aboutsummaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2011-01-07memcg: fix wrong VM_BUG_ON() in try_charge()'s mm->owner checkKAMEZAWA Hiroyuki
commit ebb76ce16daf6908dc030dec1c00827d37129fe5 upstream. At __mem_cgroup_try_charge(), VM_BUG_ON(!mm->owner) is checked. But as commented in mem_cgroup_from_task(), mm->owner can be NULL in some racy case. This check of VM_BUG_ON() is bad. A possible story to hit this is at swapoff()->try_to_unuse(). It passes mm_struct to mem_cgroup_try_charge_swapin() while mm->owner is NULL. If we can't get proper mem_cgroup from swap_cgroup information, mm->owner is used as charge target and we see NULL. Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reported-by: Hugh Dickins <hughd@google.com> Reported-by: Thomas Meyer <thomas@m3y3r.de> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-01-07install_special_mapping skips security_file_mmap check.Tavis Ormandy
commit 462e635e5b73ba9a4c03913b77138cd57ce4b050 upstream. The install_special_mapping routine (used, for example, to setup the vdso) skips the security check before insert_vm_struct, allowing a local attacker to bypass the mmap_min_addr security restriction by limiting the available pages for special mappings. bprm_mm_init() also skips the check, and although I don't think this can be used to bypass any restrictions, I don't see any reason not to have the security check. $ uname -m x86_64 $ cat /proc/sys/vm/mmap_min_addr 65536 $ cat install_special_mapping.s section .bss resb BSS_SIZE section .text global _start _start: mov eax, __NR_pause int 0x80 $ nasm -D__NR_pause=29 -DBSS_SIZE=0xfffed000 -f elf -o install_special_mapping.o install_special_mapping.s $ ld -m elf_i386 -Ttext=0x10000 -Tbss=0x11000 -o install_special_mapping install_special_mapping.o $ ./install_special_mapping & [1] 14303 $ cat /proc/14303/maps 0000f000-00010000 r-xp 00000000 00:00 0 [vdso] 00010000-00011000 r-xp 00001000 00:19 2453665 /home/taviso/install_special_mapping 00011000-ffffe000 rwxp 00000000 00:00 0 [stack] It's worth noting that Red Hat are shipping with mmap_min_addr set to 4096. Signed-off-by: Tavis Ormandy <taviso@google.com> Acked-by: Kees Cook <kees@ubuntu.com> Acked-by: Robert Swiecki <swiecki@google.com> [ Changed to not drop the error code - akpm ] Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09PM / Hibernate: Fix memory corruption related to swapRafael J. Wysocki
commit c9e664f1fdf34aa8cede047b206deaa8f1945af0 upstream. There is a problem that swap pages allocated before the creation of a hibernation image can be released and used for storing the contents of different memory pages while the image is being saved. Since the kernel stored in the image doesn't know of that, it causes memory corruption to occur after resume from hibernation, especially on systems with relatively small RAM that need to swap often. This issue can be addressed by keeping the GFP_IOFS bits clear in gfp_allowed_mask during the entire hibernation, including the saving of the image, until the system is finally turned off or the hibernation is aborted. Unfortunately, for this purpose it's necessary to rework the way in which the hibernate and suspend code manipulates gfp_allowed_mask. This change is based on an earlier patch from Hugh Dickins. Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reported-by: Ondrej Zary <linux@rainbow-software.org> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09memcg: avoid deadlock between move charge and try_charge()Daisuke Nishimura
commit b1dd693e5b9348bd68a80e679e03cf9c0973b01b upstream. __mem_cgroup_try_charge() can be called under down_write(&mmap_sem)(e.g. mlock does it). This means it can cause deadlock if it races with move charge: Ex.1) move charge | try charge --------------------------------------+------------------------------ mem_cgroup_can_attach() | down_write(&mmap_sem) mc.moving_task = current | .. mem_cgroup_precharge_mc() | __mem_cgroup_try_charge() mem_cgroup_count_precharge() | prepare_to_wait() down_read(&mmap_sem) | if (mc.moving_task) -> cannot aquire the lock | -> true | schedule() Ex.2) move charge | try charge --------------------------------------+------------------------------ mem_cgroup_can_attach() | mc.moving_task = current | mem_cgroup_precharge_mc() | mem_cgroup_count_precharge() | down_read(&mmap_sem) | .. | up_read(&mmap_sem) | | down_write(&mmap_sem) mem_cgroup_move_task() | .. mem_cgroup_move_charge() | __mem_cgroup_try_charge() down_read(&mmap_sem) | prepare_to_wait() -> cannot aquire the lock | if (mc.moving_task) | -> true | schedule() To avoid this deadlock, we do all the move charge works (both can_attach() and attach()) under one mmap_sem section. And after this patch, we set/clear mc.moving_task outside mc.lock, because we use the lock only to check mc.from/to. Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09perf_events: Fix perf_counter_mmap() hook in mprotect()Pekka Enberg
