Age | Commit message (Collapse) | Author |
|
[ Upstream commit 8f2e5ae40ec193bc0a0ed99e95315c3eebca84ea ]
While working on some other SCTP code, I noticed that some
structures shared with user space are leaking uninitialized
stack or heap buffer. In particular, struct sctp_sndrcvinfo
has a 2 bytes hole between .sinfo_flags and .sinfo_ppid that
remains unfilled by us in sctp_ulpevent_read_sndrcvinfo() when
putting this into cmsg. But also struct sctp_remote_error
contains a 2 bytes hole that we don't fill but place into a skb
through skb_copy_expand() via sctp_ulpevent_make_remote_error().
Both structures are defined by the IETF in RFC6458:
* Section 5.3.2. SCTP Header Information Structure:
The sctp_sndrcvinfo structure is defined below:
struct sctp_sndrcvinfo {
uint16_t sinfo_stream;
uint16_t sinfo_ssn;
uint16_t sinfo_flags;
<-- 2 bytes hole -->
uint32_t sinfo_ppid;
uint32_t sinfo_context;
uint32_t sinfo_timetolive;
uint32_t sinfo_tsn;
uint32_t sinfo_cumtsn;
sctp_assoc_t sinfo_assoc_id;
};
* 6.1.3. SCTP_REMOTE_ERROR:
A remote peer may send an Operation Error message to its peer.
This message indicates a variety of error conditions on an
association. The entire ERROR chunk as it appears on the wire
is included in an SCTP_REMOTE_ERROR event. Please refer to the
SCTP specification [RFC4960] and any extensions for a list of
possible error formats. An SCTP error notification has the
following format:
struct sctp_remote_error {
uint16_t sre_type;
uint16_t sre_flags;
uint32_t sre_length;
uint16_t sre_error;
<-- 2 bytes hole -->
sctp_assoc_t sre_assoc_id;
uint8_t sre_data[];
};
Fix this by setting both to 0 before filling them out. We also
have other structures shared between user and kernel space in
SCTP that contains holes (e.g. struct sctp_paddrthlds), but we
copy that buffer over from user space first and thus don't need
to care about it in that cases.
While at it, we can also remove lengthy comments copied from
the draft, instead, we update the comment with the correct RFC
number where one can look it up.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit 24599e61b7552673dd85971cf5a35369cd8c119e ]
When writing to the sysctl field net.sctp.auth_enable, it can well
be that the user buffer we handed over to proc_dointvec() via
proc_sctp_do_auth() handler contains something other than integers.
In that case, we would set an uninitialized 4-byte value from the
stack to net->sctp.auth_enable that can be leaked back when reading
the sysctl variable, and it can unintentionally turn auth_enable
on/off based on the stack content since auth_enable is interpreted
as a boolean.
Fix it up by making sure proc_dointvec() returned sucessfully.
Fixes: b14878ccb7fa ("net: sctp: cache auth_enable per endpoint")
Reported-by: Florian Westphal <fwestpha@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit ff5e92c1affe7166b3f6e7073e648ed65a6e2e59 ]
sysctl handler proc_sctp_do_hmac_alg(), proc_sctp_do_rto_min() and
proc_sctp_do_rto_max() do not properly reflect some error cases
when writing values via sysctl from internal proc functions such
as proc_dointvec() and proc_dostring().
In all these cases we pass the test for write != 0 and partially
do additional work just to notice that additional sanity checks
fail and we return with hard-coded -EINVAL while proc_do*
functions might also return different errors. So fix this up by
simply testing a successful return of proc_do* right after
calling it.
This also allows to propagate its return value onwards to the user.
While touching this, also fix up some minor style issues.
Fixes: 4f3fdf3bc59c ("sctp: add check rto_min and rto_max in sysctl")
Fixes: 3c68198e7511 ("sctp: Make hmac algorithm selection for cookie generation dynamic")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit d3217b15a19a4779c39b212358a5c71d725822ee ]
Consider the scenario:
For a TCP-style socket, while processing the COOKIE_ECHO chunk in
sctp_sf_do_5_1D_ce(), after it has passed a series of sanity check,
a new association would be created in sctp_unpack_cookie(), but afterwards,
some processing maybe failed, and sctp_association_free() will be called to
free the previously allocated association, in sctp_association_free(),
sk_ack_backlog value is decremented for this socket, since the initial
value for sk_ack_backlog is 0, after the decrement, it will be 65535,
a wrap-around problem happens, and if we want to establish new associations
afterward in the same socket, ABORT would be triggered since sctp deem the
accept queue as full.
Fix this issue by only decrementing sk_ack_backlog for associations in
the endpoint's list.
Fix-suggested-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Xufeng Zhang <xufeng.zhang@windriver.com>
Acked-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit 85350871317a5adb35519d9dc6fc9e80809d42ad ]
commit 813b3b5db83 (ipv4: Use caller's on-stack flowi as-is
in output route lookups.) introduces another regression which
is very similar to the problem of commit e6b45241c (ipv4: reset
flowi parameters on route connect) wants to fix:
Before we call ip_route_output_key() in sctp_v4_get_dst() to
get a dst that matches a bind address as the source address,
we have already called this function previously and the flowi
parameters have been initialized including flowi4_oif, so when
we call this function again, the process in __ip_route_output_key()
will be different because of the setting of flowi4_oif, and we'll
get a networking device which corresponds to the inputted flowi4_oif
as the output device, this is wrong because we'll never hit this
place if the previously returned source address of dst match one
of the bound addresses.
