU: 2 PID: 5825 Comm: tipc-config Tainted: G O 3.11.0-rc3-wwd- default #4
[ 327.696018] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007
[ 327.696018] 00000000ffffffff ffff880037fa77a8 ffffffff814d03dd 0000000000000000
[ 327.696018] ffff880037fa7808 ffff880037fa77e8 ffffffff810b1c4f 0000000037fa77e8
[ 327.696018] ffff880037fa7808 ffff880037e4db40 0000000000000000 ffff880037e4e318
[ 327.696018] Call Trace:
[ 327.696018] [<ffffffff814d03dd>] dump_stack+0x4d/0xa0
[ 327.696018] [<ffffffff810b1c4f>] print_circular_bug+0x10f/0x120
[ 327.696018] [<ffffffff810b33fe>] check_prev_add+0x43e/0x4b0
[ 327.696018] [<ffffffff810b3b4d>] validate_chain+0x6dd/0x870
[ 327.696018] [<ffffffff81087a28>] ? sched_clock_cpu+0xd8/0x110
[ 327.696018] [<ffffffff810b40bb>] __lock_acquire+0x3db/0x670
[ 327.696018] [<ffffffff810b4453>] lock_acquire+0x103/0x130
[ 327.696018] [<ffffffff8105be80>] ? try_to_del_timer_sync+0x70/0x70
[ 327.696018] [<ffffffff8105bebd>] del_timer_sync+0x3d/0xd0
[ 327.696018] [<ffffffff8105be80>] ? try_to_del_timer_sync+0x70/0x70
[ 327.696018] [<ffffffffa02c5855>] tipc_disc_delete+0x15/0x30 [tipc]
[ 327.696018] [<ffffffffa02be59f>] bearer_disable+0xef/0x120 [tipc]
[ 327.696018] [<ffffffffa02be74f>] tipc_disable_bearer+0x2f/0x60 [tipc]
[ 327.696018] [<ffffffffa02bfb32>] tipc_cfg_do_cmd+0x2e2/0x550 [tipc]
[ 327.696018] [<ffffffff81218783>] ? security_capable+0x13/0x20
[ 327.696018] [<ffffffffa02c8c79>] handle_cmd+0x49/0xe0 [tipc]
[ 327.696018] [<ffffffff8143e898>] genl_family_rcv_msg+0x268/0x340
[ 327.696018] [<ffffffff8143ed30>] genl_rcv_msg+0x70/0xd0
[ 327.696018] [<ffffffff8143ecc0>] ? genl_lock+0x20/0x20
[ 327.696018] [<ffffffff8143d4c9>] netlink_rcv_skb+0x89/0xb0
[ 327.696018] [<ffffffff8143e608>] ? genl_rcv+0x18/0x40
[ 327.696018] [<ffffffff8143e617>] genl_rcv+0x27/0x40
[ 327.696018] [<ffffffff8143d21e>] netlink_unicast+0x15e/0x1b0
[ 327.696018] [<ffffffff81289d7c>] ? memcpy_fromiovec+0x6c/0x90
[ 327.696018] [<ffffffff8143ddcf>] netlink_sendmsg+0x22f/0x400
[ 327.696018] [<ffffffff813f7836>] __sock_sendmsg+0x66/0x80
[ 327.696018] [<ffffffff813f7957>] sock_aio_write+0x107/0x120
[ 327.696018] [<ffffffff813fe29c>] ? release_sock+0x8c/0xa0
[ 327.696018] [<ffffffff8117f76d>] do_sync_write+0x7d/0xc0
[ 327.696018] [<ffffffff8117fa24>] ? rw_verify_area+0x54/0x100
[ 327.696018] [<ffffffff8117fc56>] vfs_write+0x186/0x190
[ 327.696018] [<ffffffff811803e0>] SyS_write+0x60/0xb0
[ 327.696018] [<ffffffff814de852>] system_call_fastpath+0x16/0x1b
-----------------------------------------------------------------------
The problem is that the tipc_link_delete() will cancel the timer disc_timeout() when
the b_ptr->lock is hold, but the disc_timeout() still call b_ptr->lock to finish the
work, so the dead lock occurs.