commit 63bfd7384b119409685a17d5c58f0b56e5dc03da upstream. As pointed out by Linus, commit dab5855 ("perf_counter: Add mmap event hooks to mprotect()") is fundamentally wrong as mprotect_fixup() can free 'vma' due to merging. Fix the problem by moving perf_event_mmap() hook to mprotect_fixup(). Note: there's another successful return path from mprotect_fixup() if old flags equal to new flags. We don't, however, need to call perf_event_mmap() there because 'perf' already knows the VMA is executable. Reported-by: Dave Jones <davej@redhat.com> Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09nommu: yield CPU while disposing VMSteven J. Magnani
commit 04c3496152394d17e3bc2316f9731ee3e8a026bc upstream. Depending on processor speed, page size, and the amount of memory a process is allowed to amass, cleanup of a large VM may freeze the system for many seconds. This can result in a watchdog timeout. Make sure other tasks receive some service when cleaning up large VMs. Signed-off-by: Steven J. Magnani <steve@digidescorp.com> Cc: Greg Ungerer <gerg@snapgear.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm/hugetlb.c: avoid double unlock_page() in hugetlb_fault()Dean Nelson
commit 1f64d69c7ad2e48e697493e45590679f7a69b7b2 upstream. Have hugetlb_fault() call unlock_page(page) only if it had previously called lock_page(page). Setting CONFIG_DEBUG_VM=y and then running the libhugetlbfs test suite, resulted in the tripping of VM_BUG_ON(!PageLocked(page)) in unlock_page() having been called by hugetlb_fault() when page == pagecache_page. This patch remedied the problem. Signed-off-by: Dean Nelson <dnelson@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm/vfs: revalidate page->mapping in do_generic_file_read()Dave Hansen
commit 8d056cb965b8fb7c53c564abf28b1962d1061cd3 upstream. 70 hours into some stress tests of a 2.6.32-based enterprise kernel, we ran into a NULL dereference in here: int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, unsigned long from) { ----> struct inode *inode = page->mapping->host; It looks like page->mapping was the culprit. (xmon trace is below). After closer examination, I realized that do_generic_file_read() does a find_get_page(), and eventually locks the page before calling block_is_partially_uptodate(). However, it doesn't revalidate the page->mapping after the page is locked. So, there's a small window between the find_get_page() and ->is_partially_uptodate() where the page could get truncated and page->mapping cleared. We _have_ a reference, so it can't get reclaimed, but it certainly can be truncated. I think the correct thing is to check page->mapping after the trylock_page(), and jump out if it got truncated. This patch has been running in the test environment for a month or so now, and we have not seen this bug pop up again. xmon info: 1f:mon> e cpu 0x1f: Vector: 300 (Data Access) at [c0000002ae36f770] pc: c0000000001e7a6c: .block_is_partially_uptodate+0xc/0x100 lr: c000000000142944: .generic_file_aio_read+0x1e4/0x770 sp: c0000002ae36f9f0 msr: 8000000000009032 dar: 0 dsisr: 40000000 current = 0xc000000378f99e30 paca = 0xc000000000f66300 pid = 21946, comm = bash 1f:mon> r R00 = 0025c0500000006d R16 = 0000000000000000 R01 = c0000002ae36f9f0 R17 = c000000362cd3af0 R02 = c000000000e8cd80 R18 = ffffffffffffffff R03 = c0000000031d0f88 R19 = 0000000000000001 R04 = c0000002ae36fa68 R20 = c0000003bb97b8a0 R05 = 0000000000000000 R21 = c0000002ae36fa68 R06 = 0000000000000000 R22 = 0000000000000000 R07 = 0000000000000001 R23 = c0000002ae36fbb0 R08 = 0000000000000002 R24 = 0000000000000000 R09 = 0000000000000000 R25 = c000000362cd3a80 R10 = 0000000000000000 R26 = 0000000000000002 R11 = c0000000001e7b60 R27 = 0000000000000000 R12 = 0000000042000484 R28 = 0000000000000001 R13 = c000000000f66300 R29 = c0000003bb97b9b8 R14 = 0000000000000001 R30 = c000000000e28a08 R15 = 000000000000ffff R31 = c0000000031d0f88 pc = c0000000001e7a6c .block_is_partially_uptodate+0xc/0x100 lr = c000000000142944 .generic_file_aio_read+0x1e4/0x770 msr = 8000000000009032 cr = 22000488 ctr = c0000000001e7a60 xer = 0000000020000000 trap = 300 dar = 0000000000000000 dsisr = 40000000 1f:mon> t [link register ] c000000000142944 .generic_file_aio_read+0x1e4/0x770 [c0000002ae36f9f0] c000000000142a14 .generic_file_aio_read+0x2b4/0x770 (unreliable) [c0000002ae36fb40] c0000000001b03e4 .do_sync_read+0xd4/0x160 [c0000002ae36fce0] c0000000001b153c .vfs_read+0xec/0x1f0 [c0000002ae36fd80] c0000000001b1768 .SyS_read+0x58/0xb0 [c0000002ae36fe30] c00000000000852c syscall_exit+0x0/0x40 --- Exception: c00 (System Call) at 00000080a840bc54 SP (fffca15df30) is in userspace 1f:mon> di c0000000001e7a6c c0000000001e7a6c e9290000 ld r9,0(r9) c0000000001e7a70 418200c0 beq c0000000001e7b30 # .block_is_partially_uptodate+0xd0/0x100 c0000000001e7a74 e9440008 ld r10,8(r4) c0000000001e7a78 78a80020 clrldi r8,r5,32 c0000000001e7a7c 3c000001 lis r0,1 c0000000001e7a80 812900a8 lwz r9,168(r9) c0000000001e7a84 39600001 li r11,1 c0000000001e7a88 7c080050 subf r0,r8,r0 c0000000001e7a8c 7f805040 cmplw cr7,r0,r10 c0000000001e7a90 7d6b4830 slw r11,r11,r9 c0000000001e7a94 796b0020 clrldi r11,r11,32 c0000000001e7a98 419d00a8 bgt cr7,c0000000001e7b40 # .block_is_partially_uptodate+0xe0/0x100 c0000000001e7a9c 7fa55840 cmpld cr7,r5,r11 c0000000001e7aa0 7d004214 add r8,r0,r8 c0000000001e7aa4 79080020 clrldi r8,r8,32 c0000000001e7aa8 419c0078 blt cr7,c0000000001e7b20 # .block_is_partially_uptodate+0xc0/0x100 Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: <arunabal@in.ibm.com> Cc: <sbest@us.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09radix-tree: fix RCU bugNick Piggin