To reproduce this problem, a vlan setting is enough:
# ifconfig eth0 up
# route del default
# vconfig add eth0 2
# vconfig add eth0 3
# ifconfig eth0.2 10.0.1.14 netmask 255.255.255.0
# route add default gw 10.0.1.254 dev eth0.2
# ifconfig eth0.3 10.0.0.14 netmask 255.255.255.0
# ip rule add from 10.0.0.14 table 4
# ip route add table 4 default via 10.0.0.254 src 10.0.0.14 dev eth0.3
# sctp_darn -H 10.0.0.14 -P 36422 -h 10.1.4.134 -p 36422 -s -I
You'll detect that all the flow are routed to eth0.2(10.0.1.254).
Signed-off-by: Xufeng Zhang <xufeng.zhang@windriver.com>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit b14878ccb7fac0242db82720b784ab62c467c0dc ]
Currently, it is possible to create an SCTP socket, then switch
auth_enable via sysctl setting to 1 and crash the system on connect:
Oops[#1]:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1
task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000
[...]
Call Trace:
[<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80
[<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4
[<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c
[<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8
[<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214
[<ffffffff8043af68>] sctp_rcv+0x588/0x630
[<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24
[<ffffffff803acb50>] ip6_input+0x2c0/0x440
[<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564
[<ffffffff80310650>] process_backlog+0xb4/0x18c
[<ffffffff80313cbc>] net_rx_action+0x12c/0x210
[<ffffffff80034254>] __do_softirq+0x17c/0x2ac
[<ffffffff800345e0>] irq_exit+0x54/0xb0
[<ffffffff800075a4>] ret_from_irq+0x0/0x4
[<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48
[<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148
[<ffffffff805a88b0>] start_kernel+0x37c/0x398
Code: dd0900b8 000330f8 0126302d <dcc60000> 50c0fff1 0047182a a48306a0
03e00008 00000000
---[ end trace b530b0551467f2fd ]---
Kernel panic - not syncing: Fatal exception in interrupt
What happens while auth_enable=0 in that case is, that
ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs()
when endpoint is being created.
After that point, if an admin switches over to auth_enable=1,
the machine can crash due to NULL pointer dereference during
reception of an INIT chunk. When we enter sctp_process_init()
via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk,
the INIT verification succeeds and while we walk and process
all INIT params via sctp_process_param() we find that
net->sctp.auth_enable is set, therefore do not fall through,
but invoke sctp_auth_asoc_set_default_hmac() instead, and thus,
dereference what we have set to NULL during endpoint
initialization phase.
The fix is to make auth_enable immutable by caching its value
during endpoint initialization, so that its original value is
being carried along until destruction. The bug seems to originate
from the very first days.
Fix in joint work with Daniel Borkmann.
Reported-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit 1e1cdf8ac78793e0875465e98a648df64694a8d0 ]
In function sctp_wake_up_waiters(), we need to involve a test
if the association is declared dead. If so, we don't have any
reference to a possible sibling association anymore and need
to invoke sctp_write_space() instead, and normally walk the
socket's associations and notify them of new wmem space. The
reason for special casing is that otherwise, we could run
into the following issue when a sctp_primitive_SEND() call
from sctp_sendmsg() fails, and tries to flush an association's
outq, i.e. in the following way:
sctp_association_free()
`-> list_del(&asoc->asocs) <-- poisons list pointer
asoc->base.dead = true
sctp_outq_free(&asoc->outqueue)
`-> __sctp_outq_teardown()
`-> sctp_chunk_free()
`-> consume_skb()
`-> sctp_wfree()
`-> sctp_wake_up_waiters() <-- dereferences poisoned pointers
if asoc->ep->sndbuf_policy=0
Therefore, only walk the list in an 'optimized' way if we find
that the current association is still active. We could also use
list_del_init() in addition when we call sctp_association_free(),
but as Vlad suggests, we want to trap such bugs and thus leave
it poisoned as is.
Why is it safe to resolve the issue by testing for asoc->base.dead?
Parallel calls to sctp_sendmsg() are protected under socket lock,
that is lock_sock()/release_sock(). Only within that path under
lock held, we're setting skb/chunk owner via sctp_set_owner_w().
Eventually, chunks are freed directly by an association still
under that lock. So when traversing association list on destruction
time from sctp_wake_up_waiters() via sctp_wfree(), a different
CPU can't be running sctp_wfree() while another one calls
sctp_association_free() as both happens under the same lock.
Therefore, this can also not race with setting/testing against
asoc->base.dead as we are guaranteed for this to happen in order,
under lock. Further, Vlad says: the times we check asoc->base.dead
is when we've cached an association pointer for later processing.
In between cache and processing, the association may have been
freed and is simply still around due to reference counts. We check
asoc->base.dead under a lock, so it should always be safe to check
and not race against sctp_association_free(). Stress-testing seems
fine now, too.
Fixes: cd253f9f357d ("net: sctp: wake up all assocs if sndbuf policy is per socket")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Vlad Yasevich <vyasevic@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit 52c35befb69b005c3fc5afdaae3a5717ad013411 ]
SCTP charges chunks for wmem accounting via skb->truesize in
sctp_set_owner_w(), and sctp_wfree() respectively as the
reverse operation. If a sender runs out of wmem, it needs to
wait via sctp_wait_for_sndbuf(), and gets woken up by a call
to __sctp_write_space() mostly via sctp_wfree().
