Age | Commit message (Collapse) | Author |
|
commit b4cbb197c7e7a68dbad0d491242e3ca67420c13e upstream.
Various drivers end up replicating the code to mmap() their memory
buffers into user space, and our core memory remapping function may be
very flexible but it is unnecessarily complicated for the common cases
to use.
Our internal VM uses pfn's ("page frame numbers") which simplifies
things for the VM, and allows us to pass physical addresses around in a
denser and more efficient format than passing a "phys_addr_t" around,
and having to shift it up and down by the page size. But it just means
that drivers end up doing that shifting instead at the interface level.
It also means that drivers end up mucking around with internal VM things
like the vma details (vm_pgoff, vm_start/end) way more than they really
need to.
So this just exports a function to map a certain physical memory range
into user space (using a phys_addr_t based interface that is much more
natural for a driver) and hides all the complexity from the driver.
Some drivers will still end up tweaking the vm_page_prot details for
things like prefetching or cacheability etc, but that's actually
relevant to the driver, rather than caring about what the page offset of
the mapping is into the particular IO memory region.
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
commit 9cc3a5bd40067b9a0fbd49199d0780463fc2140f upstream.
With applying the previous patch "hugetlbfs: stop setting VM_DONTDUMP in
initializing vma(VM_HUGETLB)" to reenable hugepage coredump, if a memory
error happens on a hugepage and the affected processes try to access the
error hugepage, we hit VM_BUG_ON(atomic_read(&page->_count) <= 0) in
get_page().
The reason for this bug is that coredump-related code doesn't recognise
"hugepage hwpoison entry" with which a pmd entry is replaced when a memory
error occurs on a hugepage.
In other words, physical address information is stored in different bit
layout between hugepage hwpoison entry and pmd entry, so
follow_hugetlb_page() which is called in get_dump_page() returns a wrong
page from a given address.
The expected behavior is like this:
absent is_swap_pte FOLL_DUMP Expected behavior
-------------------------------------------------------------------
true false false hugetlb_fault
false true false hugetlb_fault
false false false return page
true false true skip page (to avoid allocation)
false true true hugetlb_fault
false false true return page
With this patch, we can call hugetlb_fault() and take proper actions (we
wait for migration entries, fail with VM_FAULT_HWPOISON_LARGE for
hwpoisoned entries,) and as the result we can dump all hugepages except
for hwpoisoned ones.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b6a9b7f6b1f21735a7456d534dc0e68e61359d2c upstream.
find_vma() can be called by multiple threads with read lock
held on mm->mmap_sem and any of them can update mm->mmap_cache.
Prevent compiler from re-fetching mm->mmap_cache, because other
readers could update it in the meantime:
thread 1 thread 2
|
find_vma() | find_vma()
struct vm_area_struct *vma = NULL; |
vma = mm->mmap_cache; |
if (!(vma && vma->vm_end > addr |
&& vma->vm_start <= addr)) { |
| mm->mmap_cache = vma;
return vma; |
^^ compiler may optimize this |
local variable out and re-read |
mm->mmap_cache |
This issue can be reproduced with gcc-4.8.0-1 on s390x by running
mallocstress testcase from LTP, which triggers:
kernel BUG at mm/rmap.c:1088!
Call Trace:
([<000003d100c57000>] 0x3d100c57000)
[<000000000023a1c0>] do_wp_page+0x2fc/0xa88
[<000000000023baae>] handle_pte_fault+0x41a/0xac8
[<000000000023d832>] handle_mm_fault+0x17a/0x268
[<000000000060507a>] do_protection_exception+0x1e2/0x394
[<0000000000603a04>] pgm_check_handler+0x138/0x13c
[<000003fffcf1f07a>] 0x3fffcf1f07a
Last Breaking-Event-Address:
[<000000000024755e>] page_add_new_anon_rmap+0xc2/0x168
Thanks to Jakub Jelinek for his insight on gcc and helping to
track this down.
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust context, indentation]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
accouting
commit d00285884c0892bb1310df96bce6056e9ce9b9d9 upstream.
hugetlb_total_pages is used for overcommit calculations but the current
implementation considers only the default hugetlb page size (which is
either the first defined hugepage size or the one specified by
default_hugepagesz kernel boot parameter).
If the system is configured for more than one hugepage size, which is
possible since commit a137e1cc6d6e ("hugetlbfs: per mount huge page
sizes") then the overcommit estimation done by __vm_enough_memory()
(resp. shown by meminfo_proc_show) is not precise - there is an
impression of more available/allowed memory. This can lead to an
unexpected ENOMEM/EFAULT resp. SIGSEGV when memory is accounted.
Testcase:
boot: hugepagesz=1G hugepages=1
the default overcommit ratio is 50
before patch:
egrep 'CommitLimit' /proc/meminfo
CommitLimit: 55434168 kB
after patch:
egrep 'CommitLimit' /proc/meminfo
CommitLimit: 54909880 kB
[akpm@linux-foundation.org: coding-style tweak]
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
security keys
commit 8aec0f5d4137532de14e6554fd5dd201ff3a3c49 upstream.
Looking at mm/process_vm_access.c:process_vm_rw() and comparing it to
compat_process_vm_rw() shows that the compatibility code requires an
explicit "access_ok()" check before calling
compat_rw_copy_check_uvector(). The same difference seems to appear when
we compare fs/read_write.c:do_readv_writev() to
fs/compat.c:compat_do_readv_writev().
This subtle difference between the compat and non-compat requirements
should probably be debated, as it seems to be error-prone. In fact,
there are two others sites that use this function in the Linux kernel,
and they both seem to get it wrong:
Now shifting our attention to fs/aio.c, we see that aio_setup_iocb()
also ends up calling compat_rw_copy_check_uvector() through
aio_setup_vectored_rw(). Unfortunately, the access_ok() check appears to
be missing. Same situation for
security/keys/compat.c:compat_keyctl_instantiate_key_iov().
I propose that we add the access_ok() check directly into
compat_rw_copy_check_uvector(), so callers don't have to worry about it,
and it therefore makes the compat call code similar to its non-compat
counterpart. Place the access_ok() check in the same location where
copy_from_user() can trigger a -EFAULT error in the non-compat code, so
the ABI behaviors are alike on both compat and non-compat.
While we are here, fix compat_do_readv_writev() so it checks for
compat_rw_copy_check_uvector() negative return values.
And also, fix a memory leak in compat_keyctl_instantiate_key_iov() error
handling.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
pages
commit 67d46b296a1ba1477c0df8ff3bc5e0167a0b0732 upstream.
Rob van der Heij reported the following (paraphrased) on private mail.
The scenario is that I want to avoid backups to fill up the page
cache and purge stuff that is more likely to be used again (this is
with s390x Linux on z/VM, so I don't give it as much memory that
we don't care anymore). So I have something with LD_PRELOAD that
intercepts the close() call (from tar, in this case) and issues
a posix_fadvise() just before closing the file.
This mostly works, except for small files (less than 14 pages)
that remains in page cache after the face.
Unfortunately Rob has not had a chance to test this exact patch but the
test program below should be reproducing the problem he described.
