Age | Commit message (Collapse) | Author |
|
commit 50694c28f1e1dbea18272980d265742a5027fb63 upstream.
Commit 5515061d22f0 ("mm: throttle direct reclaimers if PF_MEMALLOC
reserves are low and swap is backed by network storage") introduced a
check for fatal signals after a process gets throttled for network
storage. The intention was that if a process was throttled and got
killed that it should not trigger the OOM killer. As pointed out by
Minchan Kim and David Rientjes, this check is in the wrong place and too
broad. If a system is in am OOM situation and a process is exiting, it
can loop in __alloc_pages_slowpath() and calling direct reclaim in a
loop. As the fatal signal is pending it returns 1 as if it is making
forward progress and can effectively deadlock.
This patch moves the fatal_signal_pending() check after throttling to
throttle_direct_reclaim() where it belongs. If the process is killed
while throttled, it will return immediately without direct reclaim
except now it will have TIF_MEMDIE set and will use the PFMEMALLOC
reserves.
Minchan pointed out that it may be better to direct reclaim before
returning to avoid using the reserves because there may be pages that
can easily reclaim that would avoid using the reserves. However, we do
no such targetted reclaim and there is no guarantee that suitable pages
are available. As it is expected that this throttling happens when
swap-over-NFS is used there is a possibility that the process will
instead swap which may allocate network buffers from the PFMEMALLOC
reserves. Hence, in the swap-over-nfs case where a process can be
throtted and be killed it can use the reserves to exit or it can
potentially use reserves to swap a few pages and then exit. This patch
takes the option of using the reserves if necessary to allow the process
exit quickly.
If this patch passes review it should be considered a -stable candidate
for 3.6.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0f3c42f522dc1ad7e27affc0a4aa8c790bce0a66 upstream.
Under a particular load on one machine, I have hit shmem_evict_inode()'s
BUG_ON(inode->i_blocks), enough times to narrow it down to a particular
race between swapout and eviction.
It comes from the "if (freed > 0)" asymmetry in shmem_recalc_inode(),
and the lack of coherent locking between mapping's nrpages and shmem's
swapped count. There's a window in shmem_writepage(), between lowering
nrpages in shmem_delete_from_page_cache() and then raising swapped
count, when the freed count appears to be +1 when it should be 0, and
then the asymmetry stops it from being corrected with -1 before hitting
the BUG.
One answer is coherent locking: using tree_lock throughout, without
info->lock; reasonable, but the raw_spin_lock in percpu_counter_add() on
used_blocks makes that messier than expected. Another answer may be a
further effort to eliminate the weird shmem_recalc_inode() altogether,
but previous attempts at that failed.
So far undecided, but for now change the BUG_ON to WARN_ON: in usual
circumstances it remains a useful consistency check.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bea8c150a7efbc0f204e709b7274fe273f55e0d3 upstream.
When MEMCG is configured on (even when it's disabled by boot option),
when adding or removing a page to/from its lru list, the zone pointer
used for stats updates is nowadays taken from the struct lruvec. (On
many configurations, calculating zone from page is slower.)
But we have no code to update all the lruvecs (per zone, per memcg) when
a memory node is hotadded. Here's an extract from the oops which
results when running numactl to bind a program to a newly onlined node:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60
IP: __mod_zone_page_state+0x9/0x60
Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs
Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0)
Call Trace:
__pagevec_lru_add_fn+0xdf/0x140
pagevec_lru_move_fn+0xb1/0x100
__pagevec_lru_add+0x1c/0x30
lru_add_drain_cpu+0xa3/0x130
lru_add_drain+0x2f/0x40
...
The natural solution might be to use a memcg callback whenever memory is
hotadded; but that solution has not been scoped out, and it happens that
we do have an easy location at which to update lruvec->zone. The lruvec
pointer is discovered either by mem_cgroup_zone_lruvec() or by
mem_cgroup_page_lruvec(), and both of those do know the right zone.
So check and set lruvec->zone in those; and remove the inadequate
attempt to set lruvec->zone from lruvec_init(), which is called before
NODE_DATA(node) has been allocated in such cases.
Ah, there was one exceptionr. For no particularly good reason,
mem_cgroup_force_empty_list() has its own code for deciding lruvec.