__sctp_write_space() is being called per association. Although
we assign sk->sk_write_space() to sctp_write_space(), which
is then being done per socket, it is only used if send space
is increased per socket option (SO_SNDBUF), as SOCK_USE_WRITE_QUEUE
is set and therefore not invoked in sock_wfree().
Commit 4c3a5bdae293 ("sctp: Don't charge for data in sndbuf
again when transmitting packet") fixed an issue where in case
sctp_packet_transmit() manages to queue up more than sndbuf
bytes, sctp_wait_for_sndbuf() will never be woken up again
unless it is interrupted by a signal. However, a still
remaining issue is that if net.sctp.sndbuf_policy=0, that is
accounting per socket, and one-to-many sockets are in use,
the reclaimed write space from sctp_wfree() is 'unfairly'
handed back on the server to the association that is the lucky
one to be woken up again via __sctp_write_space(), while
the remaining associations are never be woken up again
(unless by a signal).
The effect disappears with net.sctp.sndbuf_policy=1, that
is wmem accounting per association, as it guarantees a fair
share of wmem among associations.
Therefore, if we have reclaimed memory in case of per socket
accounting, wake all related associations to a socket in a
fair manner, that is, traverse the socket association list
starting from the current neighbour of the association and
issue a __sctp_write_space() to everyone until we end up
waking ourselves. This guarantees that no association is
preferred over another and even if more associations are
taken into the one-to-many session, all receivers will get
messages from the server and are not stalled forever on
high load. This setting still leaves the advantage of per
socket accounting in touch as an association can still use
up global limits if unused by others.
Fixes: 4eb701dfc618 ("[SCTP] Fix SCTP sendbuffer accouting.")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Vlad Yasevich <vyasevic@redhat.com>
Acked-by: Vlad Yasevich <vyasevic@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit c485658bae87faccd7aed540fd2ca3ab37992310 ]
While working on ec0223ec48a9 ("net: sctp: fix sctp_sf_do_5_1D_ce to
verify if we/peer is AUTH capable"), we noticed that there's a skb
memory leakage in the error path.
Running the same reproducer as in ec0223ec48a9 and by unconditionally
jumping to the error label (to simulate an error condition) in
sctp_sf_do_5_1D_ce() receive path lets kmemleak detector bark about
the unfreed chunk->auth_chunk skb clone:
Unreferenced object 0xffff8800b8f3a000 (size 256):
comm "softirq", pid 0, jiffies 4294769856 (age 110.757s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
89 ab 75 5e d4 01 58 13 00 00 00 00 00 00 00 00 ..u^..X.........
backtrace:
[<ffffffff816660be>] kmemleak_alloc+0x4e/0xb0
[<ffffffff8119f328>] kmem_cache_alloc+0xc8/0x210
[<ffffffff81566929>] skb_clone+0x49/0xb0
[<ffffffffa0467459>] sctp_endpoint_bh_rcv+0x1d9/0x230 [sctp]
[<ffffffffa046fdbc>] sctp_inq_push+0x4c/0x70 [sctp]
[<ffffffffa047e8de>] sctp_rcv+0x82e/0x9a0 [sctp]
[<ffffffff815abd38>] ip_local_deliver_finish+0xa8/0x210
[<ffffffff815a64af>] nf_reinject+0xbf/0x180
[<ffffffffa04b4762>] nfqnl_recv_verdict+0x1d2/0x2b0 [nfnetlink_queue]
[<ffffffffa04aa40b>] nfnetlink_rcv_msg+0x14b/0x250 [nfnetlink]
[<ffffffff815a3269>] netlink_rcv_skb+0xa9/0xc0
[<ffffffffa04aa7cf>] nfnetlink_rcv+0x23f/0x408 [nfnetlink]
[<ffffffff815a2bd8>] netlink_unicast+0x168/0x250
[<ffffffff815a2fa1>] netlink_sendmsg+0x2e1/0x3f0
[<ffffffff8155cc6b>] sock_sendmsg+0x8b/0xc0
[<ffffffff8155d449>] ___sys_sendmsg+0x369/0x380
What happens is that commit bbd0d59809f9 clones the skb containing
the AUTH chunk in sctp_endpoint_bh_rcv() when having the edge case
that an endpoint requires COOKIE-ECHO chunks to be authenticated:
---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
<------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
------------------ AUTH; COOKIE-ECHO ---------------->
<-------------------- COOKIE-ACK ---------------------
When we enter sctp_sf_do_5_1D_ce() and before we actually get to
the point where we process (and subsequently free) a non-NULL
chunk->auth_chunk, we could hit the "goto nomem_init" path from
an error condition and thus leave the cloned skb around w/o
freeing it.
The fix is to centrally free such clones in sctp_chunk_destroy()
handler that is invoked from sctp_chunk_free() after all refs have
dropped; and also move both kfree_skb(chunk->auth_chunk) there,
so that chunk->auth_chunk is either NULL (since sctp_chunkify()
allocs new chunks through kmem_cache_zalloc()) or non-NULL with
a valid skb pointer. chunk->skb and chunk->auth_chunk are the
only skbs in the sctp_chunk structure that need to be handeled.