The issue is the per-cpu pagevecs for LRU additions. If the pages are
added by one CPU but fadvise() is called on another then the pages
remain resident as the invalidate_mapping_pages() only drains the local
pagevecs via its call to pagevec_release(). The user-visible effect is
that a program that uses fadvise() properly is not obeyed.
A possible fix for this is to put the necessary smarts into
invalidate_mapping_pages() to globally drain the LRU pagevecs if a
pagevec page could not be discarded. The downside with this is that an
inode cache shrink would send a global IPI and memory pressure
potentially causing global IPI storms is very undesirable.
Instead, this patch adds a check during fadvise(POSIX_FADV_DONTNEED) to
check if invalidate_mapping_pages() discarded all the requested pages.
If a subset of pages are discarded it drains the LRU pagevecs and tries
again. If the second attempt fails, it assumes it is due to the pages
being mapped, locked or dirty and does not care. With this patch, an
application using fadvise() correctly will be obeyed but there is a
downside that a malicious application can force the kernel to send
global IPIs and increase overhead.
If accepted, I would like this to be considered as a -stable candidate.
It's not an urgent issue but it's a system call that is not working as
advertised which is weak.
The following test program demonstrates the problem. It should never
report that pages are still resident but will without this patch. It
assumes that CPU 0 and 1 exist.
int main() {
int fd;
int pagesize = getpagesize();
ssize_t written = 0, expected;
char *buf;
unsigned char *vec;
int resident, i;
cpu_set_t set;
/* Prepare a buffer for writing */
expected = FILESIZE_PAGES * pagesize;
buf = malloc(expected + 1);
if (buf == NULL) {
printf("ENOMEM\n");
exit(EXIT_FAILURE);
}
buf[expected] = 0;
memset(buf, 'a', expected);
/* Prepare the mincore vec */
vec = malloc(FILESIZE_PAGES);
if (vec == NULL) {
printf("ENOMEM\n");
exit(EXIT_FAILURE);
}
/* Bind ourselves to CPU 0 */
CPU_ZERO(&set);
CPU_SET(0, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1) {
perror("sched_setaffinity");
exit(EXIT_FAILURE);
}
/* open file, unlink and write buffer */
fd = open("fadvise-test-file", O_CREAT|O_EXCL|O_RDWR);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
unlink("fadvise-test-file");
while (written < expected) {
ssize_t this_write;
this_write = write(fd, buf + written, expected - written);
if (this_write == -1) {
perror("write");
exit(EXIT_FAILURE);
}
written += this_write;
}
free(buf);
/*
* Force ourselves to another CPU. If fadvise only flushes the local
* CPUs pagevecs then the fadvise will fail to discard all file pages
*/
CPU_ZERO(&set);
CPU_SET(1, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1) {
perror("sched_setaffinity");
exit(EXIT_FAILURE);
}
/* sync and fadvise to discard the page cache */
fsync(fd);
if (posix_fadvise(fd, 0, expected, POSIX_FADV_DONTNEED) == -1) {
perror("posix_fadvise");
exit(EXIT_FAILURE);
}
/* map the file and use mincore to see which parts of it are resident */
buf = mmap(NULL, expected, PROT_READ, MAP_SHARED, fd, 0);
if (buf == NULL) {
perror("mmap");
exit(EXIT_FAILURE);
}
if (mincore(buf, expected, vec) == -1) {
perror("mincore");
exit(EXIT_FAILURE);
}
/* Check residency */
for (i = 0, resident = 0; i < FILESIZE_PAGES; i++) {
if (vec[i])
resident++;
}
if (resident != 0) {
printf("Nr unexpected pages resident: %d\n", resident);
exit(EXIT_FAILURE);
}
munmap(buf, expected);
close(fd);
free(vec);
exit(EXIT_SUCCESS);
}
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Rob van der Heij <rvdheij@gmail.com>
Tested-by: Rob van der Heij <rvdheij@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5f00110f7273f9ff04ac69a5f85bb535a4fd0987 upstream.
The tmpfs remount logic preserves filesystem mempolicy if the mpol=M
option is not specified in the remount request. A new policy can be
specified if mpol=M is given.
Before this patch remounting an mpol bound tmpfs without specifying
mpol= mount option in the remount request would set the filesystem's
mempolicy object to a freed mempolicy object.
To reproduce the problem boot a DEBUG_PAGEALLOC kernel and run:
# mkdir /tmp/x
# mount -t tmpfs -o size=100M,mpol=interleave nodev /tmp/x
# grep /tmp/x /proc/mounts
nodev /tmp/x tmpfs rw,relatime,size=102400k,mpol=interleave:0-3 0 0
# mount -o remount,size=200M nodev /tmp/x
# grep /tmp/x /proc/mounts
nodev /tmp/x tmpfs rw,relatime,size=204800k,mpol=??? 0 0
# note ? garbage in mpol=... output above
# dd if=/dev/zero of=/tmp/x/f count=1
# panic here
Panic:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [< (null)>] (null)
[...]
Oops: 0010 [#1] SMP DEBUG_PAGEALLOC
Call Trace:
mpol_shared_policy_init+0xa5/0x160
shmem_get_inode+0x209/0x270
shmem_mknod+0x3e/0xf0
shmem_create+0x18/0x20
vfs_create+0xb5/0x130
do_last+0x9a1/0xea0
path_openat+0xb3/0x4d0
do_filp_open+0x42/0xa0
do_sys_open+0xfe/0x1e0
compat_sys_open+0x1b/0x20
cstar_dispatch+0x7/0x1f
Non-debug kernels will not crash immediately because referencing the
dangling mpol will not cause a fault. Instead the filesystem will
reference a freed mempolicy object, which will cause unpredictable
behavior.
The problem boils down to a dropped mpol reference below if
shmem_parse_options() does not allocate a new mpol:
config = *sbinfo
shmem_parse_options(data, &config, true)
mpol_put(sbinfo->mpol)
sbinfo->mpol = config.mpol /* BUG: saves unreferenced mpol */
This patch avoids the crash by not releasing the mempolicy if
shmem_parse_options() doesn't create a new mpol.
How far back does this issue go? I see it in both 2.6.36 and 3.3. I did
not look back further.
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 751efd8610d3d7d67b7bdf7f62646edea7365dd7 upstream.
There is a race condition between mmu_notifier_unregister() and
__mmu_notifier_release().
Assume two tasks, one calling mmu_notifier_unregister() as a result of a
filp_close() ->flush() callout (task A), and the other calling
mmu_notifier_release() from an mmput() (task B).
A B
t1 srcu_read_lock()
t2 if (!hlist_unhashed())
t3 srcu_read_unlock()
t4 srcu_read_lock()
t5 hlist_del_init_rcu()
t6 synchronize_srcu()
t7 srcu_read_unlock()
t8 hlist_del_rcu() <--- NULL pointer deref.
Additionally, the list traversal in __mmu_notifier_release() is not
protected by the by the mmu_notifier_mm->hlist_lock which can result in
callouts to the ->release() notifier from both mmu_notifier_unregister()
and __mmu_notifier_release().
-stable suggestions:
The stable trees prior to 3.7.y need commits 21a92735f660 and
70400303ce0c cherry-picked in that order prior to cherry-picking this
commit. The 3.7.y tree already has those two commits.