Change it to use the standard mem_cgroup_zone_lruvec() and
mem_cgroup_get_lru_size() too. In fact it was already safe against such
an oops (the lru lists in danger could only be empty), but we're better
proofed against future changes this way.
I've marked this for stable (3.6) since we introduced the problem in 3.5
(now closed to stable); but I have no idea if this is the only fix
needed to get memory hotadd working with memcg in 3.6, and received no
answer when I enquired twice before.
Reported-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a5a8f19b43430752067ecaee62fc59e11e88fa6 upstream.
oom_badness() takes a totalpages argument which says how many pages are
available and it uses it as a base for the score calculation. The value
is calculated by mem_cgroup_get_limit which considers both limit and
total_swap_pages (resp. memsw portion of it).
This is usually correct but since fe35004fbf9e ("mm: avoid swapping out
with swappiness==0") we do not swap when swappiness is 0 which means
that we cannot really use up all the totalpages pages. This in turn
confuses oom score calculation if the memcg limit is much smaller than
the available swap because the used memory (capped by the limit) is
negligible comparing to totalpages so the resulting score is too small
if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj).
A wrong process might be selected as result.
The problem can be worked around by checking mem_cgroup_swappiness==0
and not considering swap at all in such a case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 215c02bc33bbd5ff4d7379a909462d11f0103218 upstream.
Fuzzing with trinity hit the "impossible" VM_BUG_ON(error) (which Fedora
has converted to WARNING) in shmem_getpage_gfp():
WARNING: at mm/shmem.c:1151 shmem_getpage_gfp+0xa5c/0xa70()
Pid: 29795, comm: trinity-child4 Not tainted 3.7.0-rc2+ #49
Call Trace:
warn_slowpath_common+0x7f/0xc0
warn_slowpath_null+0x1a/0x20
shmem_getpage_gfp+0xa5c/0xa70
shmem_fault+0x4f/0xa0
__do_fault+0x71/0x5c0
handle_pte_fault+0x97/0xae0
handle_mm_fault+0x289/0x350
__do_page_fault+0x18e/0x530
do_page_fault+0x2b/0x50
page_fault+0x28/0x30
tracesys+0xe1/0xe6
Thanks to Johannes for pointing to truncation: free_swap_and_cache()
only does a trylock on the page, so the page lock we've held since
before confirming swap is not enough to protect against truncation.
What cleanup is needed in this case? Just delete_from_swap_cache(),
which takes care of the memcg uncharge.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dave Jones <davej@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b0a8cc58e6b9aaae3045752059e5e6260c0b94bc upstream.
In kswapd(), set current->reclaim_state to NULL before returning, as
current->reclaim_state holds reference to variable on kswapd()'s stack.
In rare cases, while returning from kswapd() during memory offlining,
__free_slab() and freepages() can access the dangling pointer of
current->reclaim_state.
Signed-off-by: Takamori Yamaguchi <takamori.yamaguchi@jp.sony.com>
Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef5d437f71afdf4afdbab99213add99f4b1318fd upstream.
On s390 any write to a page (even from kernel itself) sets architecture
specific page dirty bit. Thus when a page is written to via buffered
write, HW dirty bit gets set and when we later map and unmap the page,
page_remove_rmap() finds the dirty bit and calls set_page_dirty().
Dirtying of a page which shouldn't be dirty can cause all sorts of
problems to filesystems. The bug we observed in practice is that
buffers from the page get freed, so when the page gets later marked as
dirty and writeback writes it, XFS crashes due to an assertion
BUG_ON(!PagePrivate(page)) in page_buffers() called from
xfs_count_page_state().
Similar problem can also happen when zero_user_segment() call from
xfs_vm_writepage() (or block_write_full_page() for that matter) set the
hardware dirty bit during writeback, later buffers get freed, and then
page unmapped.
Fix the issue by ignoring s390 HW dirty bit for page cache pages of
mappings with mapping_cap_account_dirty(). This is safe because for
such mappings when a page gets marked as writeable in PTE it is also
marked dirty in do_wp_page() or do_page_fault(). When the dirty bit is
cleared by clear_page_dirty_for_io(), the page gets writeprotected in
page_mkclean(). So pagecache page is writeable if and only if it is
dirty.