We should unlock the b_ptr->lock when del the disc_timeout().
Remove link_timeout() still met the same problem, the patch:
http://article.gmane.org/gmane.network.tipc.general/4380
fix the problem, so no need to send patch for fix link_timeout() deadlock warming.
Signed-off-by: Wang Weidong <wangweidong1@huawei.com>
Signed-off-by: Ding Tianhong <dingtianhong@huawei.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When creation of TIPC internal server socket fails,
we get an oops with the following dump:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
IP: [<ffffffffa0011f49>] tipc_close_conn+0x59/0xb0 [tipc]
PGD 13719067 PUD 12008067 PMD 0
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC
Modules linked in: tipc(+)
CPU: 4 PID: 4340 Comm: insmod Not tainted 3.10.0+ #1
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007
task: ffff880014360000 ti: ffff88001374c000 task.ti: ffff88001374c000
RIP: 0010:[<ffffffffa0011f49>] [<ffffffffa0011f49>] tipc_close_conn+0x59/0xb0 [tipc]
RSP: 0018:ffff88001374dc98 EFLAGS: 00010292
RAX: 0000000000000000 RBX: ffff880012ac09d8 RCX: 0000000000000000
RDX: 0000000000000046 RSI: 0000000000000001 RDI: ffff880014360000
RBP: ffff88001374dcb8 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffa0016fa0
R13: ffffffffa0017010 R14: ffffffffa0017010 R15: ffff880012ac09d8
FS: 0000000000000000(0000) GS:ffff880016600000(0063) knlGS:00000000f76668d0
CS: 0010 DS: 002b ES: 002b CR0: 000000008005003b
CR2: 0000000000000020 CR3: 0000000012227000 CR4: 00000000000006e0
Stack:
ffff88001374dcb8 ffffffffa0016fa0 0000000000000000 0000000000000001
ffff88001374dcf8 ffffffffa0012922 ffff88001374dce8 00000000ffffffea
ffffffffa0017100 0000000000000000 ffff8800134241a8 ffffffffa0017150
Call Trace:
[<ffffffffa0012922>] tipc_server_stop+0xa2/0x1b0 [tipc]
[<ffffffffa0009995>] tipc_subscr_stop+0x15/0x20 [tipc]
[<ffffffffa00130f5>] tipc_core_stop+0x1d/0x33 [tipc]
[<ffffffffa001f0d4>] tipc_init+0xd4/0xf8 [tipc]
[<ffffffffa001f000>] ? 0xffffffffa001efff
[<ffffffff8100023f>] do_one_initcall+0x3f/0x150
[<ffffffff81082f4d>] ? __blocking_notifier_call_chain+0x7d/0xd0
[<ffffffff810cc58a>] load_module+0x11aa/0x19c0
[<ffffffff810c8d60>] ? show_initstate+0x50/0x50
[<ffffffff8190311c>] ? retint_restore_args+0xe/0xe
[<ffffffff810cce79>] SyS_init_module+0xd9/0x110
[<ffffffff8190dc65>] sysenter_dispatch+0x7/0x1f
Code: 6c 24 70 4c 89 ef e8 b7 04 8f e1 8b 73 04 4c 89 e7 e8 7c 9e 32 e1 41 83 ac 24
b8 00 00 00 01 4c 89 ef e8 eb 0a 8f e1 48 8b 43 08 <4c> 8b 68 20 4d 8d a5 48 03 00
00 4c 89 e7 e8 04 05 8f e1 4c 89
RIP [<ffffffffa0011f49>] tipc_close_conn+0x59/0xb0 [tipc]
RSP <ffff88001374dc98>
CR2: 0000000000000020
---[ end trace b02321f40e4269a3 ]---
We have the following call chain:
tipc_core_start()
ret = tipc_subscr_start()
ret = tipc_server_start(){
server->enabled = 1;
ret = tipc_open_listening_sock()
}
I.e., the server->enabled flag is unconditionally set to 1, whatever
the return value of tipc_open_listening_sock().