Signed-off-by: Robin Holt <holt@sgi.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Sagi Grimberg <sagig@mellanox.co.il>
Cc: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 70400303ce0c4ced3139499c676d5c79636b0c72 upstream.
The variable must be static especially given the variable name.
s/RCU/SRCU/ over a few comments.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Sagi Grimberg <sagig@mellanox.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
schedule
commit 21a92735f660eaecf69a6f2e777f18463760ec32 upstream.
With an RCU based mmu_notifier implementation, any callout to
mmu_notifier_invalidate_range_{start,end}() or
mmu_notifier_invalidate_page() would not be allowed to call schedule()
as that could potentially allow a modification to the mmu_notifier
structure while it is currently being used.
Since srcu allocs 4 machine words per instance per cpu, we may end up
with memory exhaustion if we use srcu per mm. So all mms share a global
srcu. Note that during large mmu_notifier activity exit & unregister
paths might hang for longer periods, but it is tolerable for current
mmu_notifier clients.
Signed-off-by: Sagi Grimberg <sagig@mellanox.co.il>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Haggai Eran <haggaie@mellanox.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7c45512df987c5619db041b5c9b80d281e26d3db upstream.
Commit c060f943d092 ("mm: use aligned zone start for pfn_to_bitidx
calculation") fixed out calculation of the index into the pageblock
bitmap when a !SPARSEMEM zome was not aligned to pageblock_nr_pages.
However, the _allocation_ of that bitmap had never taken this alignment
requirement into accout, so depending on the exact size and alignment of
the zone, the use of that index could then access past the allocation,
resulting in some very subtle memory corruption.
This was reported (and bisected) by Ingo Molnar: one of his random
config builds would hang with certain very specific kernel command line
options.
In the meantime, commit c060f943d092 has been marked for stable, so this
fix needs to be back-ported to the stable kernels that backported the
commit to use the right alignment.
Bisected-and-tested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1f1d06c34f7675026326cd9f39ff91e4555cf355 upstream.
On COW, a new hugepage is allocated and charged to the memcg. If the
system is oom or the charge to the memcg fails, however, the fault
handler will return VM_FAULT_OOM which results in an oom kill.
Instead, it's possible to fallback to splitting the hugepage so that the
COW results only in an order-0 page being allocated and charged to the
memcg which has a higher liklihood to succeed. This is expensive
because the hugepage must be split in the page fault handler, but it is
much better than unnecessarily oom killing a process.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c060f943d0929f3e429c5d9522290584f6281d6e upstream.
The current calculation in pfn_to_bitidx assumes that (pfn -
zone->zone_start_pfn) >> pageblock_order will return the same bit for
all pfn in a pageblock. If zone_start_pfn is not aligned to
pageblock_nr_pages, this may not always be correct.
Consider the following with pageblock order = 10, zone start 2MB:
pfn | pfn - zone start | (pfn - zone start) >> page block order
----------------------------------------------------------------
0x26000 | 0x25e00 | 0x97
0x26100 | 0x25f00 | 0x97
0x26200 | 0x26000 | 0x98
0x26300 | 0x26100 | 0x98
This means that calling {get,set}_pageblock_migratetype on a single page
will not set the migratetype for the full block. Fix this by rounding
down zone_start_pfn when doing the bitidx calculation.
For our use case, the effects of this bug were mostly tied to the fact
that CMA allocations would either take a long time or fail to happen.
Depending on the driver using CMA, this could result in anything from
visual glitches to application failures.
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7964c06d66c76507d8b6b662bffea770c29ef0ce upstream.
when run the folloing command under shell, it will return error
sh/$ echo 1 > /proc/sys/vm/compact_memory
sh/$ sh: write error: Bad address
After strace, I found the following log:
...
write(1, "1\n", 2) = 3
write(1, "", 4294967295) = -1 EFAULT (Bad address)
write(2, "echo: write error: Bad address\n", 31echo: write error: Bad address
) = 31
This tells system return 3(COMPACT_COMPLETE) after write data to
compact_memory.
The fix is to make the system just return 0 instead 3(COMPACT_COMPLETE)
from sysctl_compaction_handler after compaction_nodes finished.
Signed-off-by: Jason Liu <r64343@freescale.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 53a59fc67f97374758e63a9c785891ec62324c81 upstream.
Since commit e303297e6c3a ("mm: extended batches for generic
mmu_gather") we are batching pages to be freed until either
tlb_next_batch cannot allocate a new batch or we are done.
This works just fine most of the time but we can get in troubles with
non-preemptible kernel (CONFIG_PREEMPT_NONE or CONFIG_PREEMPT_VOLUNTARY)
on large machines where too aggressive batching might lead to soft
lockups during process exit path (exit_mmap) because there are no
scheduling points down the free_pages_and_swap_cache path and so the
freeing can take long enough to trigger the soft lockup.
The lockup is harmless except when the system is setup to panic on
softlockup which is not that unusual.
The simplest way to work around this issue is to limit the maximum
number of batches in a single mmu_gather. 10k of collected pages should
be safe to prevent from soft lockups (we would have 2ms for one) even if
they are all freed without an explicit scheduling point.
This patch doesn't add any new explicit scheduling points because it
relies on zap_pmd_range during page tables zapping which calls
cond_resched per PMD.
The following lockup has been reported for 3.0 kernel with a huge
process (in order of hundreds gigs but I do know any more details).
BUG: soft lockup - CPU#56 stuck for 22s! [kernel:31053]
Modules linked in: af_packet nfs lockd fscache auth_rpcgss nfs_acl sunrpc mptctl mptbase autofs4 binfmt_misc dm_round_robin dm_multipath bonding cpufreq_conservative cpufreq_userspace cpufreq_powersave pcc_cpufreq mperf microcode fuse loop osst sg sd_mod crc_t10dif st qla2xxx scsi_transport_fc scsi_tgt netxen_nic i7core_edac iTCO_wdt joydev e1000e serio_raw pcspkr edac_core iTCO_vendor_support acpi_power_meter rtc_cmos hpwdt hpilo button container usbhid hid dm_mirror dm_region_hash dm_log linear uhci_hcd ehci_hcd usbcore usb_common scsi_dh_emc scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh dm_snapshot pcnet32 mii edd dm_mod raid1 ext3 mbcache jbd fan thermal processor thermal_sys hwmon cciss scsi_mod
Supported: Yes
CPU 56
Pid: 31053, comm: kernel Not tainted 3.0.31-0.9-default #1 HP ProLiant DL580 G7
RIP: 0010: _raw_spin_unlock_irqrestore+0x8/0x10
RSP: 0018:ffff883ec1037af0 EFLAGS: 00000206
RAX: 0000000000000e00 RBX: ffffea01a0817e28 RCX: ffff88803ffd9e80
RDX: 0000000000000200 RSI: 0000000000000206 RDI: 0000000000000206
RBP: 0000000000000002 R08: 0000000000000001 R09: ffff887ec724a400
R10: 0000000000000000 R11: dead000000200200 R12: ffffffff8144c26e
R13: 0000000000000030 R14: 0000000000000297 R15: 000000000000000e
FS: 00007ed834282700(0000) GS:ffff88c03f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 000000000068b240 CR3: 0000003ec13c5000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kernel (pid: 31053, threadinfo ffff883ec1036000, task ffff883ebd5d4100)
Call Trace:
release_pages+0xc5/0x260
free_pages_and_swap_cache+0x9d/0xc0
tlb_flush_mmu+0x5c/0x80
tlb_finish_mmu+0xe/0x50
exit_mmap+0xbd/0x120
mmput+0x49/0x120
exit_mm+0x122/0x160
do_exit+0x17a/0x430
do_group_exit+0x3d/0xb0
get_signal_to_deliver+0x247/0x480
do_signal+0x71/0x1b0
do_notify_resume+0x98/0xb0
int_signal+0x12/0x17
DWARF2 unwinder stuck at int_signal+0x12/0x17
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f2a07f40dbc603c15f8b06e6ec7f768af67b424f upstream.