Thanks to Hugh Dickins for pointing out mapping has to have
mapping_cap_account_dirty() for things to work and proposing a cleaned
up variant of the patch.
The patch has survived about two hours of running fsx-linux on tmpfs
while heavily swapping and several days of running on out build machines
where the original problem was triggered.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6ede1fd3cb404c0016de6ac529df46d561bd558b upstream.
We will not map partial pages, so need to make sure memblock
allocation will not allocate those bytes out.
Also we will use for_each_mem_pfn_range() to loop to map memory
range to keep them consistent.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 35c2a7f4908d404c9124c2efc6ada4640ca4d5d5 upstream.
Fuzzing with trinity oopsed on the 1st instruction of shmem_fh_to_dentry(),
u64 inum = fid->raw[2];
which is unhelpfully reported as at the end of shmem_alloc_inode():
BUG: unable to handle kernel paging request at ffff880061cd3000
IP: [<ffffffff812190d0>] shmem_alloc_inode+0x40/0x40
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Call Trace:
[<ffffffff81488649>] ? exportfs_decode_fh+0x79/0x2d0
[<ffffffff812d77c3>] do_handle_open+0x163/0x2c0
[<ffffffff812d792c>] sys_open_by_handle_at+0xc/0x10
[<ffffffff83a5f3f8>] tracesys+0xe1/0xe6
Right, tmpfs is being stupid to access fid->raw[2] before validating that
fh_len includes it: the buffer kmalloc'ed by do_sys_name_to_handle() may
fall at the end of a page, and the next page not be present.
But some other filesystems (ceph, gfs2, isofs, reiserfs, xfs) are being
careless about fh_len too, in fh_to_dentry() and/or fh_to_parent(), and
could oops in the same way: add the missing fh_len checks to those.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Sage Weil <sage@inktank.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 00442ad04a5eac08a98255697c510e708f6082e2 upstream.
Commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory barrier
related damage v3") introduced a potential memory corruption.
shmem_alloc_page() uses a pseudo vma and it has one significant unique
combination, vma->vm_ops=NULL and vma->policy->flags & MPOL_F_SHARED.
get_vma_policy() does NOT increase a policy ref when vma->vm_ops=NULL
and mpol_cond_put() DOES decrease a policy ref when a policy has
MPOL_F_SHARED. Therefore, when a cpuset update race occurs,
alloc_pages_vma() falls in 'goto retry_cpuset' path, decrements the
reference count and frees the policy prematurely.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63f74ca21f1fad36d075e063f06dcc6d39fe86b2 upstream.
When shared_policy_replace() fails to allocate new->policy is not freed
correctly by mpol_set_shared_policy(). The problem is that shared
mempolicy code directly call kmem_cache_free() in multiple places where
it is easy to make a mistake.
This patch creates an sp_free wrapper function and uses it. The bug was
introduced pre-git age (IOW, before 2.6.12-rc2).
[mgorman@suse.de: Editted changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b22d127a39ddd10d93deee3d96e643657ad53a49 upstream.
shared_policy_replace() use of sp_alloc() is unsafe. 1) sp_node cannot
be dereferenced if sp->lock is not held and 2) another thread can modify
sp_node between spin_unlock for allocating a new sp node and next
spin_lock. The bug was introduced before 2.6.12-rc2.
Kosaki's original patch for this problem was to allocate an sp node and
policy within shared_policy_replace and initialise it when the lock is
reacquired. I was not keen on this approach because it partially
duplicates sp_alloc(). As the paths were sp->lock is taken are not that
performance critical this patch converts sp->lock to sp->mutex so it can
sleep when calling sp_alloc().
[kosaki.motohiro@jp.fujitsu.com: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 869833f2c5c6e4dd09a5378cfc665ffb4615e5d2 upstream.