While at it, we should use consume_skb() for both. It is the same
as dev_kfree_skb() but more appropriately named as we are not
a device but a protocol. Also, this effectively replaces the
kfree_skb() from both invocations into consume_skb(). Functions
are the same only that kfree_skb() assumes that the frame was
being dropped after a failure (e.g. for tools like drop monitor),
usage of consume_skb() seems more appropriate in function
sctp_chunk_destroy() though.
Fixes: bbd0d59809f9 ("[SCTP]: Implement the receive and verification of AUTH chunk")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Vlad Yasevich <yasevich@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit ec0223ec48a90cb605244b45f7c62de856403729 ]
RFC4895 introduced AUTH chunks for SCTP; during the SCTP
handshake RANDOM; CHUNKS; HMAC-ALGO are negotiated (CHUNKS
being optional though):
---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
<------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
-------------------- COOKIE-ECHO -------------------->
<-------------------- COOKIE-ACK ---------------------
A special case is when an endpoint requires COOKIE-ECHO
chunks to be authenticated:
---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
<------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
------------------ AUTH; COOKIE-ECHO ---------------->
<-------------------- COOKIE-ACK ---------------------
RFC4895, section 6.3. Receiving Authenticated Chunks says:
The receiver MUST use the HMAC algorithm indicated in
the HMAC Identifier field. If this algorithm was not
specified by the receiver in the HMAC-ALGO parameter in
the INIT or INIT-ACK chunk during association setup, the
AUTH chunk and all the chunks after it MUST be discarded
and an ERROR chunk SHOULD be sent with the error cause
defined in Section 4.1. [...] If no endpoint pair shared
key has been configured for that Shared Key Identifier,
all authenticated chunks MUST be silently discarded. [...]
When an endpoint requires COOKIE-ECHO chunks to be
authenticated, some special procedures have to be followed
because the reception of a COOKIE-ECHO chunk might result
in the creation of an SCTP association. If a packet arrives
containing an AUTH chunk as a first chunk, a COOKIE-ECHO
chunk as the second chunk, and possibly more chunks after
them, and the receiver does not have an STCB for that
packet, then authentication is based on the contents of
the COOKIE-ECHO chunk. In this situation, the receiver MUST
authenticate the chunks in the packet by using the RANDOM
parameters, CHUNKS parameters and HMAC_ALGO parameters
obtained from the COOKIE-ECHO chunk, and possibly a local
shared secret as inputs to the authentication procedure
specified in Section 6.3. If authentication fails, then
the packet is discarded. If the authentication is successful,
the COOKIE-ECHO and all the chunks after the COOKIE-ECHO
MUST be processed. If the receiver has an STCB, it MUST
process the AUTH chunk as described above using the STCB
from the existing association to authenticate the
COOKIE-ECHO chunk and all the chunks after it. [...]
Commit bbd0d59809f9 introduced the possibility to receive
and verification of AUTH chunk, including the edge case for
authenticated COOKIE-ECHO. On reception of COOKIE-ECHO,
the function sctp_sf_do_5_1D_ce() handles processing,
unpacks and creates a new association if it passed sanity
checks and also tests for authentication chunks being
present. After a new association has been processed, it
invokes sctp_process_init() on the new association and
walks through the parameter list it received from the INIT
chunk. It checks SCTP_PARAM_RANDOM, SCTP_PARAM_HMAC_ALGO
and SCTP_PARAM_CHUNKS, and copies them into asoc->peer
meta data (peer_random, peer_hmacs, peer_chunks) in case
sysctl -w net.sctp.auth_enable=1 is set. If in INIT's
SCTP_PARAM_SUPPORTED_EXT parameter SCTP_CID_AUTH is set,
peer_random != NULL and peer_hmacs != NULL the peer is to be
assumed asoc->peer.auth_capable=1, in any other case
asoc->peer.auth_capable=0.
Now, if in sctp_sf_do_5_1D_ce() chunk->auth_chunk is
available, we set up a fake auth chunk and pass that on to
sctp_sf_authenticate(), which at latest in
sctp_auth_calculate_hmac() reliably dereferences a NULL pointer
at position 0..0008 when setting up the crypto key in
crypto_hash_setkey() by using asoc->asoc_shared_key that is
NULL as condition key_id == asoc->active_key_id is true if
the AUTH chunk was injected correctly from remote. This
happens no matter what net.sctp.auth_enable sysctl says.
The fix is to check for net->sctp.auth_enable and for
asoc->peer.auth_capable before doing any operations like
sctp_sf_authenticate() as no key is activated in
sctp_auth_asoc_init_active_key() for each case.
Now as RFC4895 section 6.3 states that if the used HMAC-ALGO
passed from the INIT chunk was not used in the AUTH chunk, we
SHOULD send an error; however in this case it would be better
to just silently discard such a maliciously prepared handshake
as we didn't even receive a parameter at all. Also, as our
endpoint has no shared key configured, section 6.3 says that
MUST silently discard, which we are doing from now onwards.
Before calling sctp_sf_pdiscard(), we need not only to free
the association, but also the chunk->auth_chunk skb, as
commit bbd0d59809f9 created a skb clone in that case.
I have tested this locally by using netfilter's nfqueue and
re-injecting packets into the local stack after maliciously
modifying the INIT chunk (removing RANDOM; HMAC-ALGO param)
and the SCTP packet containing the COOKIE_ECHO (injecting
AUTH chunk before COOKIE_ECHO). Fixed with this patch applied.