Recently I suggested using "mount -o remount,mpol=local /tmp" in NUMA
mempolicy testing. Very nasty. Reading /proc/mounts, /proc/pid/mounts
or /proc/pid/mountinfo may then corrupt one bit of kernel memory, often
in a page table (causing "Bad swap" or "Bad page map" warning or "Bad
pagetable" oops), sometimes in a vm_area_struct or rbnode or somewhere
worse. "mpol=prefer" and "mpol=prefer:Node" are equally toxic.
Recent NUMA enhancements are not to blame: this dates back to 2.6.35,
when commit e17f74af351c "mempolicy: don't call mpol_set_nodemask() when
no_context" skipped mpol_parse_str()'s call to mpol_set_nodemask(),
which used to initialize v.preferred_node, or set MPOL_F_LOCAL in flags.
With slab poisoning, you can then rely on mpol_to_str() to set the bit
for node 0x6b6b, probably in the next page above the caller's stack.
mpol_parse_str() is only called from shmem_parse_options(): no_context
is always true, so call it unused for now, and remove !no_context code.
Set v.nodes or v.preferred_node or MPOL_F_LOCAL as mpol_to_str() might
expect. Then mpol_to_str() can ignore its no_context argument also,
the mpol being appropriately initialized whether contextualized or not.
Rename its no_context unused too, and let subsequent patch remove them
(that's not needed for stable backporting, which would involve rejects).
I don't understand why MPOL_LOCAL is described as a pseudo-policy:
it's a reasonable policy which suffers from a confusing implementation
in terms of MPOL_PREFERRED with MPOL_F_LOCAL. I believe this would be
much more robust if MPOL_LOCAL were recognized in switch statements
throughout, MPOL_F_LOCAL deleted, and MPOL_PREFERRED use the (possibly
empty) nodes mask like everyone else, instead of its preferred_node
variant (I presume an optimization from the days before MPOL_LOCAL).
But that would take me too long to get right and fully tested.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8b74c2f6604923de91f8aa6539f8bb934736754 upstream.
The system uses global_dirtyable_memory() to calculate number of
dirtyable pages/pages that can be allocated to the page cache. A bug
causes an underflow thus making the page count look like a big unsigned
number. This in turn confuses the dirty writeback throttling to
aggressively write back pages as they become dirty (usually 1 page at a
time). This generally only affects systems with highmem because the
underflowed count gets subtracted from the global count of dirtyable
memory.
The problem was introduced with v3.2-4896-gab8fabd
Fix is to ensure we don't get an underflowed total of either highmem or
global dirtyable memory.
Signed-off-by: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Puneet Kumar <puneetster@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Damien Wyart <damien.wyart@free.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 387870f2d6d679746020fa8e25ef786ff338dc98 upstream.
dmapool always calls dma_alloc_coherent() with GFP_ATOMIC flag,
regardless the flags provided by the caller. This causes excessive
pruning of emergency memory pools without any good reason. Additionaly,
on ARM architecture any driver which is using dmapools will sooner or
later trigger the following error:
"ERROR: 256 KiB atomic DMA coherent pool is too small!
Please increase it with coherent_pool= kernel parameter!".
Increasing the coherent pool size usually doesn't help much and only
delays such error, because all GFP_ATOMIC DMA allocations are always
served from the special, very limited memory pool.
This patch changes the dmapool code to correctly use gfp flags provided
by the dmapool caller.
Reported-by: Soeren Moch <smoch@web.de>
Reported-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Andrew Lunn <andrew@lunn.ch>
Tested-by: Soeren Moch <smoch@web.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 18a2f371f5edf41810f6469cb9be39931ef9deb9 upstream.
This fixes a regression in 3.7-rc, which has since gone into stable.
Commit 00442ad04a5e ("mempolicy: fix a memory corruption by refcount
imbalance in alloc_pages_vma()") changed get_vma_policy() to raise the
refcount on a shmem shared mempolicy; whereas shmem_alloc_page() went
on expecting alloc_page_vma() to drop the refcount it had acquired.
This deserves a rework: but for now fix the leak in shmem_alloc_page().
Hugh: shmem_swapin() did not need a fix, but surely it's clearer to use
the same refcounting there as in shmem_alloc_page(), delete its onstack
mempolicy, and the strange mpol_cond_copy() and __mpol_cond_copy() -
those were invented to let swapin_readahead() make an unknown number of
calls to alloc_pages_vma() with one mempolicy; but since 00442ad04a5e,
alloc_pages_vma() has kept refcount in balance, so now no problem.
Reported-and-tested-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 783657a7dc20e5c0efbc9a09a9dd38e238a723da upstream.
When we try to soft-offline a thp tail page, put_page() is called on the
tail page unthinkingly and VM_BUG_ON is triggered in put_compound_page().
This patch splits thp before going into the main body of soft-offlining.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ae64ffcac35de0db628ba9631edf8ff34c5cd7ac upstream.
I enable CONFIG_DEBUG_VIRTUAL and CONFIG_SPARSEMEM_VMEMMAP, when doing
memory hotremove, there is a kernel BUG at arch/x86/mm/physaddr.c:20.
It is caused by free_section_usemap()->virt_to_page(), virt_to_page() is
only used for kernel direct mapping address, but sparse-vmemmap uses
vmemmap address, so it is going wrong here.
------------[ cut here ]------------
kernel BUG at arch/x86/mm/physaddr.c:20!
invalid opcode: 0000 [#1] SMP
Modules linked in: acpihp_drv acpihp_slot edd cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf fuse vfat fat loop dm_mod coretemp kvm crc32c_intel ipv6 ixgbe igb iTCO_wdt i7core_edac edac_core pcspkr iTCO_vendor_support ioatdma microcode joydev sr_mod i2c_i801 dca lpc_ich mfd_core mdio tpm_tis i2c_core hid_generic tpm cdrom sg tpm_bios rtc_cmos button ext3 jbd mbcache usbhid hid uhci_hcd ehci_hcd usbcore usb_common sd_mod crc_t10dif processor thermal_sys hwmon scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh_emc scsi_dh ata_generic ata_piix libata megaraid_sas scsi_mod
CPU 39
Pid: 6454, comm: sh Not tainted 3.7.0-rc1-acpihp-final+ #45 QCI QSSC-S4R/QSSC-S4R
RIP: 0010:[<ffffffff8103c908>] [<ffffffff8103c908>] __phys_addr+0x88/0x90
RSP: 0018:ffff8804440d7c08 EFLAGS: 00010006
RAX: 0000000000000006 RBX: ffffea0012000000 RCX: 000000000000002c
...