Dave Jones' system call fuzz testing tool "trinity" triggered the
following bug error with slab debugging enabled
=============================================================================
BUG numa_policy (Not tainted): Poison overwritten
-----------------------------------------------------------------------------
INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b
INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154
__slab_alloc+0x3d3/0x445
kmem_cache_alloc+0x29d/0x2b0
mpol_new+0xa3/0x140
sys_mbind+0x142/0x620
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154
__slab_free+0x2e/0x1de
kmem_cache_free+0x25a/0x260
__mpol_put+0x27/0x30
remove_vma+0x68/0x90
exit_mmap+0x118/0x140
mmput+0x73/0x110
exit_mm+0x108/0x130
do_exit+0x162/0xb90
do_group_exit+0x4f/0xc0
sys_exit_group+0x17/0x20
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080
INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0
The problem is that the structure is being prematurely freed due to a
reference count imbalance. In the following case mbind(addr, len) should
replace the memory policies of both vma1 and vma2 and thus they will
become to share the same mempolicy and the new mempolicy will have the
MPOL_F_SHARED flag.
+-------------------+-------------------+
| vma1 | vma2(shmem) |
+-------------------+-------------------+
| |
addr addr+len
alloc_pages_vma() uses get_vma_policy() and mpol_cond_put() pair for
maintaining the mempolicy reference count. The current rule is that
get_vma_policy() only increments refcount for shmem VMA and
mpol_conf_put() only decrements refcount if the policy has
MPOL_F_SHARED.
In above case, vma1 is not shmem vma and vma->policy has MPOL_F_SHARED!
The reference count will be decreased even though was not increased
whenever alloc_page_vma() is called. This has been broken since commit
[52cd3b07: mempolicy: rework mempolicy Reference Counting] in 2008.
There is another serious bug with the sharing of memory policies.
Currently, mempolicy rebind logic (it is called from cpuset rebinding)
ignores a refcount of mempolicy and override it forcibly. Thus, any
mempolicy sharing may cause mempolicy corruption. The bug was
introduced by commit [68860ec1: cpusets: automatic numa mempolicy
rebinding].
Ideally, the shared policy handling would be rewritten to either
properly handle COW of the policy structures or at least reference count
MPOL_F_SHARED based exclusively on information within the policy.
However, this patch takes the easier approach of disabling any policy
sharing between VMAs. Each new range allocated with sp_alloc will
allocate a new policy, set the reference count to 1 and drop the
reference count of the old policy. This increases the memory footprint
but is not expected to be a major problem as mbind() is unlikely to be
used for fine-grained ranges. It is also inefficient because it means
we allocate a new policy even in cases where mbind_range() could use the
new_policy passed to it. However, it is more straight-forward and the
change should be invisible to the user.
[mgorman@suse.de: Edited changelog]
Reported-by: Dave Jones <davej@redhat.com>,
Cc: Christoph Lameter <cl@linux.com>,
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
linkages"
commit 8d34694c1abf29df1f3c7317936b7e3e2e308d9b upstream.
Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle
vma->vm_policy linkages") removed vma->vm_policy updates code but it is
the purpose of mbind_range(). Now, mbind_range() is virtually a no-op
and while it does not allow memory corruption it is not the right fix.
This patch is a revert.
[mgorman@suse.de: Edited changelog]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ec4d9f626d5908b6052c2973f37992f1db52e967 upstream.
In fuzzing with trinity, lockdep protested "possible irq lock inversion
dependency detected" when isolate_lru_page() reenabled interrupts while
still holding the supposedly irq-safe tree_lock:
invalidate_inode_pages2
invalidate_complete_page2
spin_lock_irq(&mapping->tree_lock)
clear_page_mlock
isolate_lru_page
spin_unlock_irq(&zone->lru_lock)
isolate_lru_page() is correct to enable interrupts unconditionally:
invalidate_complete_page2() is incorrect to call clear_page_mlock() while
holding tree_lock, which is supposed to nest inside lru_lock.
Both truncate_complete_page() and invalidate_complete_page() call
clear_page_mlock() before taking tree_lock to remove page from radix_tree.
I guess invalidate_complete_page2() preferred to test PageDirty (again)
under tree_lock before committing to the munlock; but since the page has
already been unmapped, its state is already somewhat inconsistent, and no
worse if clear_page_mlock() moved up.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Deciphered-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36e4f20af833d1ce196e6a4ade05dc26c44652d1 upstream.
