Age | Commit message (Collapse) | Author |
|
commit 46ce0fe97a6be7532ce6126bb26ce89fed81528c upstream.
When removing a (sibling) event we do:
raw_spin_lock_irq(&ctx->lock);
perf_group_detach(event);
raw_spin_unlock_irq(&ctx->lock);
<hole>
perf_remove_from_context(event);
raw_spin_lock_irq(&ctx->lock);
...
raw_spin_unlock_irq(&ctx->lock);
Now, assuming the event is a sibling, it will be 'unreachable' for
things like ctx_sched_out() because that iterates the
groups->siblings, and we just unhooked the sibling.
So, if during <hole> we get ctx_sched_out(), it will miss the event
and not call event_sched_out() on it, leaving it programmed on the
PMU.
The subsequent perf_remove_from_context() call will find the ctx is
inactive and only call list_del_event() to remove the event from all
other lists.
Hereafter we can proceed to free the event; while still programmed!
Close this hole by moving perf_group_detach() inside the same
ctx->lock region(s) perf_remove_from_context() has.
The condition on inherited events only in __perf_event_exit_task() is
likely complete crap because non-inherited events are part of groups
too and we're tearing down just the same. But leave that for another
patch.
Most-likely-Fixes: e03a9a55b4e ("perf: Change close() semantics for group events")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140505093124.GN17778@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: drop change in perf_pmu_migrate_context()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4af4206be2bd1933cae20c2b6fb2058dbc887f7c upstream.
syscall_regfunc() and syscall_unregfunc() should set/clear
TIF_SYSCALL_TRACEPOINT system-wide, but do_each_thread() can race
with copy_process() and miss the new child which was not added to
the process/thread lists yet.
Change copy_process() to update the child's TIF_SYSCALL_TRACEPOINT
under tasklist.
Link: http://lkml.kernel.org/p/20140413185854.GB20668@redhat.com
Fixes: a871bd33a6c0 "tracing: Add syscall tracepoints"
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 27e35715df54cbc4f2d044f681802ae30479e7fb upstream.
When the rtmutex fast path is enabled the slow unlock function can
create the following situation:
spin_lock(foo->m->wait_lock);
foo->m->owner = NULL;
rt_mutex_lock(foo->m); <-- fast path
free = atomic_dec_and_test(foo->refcnt);
rt_mutex_unlock(foo->m); <-- fast path
if (free)
kfree(foo);
spin_unlock(foo->m->wait_lock); <--- Use after free.
Plug the race by changing the slow unlock to the following scheme:
while (!rt_mutex_has_waiters(m)) {
/* Clear the waiters bit in m->owner */
clear_rt_mutex_waiters(m);
owner = rt_mutex_owner(m);
spin_unlock(m->wait_lock);
if (cmpxchg(m->owner, owner, 0) == owner)
return;
spin_lock(m->wait_lock);
}
So in case of a new waiter incoming while the owner tries the slow
path unlock we have two situations:
unlock(wait_lock);
lock(wait_lock);
cmpxchg(p, owner, 0) == owner
mark_rt_mutex_waiters(lock);
acquire(lock);
Or:
unlock(wait_lock);
lock(wait_lock);
mark_rt_mutex_waiters(lock);
cmpxchg(p, owner, 0) != owner
enqueue_waiter();
unlock(wait_lock);
lock(wait_lock);
wakeup_next waiter();
unlock(wait_lock);
lock(wait_lock);
acquire(lock);
If the fast path is disabled, then the simple
m->owner = NULL;
unlock(m->wait_lock);
is sufficient as all access to m->owner is serialized via
m->wait_lock;
Also document and clarify the wakeup_next_waiter function as suggested
by Oleg Nesterov.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140611183852.937945560@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 82084984383babe728e6e3c9a8e5c46278091315 upstream.
When we walk the lock chain, we drop all locks after each step. So the
lock chain can change under us before we reacquire the locks. That's
harmless in principle as we just follow the wrong lock path. But it
can lead to a false positive in the dead lock detection logic:
T0 holds L0
T0 blocks on L1 held by T1
T1 blocks on L2 held by T2
T2 blocks on L3 held by T3
T4 blocks on L4 held by T4
Now we walk the chain
lock T1 -> lock L2 -> adjust L2 -> unlock T1 ->
lock T2 -> adjust T2 -> drop locks
T2 times out and blocks on L0
Now we continue:
lock T2 -> lock L0 -> deadlock detected, but it's not a deadlock at all.