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reviewd-by: Wen Congyang <wency@cn.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0f3c42f522dc1ad7e27affc0a4aa8c790bce0a66 upstream.
Under a particular load on one machine, I have hit shmem_evict_inode()'s
BUG_ON(inode->i_blocks), enough times to narrow it down to a particular
race between swapout and eviction.
It comes from the "if (freed > 0)" asymmetry in shmem_recalc_inode(),
and the lack of coherent locking between mapping's nrpages and shmem's
swapped count. There's a window in shmem_writepage(), between lowering
nrpages in shmem_delete_from_page_cache() and then raising swapped
count, when the freed count appears to be +1 when it should be 0, and
then the asymmetry stops it from being corrected with -1 before hitting
the BUG.
One answer is coherent locking: using tree_lock throughout, without
info->lock; reasonable, but the raw_spin_lock in percpu_counter_add() on
used_blocks makes that messier than expected. Another answer may be a
further effort to eliminate the weird shmem_recalc_inode() altogether,
but previous attempts at that failed.
So far undecided, but for now change the BUG_ON to WARN_ON: in usual
circumstances it remains a useful consistency check.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a5a8f19b43430752067ecaee62fc59e11e88fa6 upstream.
oom_badness() takes a totalpages argument which says how many pages are
available and it uses it as a base for the score calculation. The value
is calculated by mem_cgroup_get_limit which considers both limit and
total_swap_pages (resp. memsw portion of it).
This is usually correct but since fe35004fbf9e ("mm: avoid swapping out
with swappiness==0") we do not swap when swappiness is 0 which means
that we cannot really use up all the totalpages pages. This in turn
confuses oom score calculation if the memcg limit is much smaller than
the available swap because the used memory (capped by the limit) is
negligible comparing to totalpages so the resulting score is too small
if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj).
A wrong process might be selected as result.
The problem can be worked around by checking mem_cgroup_swappiness==0
and not considering swap at all in such a case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b0a8cc58e6b9aaae3045752059e5e6260c0b94bc upstream.
In kswapd(), set current->reclaim_state to NULL before returning, as
current->reclaim_state holds reference to variable on kswapd()'s stack.
In rare cases, while returning from kswapd() during memory offlining,
__free_slab() and freepages() can access the dangling pointer of
current->reclaim_state.
Signed-off-by: Takamori Yamaguchi <takamori.yamaguchi@jp.sony.com>
Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef5d437f71afdf4afdbab99213add99f4b1318fd upstream.
On s390 any write to a page (even from kernel itself) sets architecture
specific page dirty bit. Thus when a page is written to via buffered
write, HW dirty bit gets set and when we later map and unmap the page,
page_remove_rmap() finds the dirty bit and calls set_page_dirty().
Dirtying of a page which shouldn't be dirty can cause all sorts of
problems to filesystems. The bug we observed in practice is that
buffers from the page get freed, so when the page gets later marked as
dirty and writeback writes it, XFS crashes due to an assertion
BUG_ON(!PagePrivate(page)) in page_buffers() called from
xfs_count_page_state().
Similar problem can also happen when zero_user_segment() call from
xfs_vm_writepage() (or block_write_full_page() for that matter) set the
hardware dirty bit during writeback, later buffers get freed, and then
page unmapped.
Fix the issue by ignoring s390 HW dirty bit for page cache pages of
mappings with mapping_cap_account_dirty(). This is safe because for
such mappings when a page gets marked as writeable in PTE it is also
marked dirty in do_wp_page() or do_page_fault(). When the dirty bit is
cleared by clear_page_dirty_for_io(), the page gets writeprotected in
page_mkclean(). So pagecache page is writeable if and only if it is
dirty.
Thanks to Hugh Dickins for pointing out mapping has to have
mapping_cap_account_dirty() for things to work and proposing a cleaned
up variant of the patch.
The patch has survived about two hours of running fsx-linux on tmpfs
while heavily swapping and several days of running on out build machines
where the original problem was triggered.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6ede1fd3cb404c0016de6ac529df46d561bd558b upstream.
We will not map partial pages, so need to make sure memblock
allocation will not allocate those bytes out.
Also we will use for_each_mem_pfn_range() to loop to map memory
range to keep them consistent.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 35c2a7f4908d404c9124c2efc6ada4640ca4d5d5 upstream.
Fuzzing with trinity oopsed on the 1st instruction of shmem_fh_to_dentry(),
u64 inum = fid->raw[2];
which is unhelpfully reported as at the end of shmem_alloc_inode():
BUG: unable to handle kernel paging request at ffff880061cd3000
IP: [<ffffffff812190d0>] shmem_alloc_inode+0x40/0x40
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Call Trace:
[<ffffffff81488649>] ? exportfs_decode_fh+0x79/0x2d0
[<ffffffff812d77c3>] do_handle_open+0x163/0x2c0
[<ffffffff812d792c>] sys_open_by_handle_at+0xc/0x10
[<ffffffff83a5f3f8>] tracesys+0xe1/0xe6
Right, tmpfs is being stupid to access fid->raw[2] before validating that
fh_len includes it: the buffer kmalloc'ed by do_sys_name_to_handle() may
fall at the end of a page, and the next page not be present.
But some other filesystems (ceph, gfs2, isofs, reiserfs, xfs) are being
careless about fh_len too, in fh_to_dentry() and/or fh_to_parent(), and
could oops in the same way: add the missing fh_len checks to those.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Sage Weil <sage@inktank.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 00442ad04a5eac08a98255697c510e708f6082e2 upstream.
Commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory barrier
related damage v3") introduced a potential memory corruption.
shmem_alloc_page() uses a pseudo vma and it has one significant unique
combination, vma->vm_ops=NULL and vma->policy->flags & MPOL_F_SHARED.
get_vma_policy() does NOT increase a policy ref when vma->vm_ops=NULL
and mpol_cond_put() DOES decrease a policy ref when a policy has
MPOL_F_SHARED. Therefore, when a cpuset update race occurs,
alloc_pages_vma() falls in 'goto retry_cpuset' path, decrements the
reference count and frees the policy prematurely.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63f74ca21f1fad36d075e063f06dcc6d39fe86b2 upstream.
When shared_policy_replace() fails to allocate new->policy is not freed
correctly by mpol_set_shared_policy(). The problem is that shared
mempolicy code directly call kmem_cache_free() in multiple places where
it is easy to make a mistake.
This patch creates an sp_free wrapper function and uses it. The bug was
introduced pre-git age (IOW, before 2.6.12-rc2).
[mgorman@suse.de: Editted changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b22d127a39ddd10d93deee3d96e643657ad53a49 upstream.
shared_policy_replace() use of sp_alloc() is unsafe. 1) sp_node cannot
be dereferenced if sp->lock is not held and 2) another thread can modify
sp_node between spin_unlock for allocating a new sp node and next
spin_lock. The bug was introduced before 2.6.12-rc2.
Kosaki's original patch for this problem was to allocate an sp node and
policy within shared_policy_replace and initialise it when the lock is
reacquired. I was not keen on this approach because it partially
duplicates sp_alloc(). As the paths were sp->lock is taken are not that
performance critical this patch converts sp->lock to sp->mutex so it can
sleep when calling sp_alloc().