commit 27d20fddc8af539464fc3ba499d6a830054c3bd6 upstream. Salman Qazi describes the following radix-tree bug: In the following case, we get can get a deadlock: 0. The radix tree contains two items, one has the index 0. 1. The reader (in this case find_get_pages) takes the rcu_read_lock. 2. The reader acquires slot(s) for item(s) including the index 0 item. 3. The non-zero index item is deleted, and as a consequence the other item is moved to the root of the tree. The place where it used to be is queued for deletion after the readers finish. 3b. The zero item is deleted, removing it from the direct slot, it remains in the rcu-delayed indirect node. 4. The reader looks at the index 0 slot, and finds that the page has 0 ref count 5. The reader looks at it again, hoping that the item will either be freed or the ref count will increase. This never happens, as the slot it is looking at will never be updated. Also, this slot can never be reclaimed because the reader is holding rcu_read_lock and is in an infinite loop. The fix is to re-use the same "indirect" pointer case that requires a slot lookup retry into a general "retry the lookup" bit. Signed-off-by: Nick Piggin <npiggin@kernel.dk> Reported-by: Salman Qazi <sqazi@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm/hugetlb.c: add missing spin_lock() to hugetlb_cow()Dean Nelson
commit 44e2aa937e698ea95dd86b2a4fabd734ef2c76db upstream. Add missing spin_lock() of the page_table_lock before an error return in hugetlb_cow(). Callers of hugtelb_cow() expect it to be held upon return. Signed-off-by: Dean Nelson <dnelson@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm: fix is_mem_section_removable() page_order BUG_ON checkKAMEZAWA Hiroyuki
commit 572438f9b52236bd8938b1647cc15e027d27ef55 upstream. page_order() is called by memory hotplug's user interface to check the section is removable or not. (is_mem_section_removable()) It calls page_order() withoug holding zone->lock. So, even if the caller does if (PageBuddy(page)) ret = page_order(page) ... The caller may hit BUG_ON(). For fixing this, there are 2 choices. 1. add zone->lock. 2. remove BUG_ON(). is_mem_section_removable() is used for some "advice" and doesn't need to be 100% accurate. This is_removable() can be called via user program.. We don't want to take this important lock for long by user's request. So, this patch removes BUG_ON(). Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm, page-allocator: do not check the state of a non-existant buddy during freeMel Gorman
commit b7f50cfa3630b6e079929ffccfd442d65064ee1f upstream. There is a bug in commit 6dda9d55 ("page allocator: reduce fragmentation in buddy allocator by adding buddies that are merging to the tail of the free lists") that means a buddy at order MAX_ORDER is checked for merging. A page of this order never exists so at times, an effectively random piece of memory is being checked. Alan Curry has reported that this is causing memory corruption in userspace data on a PPC32 platform (http://lkml.org/lkml/2010/10/9/32). It is not clear why this is happening. It could be a cache coherency problem where pages mapped in both user and kernel space are getting different cache lines due to the bad read from kernel space (http://lkml.org/lkml/2010/10/13/179). It could also be that there are some special registers being io-remapped at the end of the memmap array and that a read has special meaning on them. Compiler bugs have been ruled out because the assembly before and after the patch looks relatively harmless. This patch fixes the problem by ensuring we are not reading a possibly invalid location of memory. It's not clear why the read causes corruption but one way or the other it is a buggy read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Corrado Zoccolo <czoccolo@gmail.com> Reported-by: Alan Curry <pacman@kosh.dhis.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09mm: fix return value of scan_lru_pages in memory unplugKAMEZAWA Hiroyuki
commit f8f72ad5396987e05a42cf7eff826fb2a15ff148 upstream. scan_lru_pages returns pfn. So, it's type should be "unsigned long" not "int". Note: I guess this has been work until now because memory hotplug tester's machine has not very big memory.... physical address < 32bit << PAGE_SHIFT. Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-09numa: fix slab_node(MPOL_BIND)Eric Dumazet
commit 800416f799e0723635ac2d720ad4449917a1481c upstream. When a node contains only HighMem memory, slab_node(MPOL_BIND) dereferences a NULL pointer. [ This code seems to go back all the way to commit 19770b32609b: "mm: filter based on a nodemask as well as a gfp_mask". Which was back in April 2008, and it got merged into 2.6.26. - Linus ] Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-11-22mm, x86: Saving vmcore with non-lazy freeing of vmasCliff Wickman