Fixes: bbd0d59809f9 ("[SCTP]: Implement the receive and verification of AUTH chunk")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Vlad Yasevich <yasevich@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit ffd5939381c609056b33b7585fb05a77b4c695f3 ]
SCTP's sctp_connectx() abi breaks for 64bit kernels compiled with 32bit
emulation (e.g. ia32 emulation or x86_x32). Due to internal usage of
'struct sctp_getaddrs_old' which includes a struct sockaddr pointer,
sizeof(param) check will always fail in kernel as the structure in
64bit kernel space is 4bytes larger than for user binaries compiled
in 32bit mode. Thus, applications making use of sctp_connectx() won't
be able to run under such circumstances.
Introduce a compat interface in the kernel to deal with such
situations by using a 'struct compat_sctp_getaddrs_old' structure
where user data is copied into it, and then sucessively transformed
into a 'struct sctp_getaddrs_old' structure with the help of
compat_ptr(). That fixes sctp_connectx() abi without any changes
needed in user space, and lets the SCTP test suite pass when compiled
in 32bit and run on 64bit kernels.
Fixes: f9c67811ebc0 ("sctp: Fix regression introduced by new sctp_connectx api")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
[ Upstream commit 7926c1d5be0b7cbe5b8d5c788d7d39237e7b212c ]
Introduced in f9e42b853523 ("net: sctp: sideeffect: throw BUG if
primary_path is NULL"), we intended to find a buggy assoc that's
part of the assoc hash table with a primary_path that is NULL.
However, we better remove the BUG_ON for now and find a more
suitable place to assert for these things as Mark reports that
this also triggers the bug when duplication cookie processing
happens, and the assoc is not part of the hash table (so all
good in this case). Such a situation can for example easily be
reproduced by:
tc qdisc add dev eth0 root handle 1: prio bands 2 priomap 1 1 1 1 1 1
tc qdisc add dev eth0 parent 1:2 handle 20: netem loss 20%
tc filter add dev eth0 protocol ip parent 1: prio 2 u32 match ip \
protocol 132 0xff match u8 0x0b 0xff at 32 flowid 1:2
This drops 20% of COOKIE-ACK packets. After some follow-up
discussion with Vlad we came to the conclusion that for now we
should still better remove this BUG_ON() assertion, and come up
with two follow-ups later on, that is, i) find a more suitable
place for this assertion, and possibly ii) have a special
allocator/initializer for such kind of temporary assocs.
Reported-by: Mark Thomas <Mark.Thomas@metaswitch.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
IP/IPv6 fragmentation knows how to compute only TCP/UDP checksum.
This causes problems if SCTP packets has to be fragmented and
ipsummed has been set to PARTIAL due to checksum offload support.
This condition can happen when retransmitting after MTU discover,
or when INIT or other control chunks are larger then MTU.
Check for the rare fragmentation condition in SCTP and use software
checksum calculation in this case.
CC: Fan Du <fan.du@windriver.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
igb/ixgbe have hardware sctp checksum support, when this feature is enabled
and also IPsec is armed to protect sctp traffic, ugly things happened as
xfrm_output checks CHECKSUM_PARTIAL to do checksum operation(sum every thing
up and pack the 16bits result in the checksum field). The result is fail
establishment of sctp communication.
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Fan Du <fan.du@windriver.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adapt the same behaviour for SCTP as present in TCP for ICMP redirect
messages. For IPv6, RFC4443, section 2.4. says:
...
(e) An ICMPv6 error message MUST NOT be originated as a result of
receiving the following:
...
(e.2) An ICMPv6 redirect message [IPv6-DISC].
...
Therefore, do not report an error to user space, just invoke dst's redirect
callback and leave, same for IPv4 as done in TCP as well. The implication
w/o having this patch could be that the reception of such packets would
generate a poll notification and in worst case it could even tear down the
whole connection. Therefore, stop updating sk_err on redirects.
Reported-by: Duan Jiong <duanj.fnst@cn.fujitsu.com>
Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Suggested-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Alan Chester reported an issue with IPv6 on SCTP that IPsec traffic is not
being encrypted, whereas on IPv4 it is. Setting up an AH + ESP transport
does not seem to have the desired effect:
SCTP + IPv4:
22:14:20.809645 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto AH (51), length 116)
192.168.0.2 > 192.168.0.5: AH(spi=0x00000042,sumlen=16,seq=0x1): ESP(spi=0x00000044,seq=0x1), length 72
22:14:20.813270 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto AH (51), length 340)
192.168.0.5 > 192.168.0.2: AH(spi=0x00000043,sumlen=16,seq=0x1):
SCTP + IPv6:
22:31:19.215029 IP6 (class 0x02, hlim 64, next-header SCTP (132) payload length: 364)
fe80::222:15ff:fe87:7fc.3333 > fe80::92e6:baff:fe0d:5a54.36767: sctp
1) [INIT ACK] [init tag: 747759530] [rwnd: 62464] [OS: 10] [MIS: 10]
Moreover, Alan says:
This problem was seen with both Racoon and Racoon2. Other people have seen
this with OpenSwan. When IPsec is configured to encrypt all upper layer
protocols the SCTP connection does not initialize. After using Wireshark to
follow packets, this is because the SCTP packet leaves Box A unencrypted and
Box B believes all upper layer protocols are to be encrypted so it drops
this packet, causing the SCTP connection to fail to initialize. When IPsec
is configured to encrypt just SCTP, the SCTP packets are observed unencrypted.