[kosaki.motohiro@jp.fujitsu.com: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 869833f2c5c6e4dd09a5378cfc665ffb4615e5d2 upstream.
Dave Jones' system call fuzz testing tool "trinity" triggered the
following bug error with slab debugging enabled
=============================================================================
BUG numa_policy (Not tainted): Poison overwritten
-----------------------------------------------------------------------------
INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b
INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154
__slab_alloc+0x3d3/0x445
kmem_cache_alloc+0x29d/0x2b0
mpol_new+0xa3/0x140
sys_mbind+0x142/0x620
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154
__slab_free+0x2e/0x1de
kmem_cache_free+0x25a/0x260
__mpol_put+0x27/0x30
remove_vma+0x68/0x90
exit_mmap+0x118/0x140
mmput+0x73/0x110
exit_mm+0x108/0x130
do_exit+0x162/0xb90
do_group_exit+0x4f/0xc0
sys_exit_group+0x17/0x20
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080
INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0
The problem is that the structure is being prematurely freed due to a
reference count imbalance. In the following case mbind(addr, len) should
replace the memory policies of both vma1 and vma2 and thus they will
become to share the same mempolicy and the new mempolicy will have the
MPOL_F_SHARED flag.
+-------------------+-------------------+
| vma1 | vma2(shmem) |
+-------------------+-------------------+
| |
addr addr+len
alloc_pages_vma() uses get_vma_policy() and mpol_cond_put() pair for
maintaining the mempolicy reference count. The current rule is that
get_vma_policy() only increments refcount for shmem VMA and
mpol_conf_put() only decrements refcount if the policy has
MPOL_F_SHARED.
In above case, vma1 is not shmem vma and vma->policy has MPOL_F_SHARED!
The reference count will be decreased even though was not increased
whenever alloc_page_vma() is called. This has been broken since commit
[52cd3b07: mempolicy: rework mempolicy Reference Counting] in 2008.
There is another serious bug with the sharing of memory policies.
Currently, mempolicy rebind logic (it is called from cpuset rebinding)
ignores a refcount of mempolicy and override it forcibly. Thus, any
mempolicy sharing may cause mempolicy corruption. The bug was
introduced by commit [68860ec1: cpusets: automatic numa mempolicy
rebinding].
Ideally, the shared policy handling would be rewritten to either
properly handle COW of the policy structures or at least reference count
MPOL_F_SHARED based exclusively on information within the policy.
However, this patch takes the easier approach of disabling any policy
sharing between VMAs. Each new range allocated with sp_alloc will
allocate a new policy, set the reference count to 1 and drop the
reference count of the old policy. This increases the memory footprint
but is not expected to be a major problem as mbind() is unlikely to be
used for fine-grained ranges. It is also inefficient because it means
we allocate a new policy even in cases where mbind_range() could use the
new_policy passed to it. However, it is more straight-forward and the
change should be invisible to the user.
[mgorman@suse.de: Edited changelog]
Reported-by: Dave Jones <davej@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
linkages"
commit 8d34694c1abf29df1f3c7317936b7e3e2e308d9b upstream.
Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle
vma->vm_policy linkages") removed vma->vm_policy updates code but it is
the purpose of mbind_range(). Now, mbind_range() is virtually a no-op
and while it does not allow memory corruption it is not the right fix.
This patch is a revert.
[mgorman@suse.de: Edited changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ec4d9f626d5908b6052c2973f37992f1db52e967 upstream.
In fuzzing with trinity, lockdep protested "possible irq lock inversion
dependency detected" when isolate_lru_page() reenabled interrupts while
still holding the supposedly irq-safe tree_lock:
invalidate_inode_pages2
invalidate_complete_page2
spin_lock_irq(&mapping->tree_lock)
clear_page_mlock
isolate_lru_page
spin_unlock_irq(&zone->lru_lock)
isolate_lru_page() is correct to enable interrupts unconditionally:
invalidate_complete_page2() is incorrect to call clear_page_mlock() while
holding tree_lock, which is supposed to nest inside lru_lock.
Both truncate_complete_page() and invalidate_complete_page() call
clear_page_mlock() before taking tree_lock to remove page from radix_tree.
I guess invalidate_complete_page2() preferred to test PageDirty (again)
under tree_lock before committing to the munlock; but since the page has
already been unmapped, its state is already somewhat inconsistent, and no
worse if clear_page_mlock() moved up.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Deciphered-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36e4f20af833d1ce196e6a4ade05dc26c44652d1 upstream.
Commit 0c176d52b0b2 ("mm: hugetlb: fix pgoff computation when unmapping
page from vma") fixed pgoff calculation but it has replaced it by
vma_hugecache_offset() which is not approapriate for offsets used for
vma_prio_tree_foreach() because that one expects index in page units
rather than in huge_page_shift.
Johannes said:
: The resulting index may not be too big, but it can be too small: assume
: hpage size of 2M and the address to unmap to be 0x200000. This is regular
: page index 512 and hpage index 1. If you have a VMA that maps the file
: only starting at the second huge page, that VMAs vm_pgoff will be 512 but
: you ask for offset 1 and miss it even though it does map the page of
: interest. hugetlb_cow() will try to unmap, miss the vma, and retry the
: cow until the allocation succeeds or the skipped vma(s) go away.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 947ca1856a7e60aa6d20536785e6a42dff25aa6e upstream.
DEADLOCK will be report while running a kernel with NUMA and LOCKDEP enabled,
the process of this fake report is:
kmem_cache_free() //free obj in cachep
-> cache_free_alien() //acquire cachep's l3 alien lock
-> __drain_alien_cache()
-> free_block()
-> slab_destroy()
-> kmem_cache_free() //free slab in cachep->slabp_cache
-> cache_free_alien() //acquire cachep->slabp_cache's l3 alien lock
Since the cachep and cachep->slabp_cache's l3 alien are in the same lock class,
fake report generated.
This should not happen since we already have init_lock_keys() which will
reassign the lock class for both l3 list and l3 alien.
However, init_lock_keys() was invoked at a wrong position which is before we
invoke enable_cpucache() on each cache.
Since until set slab_state to be FULL, we won't invoke enable_cpucache()
on caches to build their l3 alien while creating them, so although we invoked
init_lock_keys(), the l3 alien lock class won't change since we don't have
them until invoked enable_cpucache() later.
This patch will invoke init_lock_keys() after we done enable_cpucache()
instead of before to avoid the fake DEADLOCK report.
Michael traced the problem back to a commit in release 3.0.0:
commit 30765b92ada267c5395fc788623cb15233276f5c
Author: Peter Zijlstra <peterz@infradead.org>
Date: Thu Jul 28 23:22:56 2011 +0200
slab, lockdep: Annotate the locks before using them
Fernando found we hit the regular OFF_SLAB 'recursion' before we
annotate the locks, cure this.