Commit 0c176d52b0b2 ("mm: hugetlb: fix pgoff computation when unmapping
page from vma") fixed pgoff calculation but it has replaced it by
vma_hugecache_offset() which is not approapriate for offsets used for
vma_prio_tree_foreach() because that one expects index in page units
rather than in huge_page_shift.
Johannes said:
: The resulting index may not be too big, but it can be too small: assume
: hpage size of 2M and the address to unmap to be 0x200000. This is regular
: page index 512 and hpage index 1. If you have a VMA that maps the file
: only starting at the second huge page, that VMAs vm_pgoff will be 512 but
: you ask for offset 1 and miss it even though it does map the page of
: interest. hugetlb_cow() will try to unmap, miss the vma, and retry the
: cow until the allocation succeeds or the skipped vma(s) go away.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 947ca1856a7e60aa6d20536785e6a42dff25aa6e upstream.
DEADLOCK will be report while running a kernel with NUMA and LOCKDEP enabled,
the process of this fake report is:
kmem_cache_free() //free obj in cachep
-> cache_free_alien() //acquire cachep's l3 alien lock
-> __drain_alien_cache()
-> free_block()
-> slab_destroy()
-> kmem_cache_free() //free slab in cachep->slabp_cache
-> cache_free_alien() //acquire cachep->slabp_cache's l3 alien lock
Since the cachep and cachep->slabp_cache's l3 alien are in the same lock class,
fake report generated.
This should not happen since we already have init_lock_keys() which will
reassign the lock class for both l3 list and l3 alien.
However, init_lock_keys() was invoked at a wrong position which is before we
invoke enable_cpucache() on each cache.
Since until set slab_state to be FULL, we won't invoke enable_cpucache()
on caches to build their l3 alien while creating them, so although we invoked
init_lock_keys(), the l3 alien lock class won't change since we don't have
them until invoked enable_cpucache() later.
This patch will invoke init_lock_keys() after we done enable_cpucache()
instead of before to avoid the fake DEADLOCK report.
Michael traced the problem back to a commit in release 3.0.0:
commit 30765b92ada267c5395fc788623cb15233276f5c
Author: Peter Zijlstra <peterz@infradead.org>
Date: Thu Jul 28 23:22:56 2011 +0200
slab, lockdep: Annotate the locks before using them
Fernando found we hit the regular OFF_SLAB 'recursion' before we
annotate the locks, cure this.
The relevant portion of the stack-trace:
> [ 0.000000] [<c085e24f>] rt_spin_lock+0x50/0x56
> [ 0.000000] [<c04fb406>] __cache_free+0x43/0xc3
> [ 0.000000] [<c04fb23f>] kmem_cache_free+0x6c/0xdc
> [ 0.000000] [<c04fb2fe>] slab_destroy+0x4f/0x53
> [ 0.000000] [<c04fb396>] free_block+0x94/0xc1
> [ 0.000000] [<c04fc551>] do_tune_cpucache+0x10b/0x2bb
> [ 0.000000] [<c04fc8dc>] enable_cpucache+0x7b/0xa7
> [ 0.000000] [<c0bd9d3c>] kmem_cache_init_late+0x1f/0x61
> [ 0.000000] [<c0bba687>] start_kernel+0x24c/0x363
> [ 0.000000] [<c0bba0ba>] i386_start_kernel+0xa9/0xaf
Reported-by: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311888176.2617.379.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The commit moved init_lock_keys() before we build up the alien, so we
failed to reclass it.
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
__collapse_huge_page_copy
Speculative cache pagecache lookups can elevate the refcount from
under us, so avoid the false positive. If the refcount is < 2 we'll be
notified by a VM_BUG_ON in put_page_testzero as there are two
put_page(src_page) in a row before returning from this function.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There may be a bug when registering section info. For example, on my
Itanium platform, the pfn range of node0 includes the other nodes, so
other nodes' section info will be double registered, and memmap's page
count will equal to 3.
node0: start_pfn=0x100, spanned_pfn=0x20fb00, present_pfn=0x7f8a3, => 0x000100-0x20fc00
node1: start_pfn=0x80000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x080000-0x100000
node2: start_pfn=0x100000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x100000-0x180000
node3: start_pfn=0x180000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x180000-0x200000
free_all_bootmem_node()
register_page_bootmem_info_node()
register_page_bootmem_info_section()
When hot remove memory, we can't free the memmap's page because
page_count() is 2 after put_page_bootmem().