In fact, using `socat sctp6-listen:3333 -` on one end and transferring "plaintext"
string on the other end, results in cleartext on the wire where SCTP eventually
does not report any errors, thus in the latter case that Alan reports, the
non-paranoid user might think he's communicating over an encrypted transport on
SCTP although he's not (tcpdump ... -X):
...
0x0030: 5d70 8e1a 0003 001a 177d eb6c 0000 0000 ]p.......}.l....
0x0040: 0000 0000 706c 6169 6e74 6578 740a 0000 ....plaintext...
Only in /proc/net/xfrm_stat we can see XfrmInTmplMismatch increasing on the
receiver side. Initial follow-up analysis from Alan's bug report was done by
Alexey Dobriyan. Also thanks to Vlad Yasevich for feedback on this.
SCTP has its own implementation of sctp_v6_xmit() not calling inet6_csk_xmit().
This has the implication that it probably never really got updated along with
changes in inet6_csk_xmit() and therefore does not seem to invoke xfrm handlers.
SCTP's IPv4 xmit however, properly calls ip_queue_xmit() to do the work. Since
a call to inet6_csk_xmit() would solve this problem, but result in unecessary
route lookups, let us just use the cached flowi6 instead that we got through
sctp_v6_get_dst(). Since all SCTP packets are being sent through sctp_packet_transmit(),
we do the route lookup / flow caching in sctp_transport_route(), hold it in
tp->dst and skb_dst_set() right after that. If we would alter fl6->daddr in
sctp_v6_xmit() to np->opt->srcrt, we possibly could run into the same effect
of not having xfrm layer pick it up, hence, use fl6_update_dst() in sctp_v6_get_dst()
instead to get the correct source routed dst entry, which we assign to the skb.
Also source address routing example from 625034113 ("sctp: fix sctp to work with
ipv6 source address routing") still works with this patch! Nevertheless, in RFC5095
it is actually 'recommended' to not use that anyway due to traffic amplification [1].
So it seems we're not supposed to do that anyway in sctp_v6_xmit(). Moreover, if
we overwrite the flow destination here, the lower IPv6 layer will be unable to
put the correct destination address into IP header, as routing header is added in
ipv6_push_nfrag_opts() but then probably with wrong final destination. Things aside,
result of this patch is that we do not have any XfrmInTmplMismatch increase plus on
the wire with this patch it now looks like:
SCTP + IPv6:
08:17:47.074080 IP6 2620:52:0:102f:7a2b:cbff:fe27:1b0a > 2620:52:0:102f:213:72ff:fe32:7eba:
AH(spi=0x00005fb4,seq=0x1): ESP(spi=0x00005fb5,seq=0x1), length 72
08:17:47.074264 IP6 2620:52:0:102f:213:72ff:fe32:7eba > 2620:52:0:102f:7a2b:cbff:fe27:1b0a:
AH(spi=0x00003d54,seq=0x1): ESP(spi=0x00003d55,seq=0x1), length 296
This fixes Kernel Bugzilla 24412. This security issue seems to be present since
2.6.18 kernels. Lets just hope some big passive adversary in the wild didn't have
its fun with that. lksctp-tools IPv6 regression test suite passes as well with
this patch.
[1] http://www.secdev.org/conf/IPv6_RH_security-csw07.pdf
Reported-by: Alan Chester <alan.chester@tekelec.com>
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This was originally reported in [1] and posted by Neil Horman [2], he said:
Fix up a missed null pointer check in the asconf code. If we don't find
a local address, but we pass in an address length of more than 1, we may
dereference a NULL laddr pointer. Currently this can't happen, as the only
users of the function pass in the value 1 as the addrcnt parameter, but
its not hot path, and it doesn't hurt to check for NULL should that ever
be the case.
The callpath from sctp_asconf_mgmt() looks okay. But this could be triggered
from sctp_setsockopt_bindx() call with SCTP_BINDX_REM_ADDR and addrcnt > 1
while passing all possible addresses from the bind list to SCTP_BINDX_REM_ADDR
so that we do *not* find a single address in the association's bind address
list that is not in the packed array of addresses. If this happens when we
have an established association with ASCONF-capable peers, then we could get
a NULL pointer dereference as we only check for laddr == NULL && addrcnt == 1
and call later sctp_make_asconf_update_ip() with NULL laddr.
BUT: this actually won't happen as sctp_bindx_rem() will catch such a case
and return with an error earlier. As this is incredably unintuitive and error
prone, add a check to catch at least future bugs here. As Neil says, its not
hot path. Introduced by 8a07eb0a5 ("sctp: Add ASCONF operation on the
single-homed host").
[1] http://www.spinics.net/lists/linux-sctp/msg02132.html
[2] http://www.spinics.net/lists/linux-sctp/msg02133.html
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Michio Honda <micchie@sfc.wide.ad.jp>
Acked-By: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If we do not add braces around ...
mask |= POLLERR |
sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0;
... then this condition always evaluates to true as POLLERR is
defined as 8 and binary or'd with whatever result comes out of
sock_flag(). Hence instead of (X | Y) ? A : B, transform it into
X | (Y ? A : B). Unfortunatelty, commit 8facd5fb73 ("net: fix
smatch warnings inside datagram_poll") forgot about SCTP. :-(
Introduced by 7d4c04fc170 ("net: add option to enable error queue
packets waking select").