commit 3ee48b6af49cf534ca2f481ecc484b156a41451d upstream. During the reading of /proc/vmcore the kernel is doing ioremap()/iounmap() repeatedly. And the buildup of un-flushed vm_area_struct's is causing a great deal of overhead. (rb_next() is chewing up most of that time). This solution is to provide function set_iounmap_nonlazy(). It causes a subsequent call to iounmap() to immediately purge the vma area (with try_purge_vmap_area_lazy()). With this patch we have seen the time for writing a 250MB compressed dump drop from 71 seconds to 44 seconds. Signed-off-by: Cliff Wickman <cpw@sgi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: kexec@lists.infradead.org LKML-Reference: <E1OwHZ4-0005WK-Tw@eag09.americas.sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-07Merge branch 'hwpoison-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: HWPOISON: Stop shrinking at right page count HWPOISON: Report correct address granuality for AO huge page errors HWPOISON: Copy si_addr_lsb to user page-types.c: fix name of unpoison interface
2010-10-07memcg: fix thresholds with use_hierarchy == 1Kirill A. Shutemov
We need to check parent's thresholds if parent has use_hierarchy == 1 to be sure that parent's threshold events will be triggered even if parent itself is not active (no MEM_CGROUP_EVENTS). Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-07mm: alloc_large_system_hash() printk overflow on 16TB bootRobin Holt
During boot of a 16TB system, the following is printed: Dentry cache hash table entries: -2147483648 (order: 22, 17179869184 bytes) Signed-off-by: Robin Holt <holt@sgi.com> Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-07HWPOISON: Stop shrinking at right page countAndi Kleen
When we call the slab shrinker to free a page we need to stop at page count one because the caller always holds a single reference, not zero. This avoids useless looping over slab shrinkers and freeing too much memory. Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-07HWPOISON: Report correct address granuality for AO huge page errorsAndi Kleen
The SIGBUS user space signalling is supposed to report the address granuality of a corruption. Pass this information correctly for huge pages by querying the hpage order. Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-10-04ksm: fix bad user data when swappingHugh Dickins
Building under memory pressure, with KSM on 2.6.36-rc5, collapsed with an internal compiler error: typically indicating an error in swapping. Perhaps there's a timing issue which makes it now more likely, perhaps it's just a long time since I tried for so long: this bug goes back to KSM swapping in 2.6.33. Notice how reuse_swap_page() allows an exclusive page to be reused, but only does SetPageDirty if it can delete it from swap cache right then - if it's currently under Writeback, it has to be left in cache and we don't SetPageDirty, but the page can be reused. Fine, the dirty bit will get set in the pte; but notice how zap_pte_range() does not bother to transfer pte_dirty to page_dirty when unmapping a PageAnon. If KSM chooses to share such a page, it will look like a clean copy of swapcache, and not be written out to swap when its memory is needed; then stale data read back from swap when it's needed again. We could fix this in reuse_swap_page() (or even refuse to reuse a page under writeback), but it's more honest to fix my oversight in KSM's write_protect_page(). Several days of testing on three machines confirms that this fixes the issue they showed. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-04ksm: fix page_address_in_vma anon_vma oopsHugh Dickins
2.6.36-rc1 commit 21d0d443cdc1658a8c1484fdcece4803f0f96d0e "rmap: resurrect page_address_in_vma anon_vma check" was right to resurrect that check; but now that it's comparing anon_vma->roots instead of just anon_vmas, there's a danger of oopsing on a NULL anon_vma. In most cases no NULL anon_vma ever gets here; but it turns out that occasionally KSM, when enabled on a forked or forking process, will itself call page_address_in_vma() on a "half-KSM" page left over from an earlier failed attempt to merge - whose page_anon_vma() is NULL. It's my bug that those should be getting here at all: I thought they were already dealt with, this oops proves me wrong, I'll fix it in the next release - such pages are effectively pinned until their process exits, since rmap cannot find their ptes (though swapoff can). For now just work around it by making page_address_in_vma() safe (and add a comment on why that check is wanted anyway). A similar check in __page_check_anon_rmap() is safe because do_page_add_anon_rmap() already excluded KSM pages. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-25Avoid pgoff overflow in remap_file_pagesLarry Woodman
Thomas Pollet noticed that the remap_file_pages() system call in fremap.c has a potential overflow in the first part of the if statement below, which could cause it to process bogus input parameters. Specifically the pgoff + size parameters could be wrap thereby preventing the system call from failing when it should. Reported-by: Thomas Pollet <thomas.pollet@gmail.com> Signed-off-by: Larry Woodman <lwoodman@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-24fremap: get rid of broken 'end' variableLinus Torvalds