sparse_remove_one_section()
free_section_usemap()
free_map_bootmem()
put_page_bootmem()
[akpm@linux-foundation.org: add code comment]
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The heuristic method for buddy has been introduced since commit
43506fad21ca ("mm/page_alloc.c: simplify calculation of combined index
of adjacent buddy lists"). But the page address of higher page's buddy
was wrongly calculated, which will lead page_is_buddy to fail for ever.
IOW, the heuristic method would be disabled with the wrong page address
of higher page's buddy.
Calculating the page address of higher page's buddy should be based
higher_page with the offset between index of higher page and index of
higher page's buddy.
Signed-off-by: Haifeng Li <omycle@gmail.com>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KyongHo Cho <pullip.cho@samsung.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
get_partial() is currently not checking pfmemalloc_match() meaning that
it is possible for pfmemalloc pages to leak to non-pfmemalloc users.
This is a problem in the following situation. Assume that there is a
request from normal allocation and there are no objects in the per-cpu
cache and no node-partial slab.
In this case, slab_alloc enters the slow path and new_slab_objects() is
called which may return a PFMEMALLOC page. As the current user is not
allowed to access PFMEMALLOC page, deactivate_slab() is called
([5091b74a: mm: slub: optimise the SLUB fast path to avoid pfmemalloc
checks]) and returns an object from PFMEMALLOC page.
Next time, when we get another request from normal allocation,
slab_alloc() enters the slow-path and calls new_slab_objects(). In
new_slab_objects(), we call get_partial() and get a partial slab which
was just deactivated but is a pfmemalloc page. We extract one object
from it and re-deactivate.
"deactivate -> re-get in get_partial -> re-deactivate" occures repeatedly.
As a result, access to PFMEMALLOC page is not properly restricted and it
can cause a performance degradation due to frequent deactivation.
deactivation frequently.
This patch changes get_partial_node() to take pfmemalloc_match() into
account and prevents the "deactivate -> re-get in get_partial()
scenario. Instead, new_slab() is called.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In array cache, there is a object at index 0, check it.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Right now, we call ClearSlabPfmemalloc() for first page of slab when we
clear SlabPfmemalloc flag. This is fine for most swap-over-network use
cases as it is expected that order-0 pages are in use. Unfortunately it
is possible that that __ac_put_obj() checks SlabPfmemalloc on a tail
page and while this is harmless, it is sloppy. This patch ensures that
the head page is always used.
This problem was originally identified by Joonsoo Kim.
[js1304@gmail.com: Original implementation and problem identification]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If kthread_run() fails, pgdat->kswapd contains errno. When we stop this
thread, we only check whether pgdat->kswapd is NULL and access it. If
it contains errno, it will cause page fault. Reset pgdat->kswapd to
NULL when creating kernel thread fails can avoid this problem.
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull a core sparse warning fix from Ingo Molnar
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm/memblock: Use NULL instead of 0 for pointers
|
|
Trivially triggerable, found by trinity:
kernel BUG at mm/mempolicy.c:2546!
Process trinity-child2 (pid: 23988, threadinfo ffff88010197e000, task ffff88007821a670)
Call Trace:
show_numa_map+0xd5/0x450
show_pid_numa_map+0x13/0x20
traverse+0xf2/0x230
seq_read+0x34b/0x3e0
vfs_read+0xac/0x180
sys_pread64+0xa2/0xc0
system_call_fastpath+0x1a/0x1f
RIP: mpol_to_str+0x156/0x360
Cc: stable@vger.kernel.org
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This type cleanup also fixes the following sparse warning:
mm/memblock.c:249:49: warning: Using plain integer as NULL pointer
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: patches@linaro.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
cache_grow() can reenable irqs so the cpu (and node) can change, so ensure
that we take list_lock on the correct nodelist.
This fixes an issue with commit 072bb0aa5e06 ("mm: sl[au]b: add
knowledge of PFMEMALLOC reserve pages") where list_lock for the wrong
node was taken after growing the cache.