The relevant portion of the stack-trace:
> [ 0.000000] [<c085e24f>] rt_spin_lock+0x50/0x56
> [ 0.000000] [<c04fb406>] __cache_free+0x43/0xc3
> [ 0.000000] [<c04fb23f>] kmem_cache_free+0x6c/0xdc
> [ 0.000000] [<c04fb2fe>] slab_destroy+0x4f/0x53
> [ 0.000000] [<c04fb396>] free_block+0x94/0xc1
> [ 0.000000] [<c04fc551>] do_tune_cpucache+0x10b/0x2bb
> [ 0.000000] [<c04fc8dc>] enable_cpucache+0x7b/0xa7
> [ 0.000000] [<c0bd9d3c>] kmem_cache_init_late+0x1f/0x61
> [ 0.000000] [<c0bba687>] start_kernel+0x24c/0x363
> [ 0.000000] [<c0bba0ba>] i386_start_kernel+0xa9/0xaf
Reported-by: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311888176.2617.379.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The commit moved init_lock_keys() before we build up the alien, so we
failed to reclass it.
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fe35004fbf9eaf67482b074a2e032abb9c89b1dd upstream.
Sometimes we'd like to avoid swapping out anonymous memory. In
particular, avoid swapping out pages of important process or process
groups while there is a reasonable amount of pagecache on RAM so that we
can satisfy our customers' requirements.
OTOH, we can control how aggressive the kernel will swap memory pages with
/proc/sys/vm/swappiness for global and
/sys/fs/cgroup/memory/memory.swappiness for each memcg.
But with current reclaim implementation, the kernel may swap out even if
we set swappiness=0 and there is pagecache in RAM.
This patch changes the behavior with swappiness==0. If we set
swappiness==0, the kernel does not swap out completely (for global reclaim
until the amount of free pages and filebacked pages in a zone has been
reduced to something very very small (nr_free + nr_filebacked < high
watermark)).
Signed-off-by: Satoru Moriya <satoru.moriya@hds.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 99ab7b19440a72ebdf225f99b20f8ef40decee86 upstream.
After commit f5bf18fa22f8 ("bootmem/sparsemem: remove limit constraint
in alloc_bootmem_section"), usemap allocations may easily be placed
outside the optimal section that holds the node descriptor, even if
there is space available in that section. This results in unnecessary
hotplug dependencies that need to have the node unplugged before the
section holding the usemap.
The reason is that the bootmem allocator doesn't guarantee a linear
search starting from the passed allocation goal but may start out at a
much higher address absent an upper limit.
Fix this by trying the allocation with the limit at the section end,
then retry without if that fails. This keeps the fix from f5bf18fa22f8
of not panicking if the allocation does not fit in the section, but
still makes sure to try to stay within the section at first.
[rewritten massively by Johannes to apply to 3.4]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
commit f14851af0ebb32745c6c5a2e400aa0549f9d20df upstream.
There may be a bug when registering section info. For example, on my
Itanium platform, the pfn range of node0 includes the other nodes, so
other nodes' section info will be double registered, and memmap's page
count will equal to 3.
node0: start_pfn=0x100, spanned_pfn=0x20fb00, present_pfn=0x7f8a3, => 0x000100-0x20fc00
node1: start_pfn=0x80000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x080000-0x100000
node2: start_pfn=0x100000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x100000-0x180000
node3: start_pfn=0x180000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x180000-0x200000
free_all_bootmem_node()
register_page_bootmem_info_node()
register_page_bootmem_info_section()
When hot remove memory, we can't free the memmap's page because
page_count() is 2 after put_page_bootmem().
sparse_remove_one_section()
free_section_usemap()
free_map_bootmem()
put_page_bootmem()
[akpm@linux-foundation.org: add code comment]
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0ba8f2d59304dfe69b59c034de723ad80f7ab9ac upstream.
The heuristic method for buddy has been introduced since commit
43506fad21ca ("mm/page_alloc.c: simplify calculation of combined index
of adjacent buddy lists"). But the page address of higher page's buddy
was wrongly calculated, which will lead page_is_buddy to fail for ever.
IOW, the heuristic method would be disabled with the wrong page address
of higher page's buddy.
Calculating the page address of higher page's buddy should be based
higher_page with the offset between index of higher page and index of
higher page's buddy.
Signed-off-by: Haifeng Li <omycle@gmail.com>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80de7c3138ee9fd86a98696fd2cf7ad89b995d0a upstream.
Trivially triggerable, found by trinity:
kernel BUG at mm/mempolicy.c:2546!
Process trinity-child2 (pid: 23988, threadinfo ffff88010197e000, task ffff88007821a670)
Call Trace:
show_numa_map+0xd5/0x450
show_pid_numa_map+0x13/0x20
traverse+0xf2/0x230
seq_read+0x34b/0x3e0
vfs_read+0xac/0x180
sys_pread64+0xa2/0xc0
system_call_fastpath+0x1a/0x1f
RIP: mpol_to_str+0x156/0x360
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d833352a4338dc31295ed832a30c9ccff5c7a183 upstream.
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ad3d901bbcfb15a5e4690e55350db0899095a68 upstream.
mmu_notifier_release() is called when the process is exiting. It will
delete all the mmu notifiers. But at this time the page belonging to the
process is still present in page tables and is present on the LRU list, so
this race will happen:
CPU 0 CPU 1
mmu_notifier_release: try_to_unmap:
hlist_del_init_rcu(&mn->hlist);
ptep_clear_flush_notify:
mmu nofifler not found
free page !!!!!!
/*
* At the point, the page has been
* freed, but it is still mapped in
* the secondary MMU.
*/
mn->ops->release(mn, mm);
Then the box is not stable and sometimes we can get this bug:
[ 738.075923] BUG: Bad page state in process migrate-perf pfn:03bec
[ 738.075931] page:ffffea00000efb00 count:0 mapcount:0 mapping: (null) index:0x8076
[ 738.075936] page flags: 0x20000000000014(referenced|dirty)
The same issue is present in mmu_notifier_unregister().
We can call ->release before deleting the notifier to ensure the page has
been unmapped from the secondary MMU before it is freed.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dc32f63453f56d07a1073a697dcd843dd3098c09 upstream.
Commit a6bc32b89922 ("mm: compaction: introduce sync-light migration for
use by compaction") changed the declaration of migrate_pages() and
migrate_huge_pages().
But it missed changing the argument of migrate_huge_pages() in
soft_offline_huge_page(). In this case, we should call
migrate_huge_pages() with MIGRATE_SYNC.
Additionally, there is a mismatch between type the of argument and the
function declaration for migrate_pages().
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6751ed65dc6642af64f7b8a440a75563c8aab7ae upstream.
In commit dad1743e5993f1 ("x86/mce: Only restart instruction after machine
check recovery if it is safe") we fixed mce_notify_process() to force a
signal to the current process if it was not restartable (RIPV bit not
set in MCG_STATUS). But doing it here means that the process doesn't
get told the virtual address of the fault via siginfo_t->si_addr. This
would prevent application level recovery from the fault.
Make a new MF_MUST_KILL flag bit for memory_failure() et al. to use so
that we will provide the right information with the signal.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1c7e7f6c0703d03af6bcd5ccc11fc15d23e5ecbe upstream.
Offlining memory may block forever, waiting for kswapd() to wake up
because kswapd() does not check the event kthread->should_stop before
sleeping.