Thomas Pollet points out that the 'end' variable is broken. It was computed based on start/size before they were page-aligned, and as such doesn't actually match any of the other actions we take. The overflow test on end was also redundant, since we had already tested it with the properly aligned version. So just get rid of it entirely. The one remaining use for that broken variable can just use 'start+size' like all the other cases already did. Reported-by: Thomas Pollet <thomas.pollet@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23hugetlb, rmap: add BUG_ON(!PageLocked) in hugetlb_add_anon_rmap()Naoya Horiguchi
Confirming page lock is held in hugetlb_add_anon_rmap() may be useful to detect possible future problems. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23hugetlb, rmap: fix confusing page locking in hugetlb_cow()Naoya Horiguchi
The "if (!trylock_page)" block in the avoidcopy path of hugetlb_cow() looks confusing and is buggy. Originally this trylock_page() was intended to make sure that old_page is locked even when old_page != pagecache_page, because then only pagecache_page is locked. This patch fixes it by moving page locking into hugetlb_fault(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23hugetlb, rmap: use hugepage_add_new_anon_rmap() in hugetlb_cow()Naoya Horiguchi
Obviously, setting anon_vma for COWed hugepage should be done by hugepage_add_new_anon_rmap() to scan vmas faster. This patch fixes it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23hugetlb, rmap: always use anon_vma root pointerNaoya Horiguchi
This patch applies Andrea's fix given by the following patch into hugepage rmapping code: commit 288468c334e98aacbb7e2fb8bde6bc1adcd55e05 Author: Andrea Arcangeli <aarcange@redhat.com> Date: Mon Aug 9 17:19:09 2010 -0700 This patch uses anon_vma->root and avoids unnecessary overwriting when anon_vma is already set up. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-23Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: percpu: fix pcpu_last_unit_cpu
2010-09-22mmap: call unlink_anon_vmas() in __split_vma() in case of errorAndrea Arcangeli
If __split_vma fails because of an out of memory condition the anon_vma_chain isn't teardown and freed potentially leading to rmap walks accessing freed vma information plus there's a memleak. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22oom: filter unkillable tasks from tasklist dumpDavid Rientjes
/proc/sys/vm/oom_dump_tasks is enabled by default, so it's necessary to limit as much information as possible that it should emit. The tasklist dump should be filtered to only those tasks that are eligible for oom kill. This is already done for memcg ooms, but this patch extends it to both cpuset and mempolicy ooms as well as init. In addition to suppressing irrelevant information, this also reduces confusion since users currently don't know which tasks in the tasklist aren't eligible for kill (such as those attached to cpusets or bound to mempolicies with a disjoint set of mems or nodes, respectively) since that information is not shown. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22vmscan: check all_unreclaimable in direct reclaim pathMinchan Kim
M. Vefa Bicakci reported 2.6.35 kernel hang up when hibernation on his 32bit 3GB mem machine. (https://bugzilla.kernel.org/show_bug.cgi?id=16771). Also he bisected the regression to commit bb21c7ce18eff8e6e7877ca1d06c6db719376e3c Author: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Date: Fri Jun 4 14:15:05 2010 -0700 vmscan: fix do_try_to_free_pages() return value when priority==0 reclaim failure At first impression, this seemed very strange because the above commit only chenged function return value and hibernate_preallocate_memory() ignore return value of shrink_all_memory(). But it's related. Now, page allocation from hibernation code may enter infinite loop if the system has highmem. The reasons are that vmscan don't care enough OOM case when oom_killer_disabled. The problem sequence is following as. 1. hibernation 2. oom_disable 3. alloc_pages 4. do_try_to_free_pages if (scanning_global_lru(sc) && !all_unreclaimable) return 1; If kswapd is not freozen, it would set zone->all_unreclaimable to 1 and then shrink_zones maybe return true(ie, all_unreclaimable is true). So at last, alloc_pages could go to _nopage_. If it is, it should have no problem. This patch adds all_unreclaimable check to protect in direct reclaim path, too. It can care of hibernation OOM case and help bailout all_unreclaimable case slightly. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: M. Vefa Bicakci <bicave@superonline.com> Reported-by: <caiqian@redhat.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: <caiqian@redhat.com> Acked-by: Rafael J. Wysocki <rjw@sisk.pl> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22oom: always return a badness score of non-zero for eligible tasksDavid Rientjes