This causes a crash when tipc_core_start() tries to clean up
resources after a failed initialization:
if (ret == failed)
tipc_subscr_stop()
tipc_server_stop(){
if (server->enabled)
tipc_close_conn(){
NULL reference of con->sock-sk
OOPS!
}
}
To avoid this, tipc_server_start() should only set server->enabled
to 1 in case of a succesful socket creation. In case of failure, it
should release all allocated resources before returning.
Problem introduced in commit c5fa7b3cf3cb22e4ac60485fc2dc187fe012910f
("tipc: introduce new TIPC server infrastructure") in v3.11-rc1.
Note that it won't be seen often; it takes a module load under memory
constrained conditions in order to trigger the failure condition.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Instead of passing each byte by stack let's use nice specifier for that.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Convert enable_bearer() to RCU locking with dev_get_by_name().
Based on a similar changeset in commit 840a185d ["aoe: remove
dev_base_lock use from aoecmd_cfg_pkts()"] -- quoting that:
"dev_base_lock is the legacy way to lock the device list,
and is planned to disappear. (writers hold RTNL, readers
hold RCU lock)"
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When skb buffer cannot be allocated in link_send_sections_long(),
-ENOMEM error code instead of -EFAULT should be returned to its
caller.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Once message build request function returns invalid code, the
process of sending message cannot continue. So in case of message
build failure, tipc_link_send_sections_fast() should return
immediately.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
pfifo_fast is set as default traffic class queueing discipline. This
queue has three so called "bands". Within each band, FIFO rules apply.
However, as long as there are packets waiting in band 0, band 1 won't
be processed.
Now all kind of TIPC type packet priorities are never set, that is,
their priorities are 0, so they are mapped to band 1 of pfifo_fast
qdisc. But, especially during link congestion, if link protocol packet
can be sent out as earlier as possible than other type of packets so
that protocol packet can arrive at peer endpoint in time, the peer
will timely reset its link timeout timer to keep the link alive.
So enhancing the priority of link protocol packets can meet the
specific demand to avoid unnecessary link reset due to a transient
link congestion.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
No runtime code changes here. Just a realign of the function
arguments to start where the 1st one was, and fit as many args
as can be put in an 80 char line.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Directly save sock structure pointer instead of void pointer to avoid
unnecessary cast conversions.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As the configuration server is now running under process context,
it's unnecessary for us to have a spinlock serializing the TIPC
configuration process. Instead, we replace it with a mutex lock,
which gives us more freedom. For instance, we can now call
pre-emptable functions within the protected area.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
After the removal of the native API, there is now only one way to
to create a TIPC port instance -- the function tipc_createport_raw().
We make it more readable by renaming it to tipc_createport().
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
After the native API has been completely removed, the 'user_port'
field in struct tipc_port becomes unused, and can be removed.
As a consequence, the "usrmem" argument in tipc_msg_build() is no
longer needed, and so we remove that one too.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Having completed the conversion of the topology server and
configuration server to use the new server infrastructure,
the following functions become unused, and can be deleted:
- tipc_createport()
- port_wakeup_sh()
- port_dispatcher()
- port_dispatcher_sigh()
- tipc_send_buf_fast()
- tipc_send_buf2port
Additionally, the following variables become orphaned,
and can be deleted:
- tipc_msg_err_event
- tipc_named_msg_err_event
- tipc_conn_shutdown_event
- tipc_msg_event
- tipc_named_msg_event
- tipc_conn_msg_event
- tipc_continue_event
- msg_queue_head
- msg_queue_tail
- queue_lock
Deletion is done here in a separate commit in order to allow
the actual conversion changes to be more easily viewed.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As the new socket-based TIPC server infrastructure has been
introduced, we can now convert the configuration server to use
it. Then we can take future steps to simplify the configuration
server locking policy.
Some minor reordering of initialization is done, due to the
dependency on having tipc_socket_init completed.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As the new TIPC server infrastructure has been introduced, we can
now convert the TIPC topology server to it. We get two benefits
from doing this:
1) It simplifies the topology server locking policy. In the
original locking policy, we placed one spin lock pointer in the
tipc_subscriber structure to reuse the lock of the subscriber's
server port, controlling access to members of tipc_subscriber
instance. That is, we only used one lock to ensure both
tipc_port and tipc_subscriber members were safely accessed.