The proper pattern, from Documentation/memory-barriers.txt, is:
--- waker ---
event_indicated = 1;
wake_up_process(event_daemon);
--- sleeper ---
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (event_indicated)
break;
schedule();
}
set_current_state() may be wrapped by:
prepare_to_wait();
In the kswapd() case, event_indicated is kthread->should_stop.
=== offlining memory (waker) ===
kswapd_stop()
kthread_stop()
kthread->should_stop = 1
wake_up_process()
wait_for_completion()
=== kswapd_try_to_sleep (sleeper) ===
kswapd_try_to_sleep()
prepare_to_wait()
.
.
schedule()
.
.
finish_wait()
The schedule() needs to be protected by a test of kthread->should_stop,
which is wrapped by kthread_should_stop().
Reproducer:
Do heavy file I/O in background.
Do a memory offline/online in a tight loop
Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 29f6738609e40227dabcc63bfb3b84b3726a75bd upstream.
memblock_free_reserved_regions() calls memblock_free(), but
memblock_free() would double reserved.regions too, so we could free the
old range for reserved.regions.
Also tj said there is another bug which could be related to this.
| I don't think we're saving any noticeable
| amount by doing this "free - give it to page allocator - reserve
| again" dancing. We should just allocate regions aligned to page
| boundaries and free them later when memblock is no longer in use.
in that case, when DEBUG_PAGEALLOC, will get panic:
memblock_free: [0x0000102febc080-0x0000102febf080] memblock_free_reserved_regions+0x37/0x39
BUG: unable to handle kernel paging request at ffff88102febd948
IP: [<ffffffff836a5774>] __next_free_mem_range+0x9b/0x155
PGD 4826063 PUD cf67a067 PMD cf7fa067 PTE 800000102febd160
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
CPU 0
Pid: 0, comm: swapper Not tainted 3.5.0-rc2-next-20120614-sasha #447
RIP: 0010:[<ffffffff836a5774>] [<ffffffff836a5774>] __next_free_mem_range+0x9b/0x155
See the discussion at https://lkml.org/lkml/2012/6/13/469
So try to allocate with PAGE_SIZE alignment and free it later.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4bf2bba3750f10aa9e62e6949bc7e8329990f01b upstream.
If page migration cannot charge the temporary page to the memcg,
migrate_pages() will return -ENOMEM. This isn't considered in memory
compaction however, and the loop continues to iterate over all
pageblocks trying to isolate and migrate pages. If a small number of
very large memcgs happen to be oom, however, these attempts will mostly
be futile leading to an enormous amout of cpu consumption due to the
page migration failures.
This patch will short circuit and fail memory compaction if
migrate_pages() returns -ENOMEM. COMPACT_PARTIAL is returned in case
some migrations were successful so that the page allocator will retry.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d8adde17e5f858427504725218c56aef90e90fc7 upstream.
kswapd_stop() is called to destroy the kswapd work thread when all memory
of a NUMA node has been offlined. But kswapd_stop() only terminates the
work thread without resetting NODE_DATA(nid)->kswapd to NULL. The stale
pointer will prevent kswapd_run() from creating a new work thread when
adding memory to the memory-less NUMA node again. Eventually the stale
pointer may cause invalid memory access.
An example stack dump as below. It's reproduced with 2.6.32, but latest
kernel has the same issue.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff81051a94>] exit_creds+0x12/0x78
PGD 0
Oops: 0000 [#1] SMP
last sysfs file: /sys/devices/system/memory/memory391/state
CPU 11
Modules linked in: cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq microcode fuse loop dm_mod tpm_tis rtc_cmos i2c_i801 rtc_core tpm serio_raw pcspkr sg tpm_bios igb i2c_core iTCO_wdt rtc_lib mptctl iTCO_vendor_support button dca bnx2 usbhid hid uhci_hcd ehci_hcd usbcore sd_mod crc_t10dif edd ext3 mbcache jbd fan ide_pci_generic ide_core ata_generic ata_piix libata thermal processor thermal_sys hwmon mptsas mptscsih mptbase scsi_transport_sas scsi_mod
Pid: 7949, comm: sh Not tainted 2.6.32.12-qiuxishi-5-default #92 Tecal RH2285
RIP: 0010:exit_creds+0x12/0x78
RSP: 0018:ffff8806044f1d78 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff880604f22140 RCX: 0000000000019502
RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000
RBP: ffff880604f22150 R08: 0000000000000000 R09: ffffffff81a4dc10
R10: 00000000000032a0 R11: ffff880006202500 R12: 0000000000000000
R13: 0000000000c40000 R14: 0000000000008000 R15: 0000000000000001
FS: 00007fbc03d066f0(0000) GS:ffff8800282e0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000000 CR3: 000000060f029000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process sh (pid: 7949, threadinfo ffff8806044f0000, task ffff880603d7c600)
Stack:
ffff880604f22140 ffffffff8103aac5 ffff880604f22140 ffffffff8104d21e
ffff880006202500 0000000000008000 0000000000c38000 ffffffff810bd5b1
0000000000000000 ffff880603d7c600 00000000ffffdd29 0000000000000003
Call Trace:
__put_task_struct+0x5d/0x97
kthread_stop+0x50/0x58
offline_pages+0x324/0x3da
memory_block_change_state+0x179/0x1db
store_mem_state+0x9e/0xbb
sysfs_write_file+0xd0/0x107
vfs_write+0xad/0x169
sys_write+0x45/0x6e
system_call_fastpath+0x16/0x1b
Code: ff 4d 00 0f 94 c0 84 c0 74 08 48 89 ef e8 1f fd ff ff 5b 5d 31 c0 41 5c c3 53 48 8b 87 20 06 00 00 48 89 fb 48 8b bf 18 06 00 00 <8b> 00 48 c7 83 18 06 00 00 00 00 00 00 f0 ff 0f 0f 94 c0 84 c0
RIP exit_creds+0x12/0x78
RSP <ffff8806044f1d78>
CR2: 0000000000000000
[akpm@linux-foundation.org: add pglist_data.kswapd locking comments]
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9ab4233dd08036fe34a89c7dc6f47a8bf2eb29eb upstream.
Otherwise the code races with munmap (causing a use-after-free
of the vma) or with close (causing a use-after-free of the struct
file).
The bug was introduced by commit 90ed52ebe481 ("[PATCH] holepunch: fix
mmap_sem i_mutex deadlock")
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2:
- Adjust context
- madvise_remove() calls vmtruncate_range(), not do_fallocate()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 047fe3605235888f3ebcda0c728cb31937eadfe6 upstream.
Dave Jones reported a kernel BUG at mm/slub.c:3474! triggered
by splice_shrink_spd() called from vmsplice_to_pipe()
commit 35f3d14dbbc5 (pipe: add support for shrinking and growing pipes)
added capability to adjust pipe->buffers.
Problem is some paths don't hold pipe mutex and assume pipe->buffers
doesn't change for their duration.
Fix this by adding nr_pages_max field in struct splice_pipe_desc, and
use it in place of pipe->buffers where appropriate.
splice_shrink_spd() loses its struct pipe_inode_info argument.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Tom Herbert <therbert@google.com>
Tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[bwh: Backported to 3.2:
- Adjust context in vmsplice_to_pipe()
- Update one more call to splice_shrink_spd(), from skb_splice_bits()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|