A task's badness score is roughly a proportion of its rss and swap compared to the system's capacity. The scale ranges from 0 to 1000 with the highest score chosen for kill. Thus, this scale operates on a resolution of 0.1% of RAM + swap. Admin tasks are also given a 3% bonus, so the badness score of an admin task using 3% of memory, for example, would still be 0. It's possible that an exceptionally large number of tasks will combine to exhaust all resources but never have a single task that uses more than 0.1% of RAM and swap (or 3.0% for admin tasks). This patch ensures that the badness score of any eligible task is never 0 so the machine doesn't unnecessarily panic because it cannot find a task to kill. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-22Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-blockLinus Torvalds
* 'for-linus' of git://git.kernel.dk/linux-2.6-block: bdi: Fix warnings in __mark_inode_dirty for /dev/zero and friends char: Mark /dev/zero and /dev/kmem as not capable of writeback bdi: Initialize noop_backing_dev_info properly cfq-iosched: fix a kernel OOPs when usb key is inserted block: fix blk_rq_map_kern bio direction flag cciss: freeing uninitialized data on error path
2010-09-22bdi: Initialize noop_backing_dev_info properlyJan Kara
Properly initialize this backing dev info so that writeback code does not barf when getting to it e.g. via sb->s_bdi. Cc: stable@kernel.org Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-21percpu: fix pcpu_last_unit_cpuTejun Heo
pcpu_first/last_unit_cpu are used to track which cpu has the first and last units assigned. This in turn is used to determine the span of a chunk for man/unmap cache flushes and whether an address belongs to the first chunk or not in per_cpu_ptr_to_phys(). When the number of possible CPUs isn't power of two, a chunk may contain unassigned units towards the end of a chunk. The logic to determine pcpu_last_unit_cpu was incorrect when there was an unused unit at the end of a chunk. It failed to ignore the unused unit and assigned the unused marker NR_CPUS to pcpu_last_unit_cpu. This was discovered through kdump failure which was caused by malfunctioning per_cpu_ptr_to_phys() on a kvm setup with 50 possible CPUs by CAI Qian. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: CAI Qian <caiqian@redhat.com> Cc: stable@kernel.org
2010-09-20mm: further fix swapin race conditionHugh Dickins
Commit 4969c1192d15 ("mm: fix swapin race condition") is now agreed to be incomplete. There's a race, not very much less likely than the original race envisaged, in which it is further necessary to check that the swapcache page's swap has not changed. Here's the reasoning: cast in terms of reuse_swap_page(), but probably could be reformulated to rely on try_to_free_swap() instead, or on swapoff+swapon. A, faults into do_swap_page(): does page1 = lookup_swap_cache(swap1) and comes through the lock_page(page1). B, a racing thread of the same process, faults on the same address: does page1 = lookup_swap_cache(swap1) and now waits in lock_page(page1), but for whatever reason is unlucky not to get the lock any time soon. A carries on through do_swap_page(), a write fault, but cannot reuse the swap page1 (another reference to swap1). Unlocks the page1 (but B doesn't get it yet), does COW in do_wp_page(), page2 now in that pte. C, perhaps the parent of A+B, comes in and write faults the same swap page1 into its mm, reuse_swap_page() succeeds this time, swap1 is freed. kswapd comes in after some time (B still unlucky) and swaps out some pages from A+B and C: it allocates the original swap1 to page2 in A+B, and some other swap2 to the original page1 now in C. But does not immediately free page1 (actually it couldn't: B holds a reference), leaving it in swap cache for now. B at last gets the lock on page1, hooray! Is PageSwapCache(page1)? Yes. Is pte_same(*page_table, orig_pte)? Yes, because page2 has now been given the swap1 which page1 used to have. So B proceeds to insert page1 into A+B's page_table, though its content now belongs to C, quite different from what A wrote there. B ought to have checked that page1's swap was still swap1. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-10Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-blockLinus Torvalds
* 'for-linus' of git://git.kernel.dk/linux-2.6-block: block: Range check cpu in blk_cpu_to_group scatterlist: prevent invalid free when alloc fails writeback: Fix lost wake-up shutting down writeback thread writeback: do not lose wakeup events when forking bdi threads cciss: fix reporting of max queue depth since init block: switch s390 tape_block and mg_disk to elevator_change() block: add function call to switch the IO scheduler from a driver fs/bio-integrity.c: return -ENOMEM on kmalloc failure bio-integrity.c: remove dependency on __GFP_NOFAIL BLOCK: fix bio.bi_rw handling block: put dev->kobj in blk_register_queue fail path cciss: handle allocation failure cfq-iosched: Documentation help for new tunables cfq-iosched: blktrace print per slice sector stats cfq-iosched: Implement tunable group_idle cfq-iosched: Do group share accounting in IOPS when slice_idle=0 cfq-iosched: Do not idle if slice_idle=0 cciss: disable doorbell reset on reset_devices blkio: Fix return code for mkdir calls