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Jacob Keller <jacob.e.keller@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
multiple of 4
net: sctp: Fix data chunk fragmentation for MTU values which are not multiple of 4
Initially the problem was observed with ipsec, but later it became clear that
SCTP data chunk fragmentation algorithm has problems with MTU values which are
not multiple of 4. Test program was used which just transmits 2000 bytes long
packets to other host. tcpdump was used to observe re-fragmentation in IP layer
after SCTP already fragmented data chunks.
With MTU 1500:
12:54:34.082904 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 1500)
10.151.38.153.39303 > 10.151.24.91.54321: sctp (1) [DATA] (B) [TSN: 2366088589] [SID: 0] [SSEQ 1] [PPID 0x0]
12:54:34.082933 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 596)
10.151.38.153.39303 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 2366088590] [SID: 0] [SSEQ 1] [PPID 0x0]
12:54:34.090576 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.39303: sctp (1) [SACK] [cum ack 2366088590] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
With MTU 1499:
13:02:49.955220 IP (tos 0x2,ECT(0), ttl 64, id 48215, offset 0, flags [+], proto SCTP (132), length 1492)
10.151.38.153.39084 > 10.151.24.91.54321: sctp[|sctp]
13:02:49.955249 IP (tos 0x2,ECT(0), ttl 64, id 48215, offset 1472, flags [none], proto SCTP (132), length 28)
10.151.38.153 > 10.151.24.91: ip-proto-132
13:02:49.955262 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 600)
10.151.38.153.39084 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 404355346] [SID: 0] [SSEQ 1] [PPID 0x0]
13:02:49.956770 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.39084: sctp (1) [SACK] [cum ack 404355346] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
Here problem in data portion limit calculation leads to re-fragmentation in IP,
which is sub-optimal. The problem is max_data initial value, which doesn't take
into account the fact, that data chunk must be padded to 4-bytes boundary.
It's enough to correct max_data, because all later adjustments are correctly
aligned to 4-bytes boundary.
After the fix is applied, everything is fragmented correctly for uneven MTUs:
15:16:27.083881 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 1496)
10.151.38.153.53417 > 10.151.24.91.54321: sctp (1) [DATA] (B) [TSN: 3077098183] [SID: 0] [SSEQ 1] [PPID 0x0]
15:16:27.083907 IP (tos 0x2,ECT(0), ttl 64, id 0, offset 0, flags [DF], proto SCTP (132), length 600)
10.151.38.153.53417 > 10.151.24.91.54321: sctp (1) [DATA] (E) [TSN: 3077098184] [SID: 0] [SSEQ 1] [PPID 0x0]
15:16:27.085640 IP (tos 0x2,ECT(0), ttl 63, id 0, offset 0, flags [DF], proto SCTP (132), length 48)
10.151.24.91.54321 > 10.151.38.153.53417: sctp (1) [SACK] [cum ack 3077098184] [a_rwnd 79920] [#gap acks 0] [#dup tsns 0]
The bug was there for years already, but
- is a performance issue, the packets are still transmitted
- doesn't show up with default MTU 1500, but possibly with ipsec (MTU 1438)
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nsn.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is a follow-up commit for commit b1dcdc68b1f4 ("net: tcp_probe:
allow more advanced ingress filtering by mark") that allows for
advanced SCTP probe module filtering based on skb mark (for a more
detailed description and advantages using mark, refer to b1dcdc68b1f4).
The current option to filter by a given port is still being preserved.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add a comment related to RFC4960 explaning why we do not check for initial
TSN, and while at it, remove yoda notation checks and clean up code from
checks of mandatory conditions. That's probably just really minor, but makes
reviewing easier.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We can simply use the %pISc format specifier that was recently added
and thus remove some code that distinguishes between IPv4 and IPv6.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
UIDs are printed in the proc_fs as signed int, whereas
they are unsigned int.
Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch adds a base infrastructure that allows SCTP to do
memory accounting for control chunks. Real accounting code will
follow.
This patch alos fixes the following triggered bug ...
[ 553.109742] kernel BUG at include/linux/skbuff.h:1813!
[ 553.109766] invalid opcode: 0000 [#1] SMP
[ 553.109789] Modules linked in: sctp libcrc32c rfcomm [...]