Now we introduce another spin lock for tipc_subscriber structure
only protecting themselves, to get a finer granularity locking
policy. Moreover, the change will allow us to make the topology
server code more readable and maintainable.
2) It fixes a bug where sent subscription events may be lost when
the topology port is congested. Using the new service, the
topology server now queues sent events into an outgoing buffer,
and then wakes up a sender process which has been blocked in
workqueue context. The process will keep picking events from the
buffer and send them to their respective subscribers, using the
kernel socket interface, until the buffer is empty. Even if the
socket is congested during transmission there is no risk that
events may be dropped, since the sender process may block when
needed.
Some minor reordering of initialization is done, since we now
have a scenario where the topology server must be started after
socket initialization has taken place, as the former depends
on the latter. And overall, we see a simplification of the
TIPC subscriber code in making this changeover.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
TIPC has two internal servers, one providing a subscription
service for topology events, and another providing the
configuration interface. These servers have previously been running
in BH context, accessing the TIPC-port (aka native) API directly.
Apart from these servers, even the TIPC socket implementation is
partially built on this API.
As this API may simultaneously be called via different paths and in
different contexts, a complex and costly lock policiy is required
in order to protect TIPC internal resources.
To eliminate the need for this complex lock policiy, we introduce
a new, generic service API that uses kernel sockets for message
passing instead of the native API. Once the toplogy and configuration
servers are converted to use this new service, all code pertaining
to the native API can be removed. This entails a significant
reduction in code amount and complexity, and opens up for a complete
rework of the locking policy in TIPC.
The new service also solves another problem:
As the current topology server works in BH context, it cannot easily
be blocked when sending of events fails due to congestion. In such
cases events may have to be silently dropped, something that is
unacceptable. Therefore, the new service keeps a dedicated outbound
queue receiving messages from BH context. Once messages are
inserted into this queue, we will immediately schedule a work from a
special workqueue. This way, messages/events from the topology server
are in reality sent in process context, and the server can block
if necessary.
Analogously, there is a new workqueue for receiving messages. Once a
notification about an arriving message is received in BH context, we
schedule a work from the receive workqueue to do the job of
receiving the message in process context.
As both sending and receive messages are now finished in processes,
subscribed events cannot be dropped any more.
As of this commit, this new server infrastructure is built, but
not actually yet called by the existing TIPC code, but since the
conversion changes required in order to use it are significant,
the addition is kept here as a separate commit.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
TIPC's implied connect feature, aka piggyback connect, allows
applications to save one syscall and all SYN/SYN-ACK signalling
overhead when setting up a connection. Until now, this has only
been supported for SEQPACKET sockets. Here, we make it possible
to use this feature even with stream sockets.
At the connecting side, the connection is completed when the
first data message arrives from the accepting peer. This means
that we must allow the connecting user to call blocking recv()
before the socket has reached state SS_CONNECTED. So we must must
relax the state machine check at recv_stream(), and allow the
recv() call even if socket is in state SS_CONNECTING.
Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As per feedback from the netdev community, we change the buffer
overflow protection algorithm in receiving sockets so that it
always respects the nominal upper limit set in sk_rcvbuf.
Instead of scaling up from a small sk_rcvbuf value, which leads to
violation of the configured sk_rcvbuf limit, we now calculate the
weighted per-message limit by scaling down from a much bigger value,
still in the same field, according to the importance priority of the
received message.
To allow for administrative tunability of the socket receive buffer
size, we create a tipc_rmem sysctl variable to allow the user to
configure an even bigger value via sysctl command. It is a size of
three (min/default/max) to be consistent with things like tcp_rmem.
By default, the value initialized in tipc_rmem[1] is equal to the
receive socket size needed by a TIPC_CRITICAL_IMPORTANCE message.
This value is also set as the default value of sk_rcvbuf.