2010-09-09mm: page allocator: drain per-cpu lists after direct reclaim allocation failsMel Gorman
When under significant memory pressure, a process enters direct reclaim and immediately afterwards tries to allocate a page. If it fails and no further progress is made, it's possible the system will go OOM. However, on systems with large amounts of memory, it's possible that a significant number of pages are on per-cpu lists and inaccessible to the calling process. This leads to a process entering direct reclaim more often than it should increasing the pressure on the system and compounding the problem. This patch notes that if direct reclaim is making progress but allocations are still failing that the system is already under heavy pressure. In this case, it drains the per-cpu lists and tries the allocation a second time before continuing. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory ↵Christoph Lameter
is low and kswapd is awake Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is cheaper than scanning a number of lists. To avoid synchronization overhead, counter deltas are maintained on a per-cpu basis and drained both periodically and when the delta is above a threshold. On large CPU systems, the difference between the estimated and real value of NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than number of real free page in buddy, the VM can allocate pages below min watermark, at worst reducing the real number of pages to zero. Even if the OOM killer kills some victim for freeing memory, it may not free memory if the exit path requires a new page resulting in livelock. This patch introduces a zone_page_state_snapshot() function (courtesy of Christoph) that takes a slightly more accurate view of an arbitrary vmstat counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid the watermark being accidentally broken. The estimate is not perfect and may result in cache line bounces but is expected to be lighter than the IPI calls necessary to continually drain the per-cpu counters while kswapd is awake. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: update free page counters after pages are placed on the ↵Mel Gorman
free list When allocating a page, the system uses NR_FREE_PAGES counters to determine if watermarks would remain intact after the allocation was made. This check is made without interrupts disabled or the zone lock held and so is race-prone by nature. Unfortunately, when pages are being freed in batch, the counters are updated before the pages are added on the list. During this window, the counters are misleading as the pages do not exist yet. When under significant pressure on systems with large numbers of CPUs, it's possible for processes to make progress even though they should have been stalled. This is particularly problematic if a number of the processes are using GFP_ATOMIC as the min watermark can be accidentally breached and in extreme cases, the system can livelock. This patch updates the counters after the pages have been added to the list. This makes the allocator more cautious with respect to preserving the watermarks and mitigates livelock possibilities. [akpm@linux-foundation.org: avoid modifying incoming args] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09vmstat: update zone stat threshold when onlining a cpuKAMEZAWA Hiroyuki
refresh_zone_stat_thresholds() calculates parameter based on the number of online cpus. It's called at cpu offlining but needs to be called at onlining, too. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09swap: discard while swapping only if SWAP_FLAG_DISCARDHugh Dickins
Tests with recent firmware on Intel X25-M 80GB and OCZ Vertex 60GB SSDs show a shift since I last tested in December: in part because of firmware updates, in part because of the necessary move from barriers to awaiting completion at the block layer. While discard at swapon still shows as slightly beneficial on both, discarding 1MB swap cluster when allocating is now disadvanteous: adds 25% overhead on Intel, adds 230% on OCZ (YMMV). Surrender: discard as presently implemented is more hindrance than help for swap; but might prove useful on other devices, or with improvements. So continue to do the discard at swapon, but make discard while swapping conditional on a SWAP_FLAG_DISCARD to sys_swapon() (which has been using only the lower 16 bits of int flags). We can add a --discard or -d to swapon(8), and a "discard" to swap in /etc/fstab: matching the mount option for btrfs, ext4, fat, gfs2, nilfs2. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Nigel Cunningham <nigel@tuxonice.net> Cc: Tejun Heo <tj@kernel.org> Cc: Jens Axboe <jaxboe@fusionio.com> Cc: James Bottomley <James.Bottomley@hansenpartnership.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09swap: do not send discards as barriersChristoph Hellwig