[ 553.110259] uinput i915 i2c_algo_bit drm_kms_helper e1000e drm ptp
pps_core i2c_core wmi video sunrpc
[ 553.110320] CPU: 0 PID: 1636 Comm: lt-test_1_to_1_ Not tainted
3.11.0-rc3+ #2
[ 553.110350] Hardware name: LENOVO 74597D6/74597D6, BIOS 6DET60WW
(3.10 ) 09/17/2009
[ 553.110381] task: ffff88020a01dd40 ti: ffff880204ed0000 task.ti:
ffff880204ed0000
[ 553.110411] RIP: 0010:[<ffffffffa0698017>] [<ffffffffa0698017>]
skb_orphan.part.9+0x4/0x6 [sctp]
[ 553.110459] RSP: 0018:ffff880204ed1bb8 EFLAGS: 00010286
[ 553.110483] RAX: ffff8802086f5a40 RBX: ffff880204303300 RCX:
0000000000000000
[ 553.110487] RDX: ffff880204303c28 RSI: ffff8802086f5a40 RDI:
ffff880202158000
[ 553.110487] RBP: ffff880204ed1bb8 R08: 0000000000000000 R09:
0000000000000000
[ 553.110487] R10: ffff88022f2d9a04 R11: ffff880233001600 R12:
0000000000000000
[ 553.110487] R13: ffff880204303c00 R14: ffff8802293d0000 R15:
ffff880202158000
[ 553.110487] FS: 00007f31b31fe740(0000) GS:ffff88023bc00000(0000)
knlGS:0000000000000000
[ 553.110487] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 553.110487] CR2: 000000379980e3e0 CR3: 000000020d225000 CR4:
00000000000407f0
[ 553.110487] Stack:
[ 553.110487] ffff880204ed1ca8 ffffffffa068d7fc 0000000000000000
0000000000000000
[ 553.110487] 0000000000000000 ffff8802293d0000 ffff880202158000
ffffffff81cb7900
[ 553.110487] 0000000000000000 0000400000001c68 ffff8802086f5a40
000000000000000f
[ 553.110487] Call Trace:
[ 553.110487] [<ffffffffa068d7fc>] sctp_sendmsg+0x6bc/0xc80 [sctp]
[ 553.110487] [<ffffffff8128f185>] ? sock_has_perm+0x75/0x90
[ 553.110487] [<ffffffff815a3593>] inet_sendmsg+0x63/0xb0
[ 553.110487] [<ffffffff8128f2b3>] ? selinux_socket_sendmsg+0x23/0x30
[ 553.110487] [<ffffffff8151c5d6>] sock_sendmsg+0xa6/0xd0
[ 553.110487] [<ffffffff81637b05>] ? _raw_spin_unlock_bh+0x15/0x20
[ 553.110487] [<ffffffff8151cd38>] SYSC_sendto+0x128/0x180
[ 553.110487] [<ffffffff8151ce6b>] ? SYSC_connect+0xdb/0x100
[ 553.110487] [<ffffffffa0690031>] ? sctp_inet_listen+0x71/0x1f0
[sctp]
[ 553.110487] [<ffffffff8151d35e>] SyS_sendto+0xe/0x10
[ 553.110487] [<ffffffff81640202>] system_call_fastpath+0x16/0x1b
[ 553.110487] Code: e0 48 c7 c7 00 22 6a a0 e8 67 a3 f0 e0 48 c7 [...]
[ 553.110487] RIP [<ffffffffa0698017>] skb_orphan.part.9+0x4/0x6
[sctp]
[ 553.110487] RSP <ffff880204ed1bb8>
[ 553.121578] ---[ end trace 46c20c5903ef5be2 ]---
The approach taken here is to split data and control chunks
creation a bit. Data chunks already have memory accounting
so noting needs to happen. For control chunks, add stubs handlers.
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Probably this one is quite unlikely to be triggered, but it's more safe
to do the call_rcu() at the end after we have dropped the reference on
the asoc and freed sctp packet chunks. The reason why is because in
sctp_transport_destroy_rcu() the transport is being kfree()'d, and if
we're unlucky enough we could run into corrupted pointers. Probably
that's more of theoretical nature, but it's safer to have this simple fix.
Introduced by commit 8c98653f ("sctp: sctp_close: fix release of bindings
for deferred call_rcu's"). I also did the 8c98653f regression test and
it's fine that way.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SCTP Quick failover draft [1] section 5.1, point 5 says that the cwnd
should be 1 MTU. So, instead of 1, set it to 1 MTU.
[1] https://tools.ietf.org/html/draft-nishida-tsvwg-sctp-failover-05
Reported-by: Karl Heiss <kheiss@gmail.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This reverts commit cda5f98e36576596b9230483ec52bff3cc97eb21.
As per Vlad's request.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
With the restructuring of the lksctp.org site, we only allow bug
reports through the SCTP mailing list linux-sctp@vger.kernel.org,
not via SF, as SF is only used for web hosting and nothing more.
While at it, also remove the obvious statement that bugs will be
fixed and incooperated into the kernel.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Get rid of the last module parameter for SCTP and make this
configurable via sysctl for SCTP like all the rest of SCTP's
configuration knobs.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When sctp sits on IPv6, sctp_transport_dst_check pass cookie as ZERO,
as a result ip6_dst_check always fail out. This behaviour makes
transport->dst useless, because every sctp_packet_transmit must look
for valid dst.
Add a dst_cookie into sctp_transport, and set the cookie whenever we
get new dst for sctp_transport. So dst validness could be checked
against it.
Since I have split genid for IPv4 and IPv6, also delete/add IPv6 address
will also bump IPv6 genid. So issues we discussed in:
http://marc.info/?l=linux-netdev&m=137404469219410&w=4
have all been sloved for this patch.
Signed-off-by: Fan Du <fan.du@windriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch consolidates the SCTP checksum calculation code from various
places to a single new function, sctp_compute_cksum(skb, offset).
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Reviewed-by: Julian Anastasov <ja@ssi.bg>
Acked-by: Simon Horman <horms@verge.net.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SCTP mailing list address to send patches or questions
to is linux-sctp@vger.kernel.org and not
lksctp-developers@lists.sourceforge.net anymore. Therefore,
update all occurences.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This fix has been proposed originally by Vlad Yasevich. He says:
When SCTP makes forward progress (receives a SACK that acks new chunks,
renegs, or answeres 0-window probes) or when HB-ACK arrives, mark
the route as confirmed so we don't unnecessarily send NUD probes.
Having a simple SCTP client/server that exchange data chunks every 1sec,
without this patch ARP requests are sent periodically every 40-60sec.
With this fix applied, an ARP request is only done once right at the
"session" beginning. Also, when clearing the related ARP cache entry
manually during the session, a new r |