Reported-and-tested-by: Haggai Eran <haggaie@mellanox.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull block-related fixes from Jens Axboe:
- Improvements to the buffered and direct write IO plugging from
Fengguang.
- Abstract out the mapping of a bio in a request, and use that to
provide a blk_bio_map_sg() helper. Useful for mapping just a bio
instead of a full request.
- Regression fix from Hugh, fixing up a patch that went into the
previous release cycle (and marked stable, too) attempting to prevent
a loop in __getblk_slow().
- Updates to discard requests, fixing up the sizing and how we align
them. Also a change to disallow merging of discard requests, since
that doesn't really work properly yet.
- A few drbd fixes.
- Documentation updates.
* 'for-linus' of git://git.kernel.dk/linux-block:
block: replace __getblk_slow misfix by grow_dev_page fix
drbd: Write all pages of the bitmap after an online resize
drbd: Finish requests that completed while IO was frozen
drbd: fix drbd wire compatibility for empty flushes
Documentation: update tunable options in block/cfq-iosched.txt
Documentation: update tunable options in block/cfq-iosched.txt
Documentation: update missing index files in block/00-INDEX
block: move down direct IO plugging
block: remove plugging at buffered write time
block: disable discard request merge temporarily
bio: Fix potential memory leak in bio_find_or_create_slab()
block: Don't use static to define "void *p" in show_partition_start()
block: Add blk_bio_map_sg() helper
block: Introduce __blk_segment_map_sg() helper
fs/block-dev.c:fix performance regression in O_DIRECT writes to md block devices
block: split discard into aligned requests
block: reorganize rounding of max_discard_sectors
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"This tree contains misc fixlets: a perf script python binding fix, a
uprobes fix and a syscall tracing fix."
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Add missing files to build the python binding
uprobes: Fix mmap_region()'s mm->mm_rb corruption if uprobe_mmap() fails
tracing/syscalls: Fix perf syscall tracing when syscall_nr == -1
|
|
Jim Schutt reported a problem that pointed at compaction contending
heavily on locks. The workload is straight-forward and in his own words;
The systems in question have 24 SAS drives spread across 3 HBAs,
running 24 Ceph OSD instances, one per drive. FWIW these servers
are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160
Ceph Linux clients doing dd simultaneously to a Ceph file system
backed by 12 of these servers.
Early in the test everything looks fine
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0
27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0
28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0
6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0
22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0
and then it goes to pot
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0
207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0
123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0
123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0
622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0
223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0
Note that system CPU usage is very high blocks being written out has
dropped by 42%. He analysed this with perf and found
perf record -g -a sleep 10
perf report --sort symbol --call-graph fractal,5
34.63% [k] _raw_spin_lock_irqsave
|
|--97.30%-- isolate_freepages
| compaction_alloc
| unmap_and_move
| migrate_pages
| compact_zone
| compact_zone_order
| try_to_compact_pages
| __alloc_pages_direct_compact
| __alloc_pages_slowpath
| __alloc_pages_nodemask
| alloc_pages_vma
| do_huge_pmd_anonymous_page
| handle_mm_fault
| do_page_fault
| page_fault
| |
| |--87.39%-- skb_copy_datagram_iovec
| | tcp_recvmsg
| | inet_recvmsg
| | sock_recvmsg
| | sys_recvfrom
| | system_call
| | __recv
| | |
| | --100.00%-- (nil)
| |
| --12.61%-- memcpy
--2.70%-- [...]
There was other data but primarily it is all showing that compaction is
contended heavily on the zone->lock and zone->lru_lock.
commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration] noted that it was possible for
migration to hold the lru_lock for an excessive amount of time. Very
broadly speaking this patch expands the concept.
This patch introduces compact_checklock_irqsave() to check if a lock
is contended or the process needs to be scheduled. If either condition
is true then async compaction is aborted and the caller is informed.