The swap code already uses synchronous discards, no need to add I/O barriers. This fixes the worst of the terrible slowdown in swap allocation for hibernation, reported on 2.6.35 by Nigel Cunningham; but does not entirely eliminate that regression. [tj@kernel.org: superflous newlines removed] Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Nigel Cunningham <nigel@tuxonice.net> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <jaxboe@fusionio.com> Cc: James Bottomley <James.Bottomley@hansenpartnership.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09swap: prevent reuse during hibernationHugh Dickins
Move the hibernation check from scan_swap_map() into try_to_free_swap(): to catch not only the common case when hibernation's allocation itself triggers swap reuse, but also the less likely case when concurrent page reclaim (shrink_page_list) might happen to try_to_free_swap from a page. Hibernation already clears __GFP_IO from the gfp_allowed_mask, to stop reclaim from going to swap: check that to prevent swap reuse too. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ondrej Zary <linux@rainbow-software.org> Cc: Andrea Gelmini <andrea.gelmini@gmail.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nigel Cunningham <nigel@tuxonice.net> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09swap: revert special hibernation allocationHugh Dickins
Please revert 2.6.36-rc commit d2997b1042ec150616c1963b5e5e919ffd0b0ebf "hibernation: freeze swap at hibernation". It complicated matters by adding a second swap allocation path, just for hibernation; without in any way fixing the issue that it was intended to address - page reclaim after fixing the hibernation image might free swap from a page already imaged as swapcache, letting its swap be reallocated to store a different page of the image: resulting in data corruption if the imaged page were freed as clean then swapped back in. Pages freed to si->swap_map were still in danger of being reallocated by the alternative allocation path. I guess it inadvertently fixed slow SSD swap allocation for hibernation, as reported by Nigel Cunningham: by missing out the discards that occur on the usual swap allocation path; but that was unintentional, and needs a separate fix. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ondrej Zary <linux@rainbow-software.org> Cc: Andrea Gelmini <andrea.gelmini@gmail.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nigel Cunningham <nigel@tuxonice.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09bounce: call flush_dcache_page() after bounce_copy_vec()Gary King
I have been seeing problems on Tegra 2 (ARMv7 SMP) systems with HIGHMEM enabled on 2.6.35 (plus some patches targetted at 2.6.36 to perform cache maintenance lazily), and the root cause appears to be that the mm bouncing code is calling flush_dcache_page before it copies the bounce buffer into the bio. The bounced page needs to be flushed after data is copied into it, to ensure that architecture implementations can synchronize instruction and data caches if necessary. Signed-off-by: Gary King <gking@nvidia.com> Cc: Tejun Heo <tj@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Acked-by: Jens Axboe <axboe@kernel.dk> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09memory hotplug: fix next block calculation in is_removableKAMEZAWA Hiroyuki
next_active_pageblock() is for finding next _used_ freeblock. It skips several blocks when it finds there are a chunk of free pages lager than pageblock. But it has 2 bugs. 1. We have no lock. page_order(page) - pageblock_order can be minus. 2. pageblocks_stride += is wrong. it should skip page_order(p) of pages. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: compaction: handle active and inactive fairly in too_many_isolatedMinchan Kim
Iram reported that compaction's too_many_isolated() loops forever. (http://www.spinics.net/lists/linux-mm/msg08123.html) The meminfo when the situation happened was inactive anon is zero. That's because the system has no memory pressure until then. While all anon pages were in the active lru, compaction could select active lru as well as inactive lru. That's a different thing from vmscan's isolated. So we has been two too_many_isolated. While compaction can isolate pages in both active and inactive, current implementation of too_many_isolated only considers inactive. It made Iram's problem. This patch handles active and inactive fairly. That's because we can't expect where from and how many compaction would isolated pages. This patch changes (nr_isolated > nr_inactive) with nr_isolated > (nr_active + nr_inactive) / 2. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Iram Shahzad <iram.shahzad@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: avoid warning when COMPACTION is selectedAndrea Arcangeli
COMPACTION enables MIGRATION, but MIGRATION spawns a warning if numa or memhotplug aren't selected. However MIGRATION doesn't depend on them. I guess it's just trying to be strict doing a double check on who's enabling it, but it doesn't know that compaction also enables MIGRATION. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>