Originally-by: Jon Maloy <jon.maloy@ericsson.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Jon Maloy <jon.maloy@ericsson.com>
[Ying: added sysctl variation to Jon's original patch]
Signed-off-by: Ying Xue <ying.xue@windriver.com>
[PG: don't compile sysctl.c if not config'd; add Documentation]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
So far, only net_device * could be passed along with netdevice notifier
event. This patch provides a possibility to pass custom structure
able to provide info that event listener needs to know.
Signed-off-by: Jiri Pirko <jiri@resnulli.us>
v2->v3: fix typo on simeth
shortened dev_getter
shortened notifier_info struct name
v1->v2: fix notifier_call parameter in call_netdevice_notifier()
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The worry here is that fragm_sz could be zero since it comes from
skb->data.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The bearer_id here comes from skb->data and it can be a number from 0 to
7. The problem is that the ->links[] array has only 2 elements so I
have added a range check.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When sending packets, TIPC bearers use skb_clone() before writing their
hardware header. This will however NOT copy the data buffer.
So when the same packet is sent over multiple bearers (to reach multiple
nodes), the same socket buffer data will be treated by multiple
tipc_media drivers which will write their own hardware header through
dev_hard_header().
Most of the time this is not a problem, because by the time the
packet is processed by the second media, it has already been sent over
the first one. However, when the first transmission is delayed (e.g.
because of insufficient bandwidth or through a shaper), the next bearer
will overwrite the hardware header, resulting in the packet being sent:
a) with the wrong source address, when bearers of the same type,
e.g. ethernet, are involved
b) with a completely corrupt header, or even dropped, when bearers of
different types are involved.
So when the same socket buffer is to be sent multiple times, send a
pskb_copy() instead (from the second instance on), and release it
afterwards (the bearer will skb_clone() it anyway).
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add InfiniBand media type based on the ethernet media type.
The only real difference is that in case of InfiniBand, we need the entire
20 bytes of space reserved for media addresses, so the TIPC media type ID is
not explicitly stored in the packet payload.
Sample output of tipc-config:
# tipc-config -v -addr -netid -nt=all -p -m -b -n -ls
node address: <10.1.4>
current network id: 4711
Type Lower Upper Port Identity Publication Scope
0 167776257 167776257 <10.1.1:1855512577> 1855512578 cluster
167776260 167776260 <10.1.4:1216454657> 1216454658 zone
1 1 1 <10.1.4:1216479235> 1216479236 node
Ports:
1216479235: bound to {1,1}
1216454657: bound to {0,167776260}
Media:
eth
ib
Bearers:
ib:ib0
Nodes known:
<10.1.1>: up
Link <broadcast-link>
Window:20 packets
RX packets:0 fragments:0/0 bundles:0/0
TX packets:0 fragments:0/0 bundles:0/0
RX naks:0 defs:0 dups:0
TX naks:0 acks:0 dups:0
Congestion bearer:0 link:0 Send queue max:0 avg:0
Link <10.1.4:ib0-10.1.1:ib0>
ACTIVE MTU:2044 Priority:10 Tolerance:1500 ms Window:50 packets
RX packets:80 fragments:0/0 bundles:0/0
TX packets:40 fragments:0/0 bundles:0/0
TX profile sample:22 packets average:54 octets
0-64:100% -256:0% -1024:0% -4096:0% -16384:0% -32768:0% -66000:0%
RX states:410 probes:213 naks:0 defs:0 dups:0
TX states:410 probes:197 naks:0 acks:0 dups:0
Congestion bearer:0 link:0 Send queue max:1 avg:0
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The skb->protocol field is used by packet classifiers and for AF_PACKET
cooked format, TIPC needs to set it properly.
Fixes packet classification and ethertype of 0x0000 in cooked captures:
Out 20:c9:d0:43:12:d9 ethertype Unknown (0x0000), length 56:
0x0000: 5b50 0028 0000 30d4 0100 1000 0100 1001 [P.(..0.........
0x0010: 0000 03e8 0000 0001 20c9 d043 12d9 0000 ...........C....
0x0020: 0000 0000 0000 0000 ........
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Some network protocols, like InfiniBand, don't have a fixed broadcast
address but one that depends on the configuration. Move the bcast_addr
to struct tipc_bearer and initialize it with the broadcast address of
the network device when the bearer is enabled.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|