The page allocator will fail a THP allocation if compaction failed due
to contention. This patch also introduces compact_trylock_irqsave()
which will acquire the lock only if it is not contended and the process
does not need to schedule.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 7db8889ab05b ("mm: have order > 0 compaction start off where it
left") introduced a caching mechanism to reduce the amount work the free
page scanner does in compaction. However, it has a problem. Consider
two process simultaneously scanning free pages
C
Process A M S F
|---------------------------------------|
Process B M FS
C is zone->compact_cached_free_pfn
S is cc->start_pfree_pfn
M is cc->migrate_pfn
F is cc->free_pfn
In this diagram, Process A has just reached its migrate scanner, wrapped
around and updated compact_cached_free_pfn accordingly.
Simultaneously, Process B finishes isolating in a block and updates
compact_cached_free_pfn again to the location of its free scanner.
Process A moves to "end_of_zone - one_pageblock" and runs this check
if (cc->order > 0 && (!cc->wrapped ||
zone->compact_cached_free_pfn >
cc->start_free_pfn))
pfn = min(pfn, zone->compact_cached_free_pfn);
compact_cached_free_pfn is above where it started so the free scanner
skips almost the entire space it should have scanned. When there are
multiple processes compacting it can end in a situation where the entire
zone is not being scanned at all. Further, it is possible for two
processes to ping-pong update to compact_cached_free_pfn which is just
random.
Overall, the end result wrecks allocation success rates.
There is not an obvious way around this problem without introducing new
locking and state so this patch takes a different approach.
First, it gets rid of the skip logic because it's not clear that it
matters if two free scanners happen to be in the same block but with
racing updates it's too easy for it to skip over blocks it should not.
Second, it updates compact_cached_free_pfn in a more limited set of
circumstances.
If a scanner has wrapped, it updates compact_cached_free_pfn to the end
of the zone. When a wrapped scanner isolates a page, it updates
compact_cached_free_pfn to point to the highest pageblock it
can isolate pages from.
If a scanner has not wrapped when it has finished isolated pages it
checks if compact_cached_free_pfn is pointing to the end of the
zone. If so, the value is updated to point to the highest
pageblock that pages were isolated from. This value will not
be updated again until a free page scanner wraps and resets
compact_cached_free_pfn.
This is not optimal and it can still race but the compact_cached_free_pfn
will be pointing to or very near a pageblock with free pages.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit cfd19c5a9ecf ("mm: only set page->pfmemalloc when
ALLOC_NO_WATERMARKS was used") tried to narrow down page->pfmemalloc
setting, but it missed some places the pfmemalloc should be set.
So, in __slab_alloc, the unalignment pfmemalloc and ALLOC_NO_WATERMARKS
cause incorrect deactivate_slab() on our core2 server:
64.73% fio [kernel.kallsyms] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|---0.34%-- deactivate_slab
| __slab_alloc
| kmem_cache_alloc
| |
That causes our fio sync write performance to have a 40% regression.
Move the checking in get_page_from_freelist() which resolves this issue.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Tested-by: Sage Weil <sage@inktank.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit aff622495c9a ("vmscan: only defer compaction for failed order and
higher") fixed bad deferring policy but made mistake about checking
compact_order_failed in __compact_pgdat(). So it can't update
compact_order_failed with the new order. This ends up preventing
correct operation of policy deferral. This patch fixes it.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Occasionally an isolated BUG_ON(mm->nr_ptes) gets reported, indicating
that not all the page tables allocated could be found and freed when
exit_mmap() tore down the user address space.
There's usually nothing we can say about it, beyond that it's probably a
sign of some bad memory or memory corruption; though it might still
indicate a bug in vma or page table management (and did recently reveal a
race in THP, fixed a few months ago).
But one overdue change we can make is from BUG_ON to WARN_ON.
It's fairly likely that the system will crash shortly afterwards in some
other way (for example, the BUG_ON(page_mapped(page)) in
__delete_from_page_cache(), once an inode mapped into the lost page tables
gets evicted); but might tell us more before that.
Change the BUG_ON(page_mapped) to WARN_ON too? Later perhaps: I'm less
eager, since that one has several times led to fixes.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch fixes:
https://bugzilla.redhat.com/show_bug.cgi?id=843640
If mmap_region()->uprobe_mmap() fails, unmap_and_free_vma path
does unmap_region() but does not remove the soon-to-be-freed vma
from rb tree. Actually ther |