Brad tried to work around that in the deadlock detection logic itself,
but the more I looked at it the less I liked it, because it's crystal
ball magic after the fact.
We actually can detect a chain change very simple:
lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 ->
next_lock = T2->pi_blocked_on->lock;
drop locks
T2 times out and blocks on L0
Now we continue:
lock T2 ->
if (next_lock != T2->pi_blocked_on->lock)
return;
So if we detect that T2 is now blocked on a different lock we stop the
chain walk. That's also correct in the following scenario:
lock T1 -> lock L2 -> adjust L2 -> unlock T1 -> lock T2 -> adjust T2 ->
next_lock = T2->pi_blocked_on->lock;
drop locks
T3 times out and drops L3
T2 acquires L3 and blocks on L4 now
Now we continue:
lock T2 ->
if (next_lock != T2->pi_blocked_on->lock)
return;
We don't have to follow up the chain at that point, because T2
propagated our priority up to T4 already.
[ Folded a cleanup patch from peterz ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Brad Mouring <bmouring@ni.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140605152801.930031935@linutronix.de
[bwh: Backported to 3.2: adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 3d5c9340d1949733eb37616abd15db36aef9a57c upstream.
Even in the case when deadlock detection is not requested by the
caller, we can detect deadlocks. Right now the code stops the lock
chain walk and keeps the waiter enqueued, even on itself. Silly not to
yell when such a scenario is detected and to keep the waiter enqueued.
Return -EDEADLK unconditionally and handle it at the call sites.
The futex calls return -EDEADLK. The non futex ones dequeue the
waiter, throw a warning and put the task into a schedule loop.
Tagged for stable as it makes the code more robust.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brad Mouring <bmouring@ni.com>
Link: http://lkml.kernel.org/r/20140605152801.836501969@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust filenames]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a3c54931199565930d6d84f4c3456f6440aefd41 upstream.
Fixes an easy DoS and possible information disclosure.
This does nothing about the broken state of x32 auditing.
eparis: If the admin has enabled auditd and has specifically loaded
audit rules. This bug has been around since before git. Wow...
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: audit_filter_inode_name() is not a separate
function but part of audit_filter_inodes()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4e52365f279564cef0ddd41db5237f0471381093 upstream.
When tracing a process in another pid namespace, it's important for fork
event messages to contain the child's pid as seen from the tracer's pid
namespace, not the parent's. Otherwise, the tracer won't be able to
correlate the fork event with later SIGTRAP signals it receives from the
child.
We still risk a race condition if a ptracer from a different pid
namespace attaches after we compute the pid_t value. However, sending a
bogus fork event message in this unlikely scenario is still a vast
improvement over the status quo where we always send bogus fork event
messages to debuggers in a different pid namespace than the forking
process.
Signed-off-by: Matthew Dempsky <mdempsky@chromium.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Julien Tinnes <jln@chromium.org>
Cc: Roland McGrath <mcgrathr@chromium.org>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 397335f004f41e5fcf7a795e94eb3ab83411a17c upstream.
The current deadlock detection logic does not work reliably due to the
following early exit path:
/*
* Drop out, when the task has no waiters. Note,
* top_waiter can be NULL, when we are in the deboosting
* mode!
*/
if (top_waiter && (!task_has_pi_waiters(task) ||
top_waiter != task_top_pi_waiter(task)))
goto out_unlock_pi;
So this not only exits when the task has no waiters, it also exits
unconditionally when the current waiter is not the top priority waiter
of the task.
So in a nested locking scenario, it might abort the lock chain walk
and therefor miss a potential deadlock.
Simple fix: Continue the chain walk, when deadlock detection is
enabled.
We also avoid the whole enqueue, if we detect the deadlock right away
(A-A). It's an optimization, but also prevents that another waiter who
comes in after the detection and before the task has undone the damage
observes the situation and detects the deadlock and returns
-EDEADLOCK, which is wrong as the other task is not in a deadlock
situation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/20140522031949.725272460@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1e77d0a1ed7417d2a5a52a7b8d32aea1833faa6c upstream.
Till reported that the spurious interrupt detection of threaded
interrupts is broken in two ways:
- note_interrupt() is called for each action thread of a shared
interrupt line. That's wrong as we are only interested whether none
of the device drivers felt responsible for the interrupt, but by
calling multiple times for a single interrupt line we account
IRQ_NONE even if one of the drivers felt responsible.
- note_interrupt() when called from the thread handler is not
serialized. That leaves the members of irq_desc which are used for
the spurious detection unprotected.
To solve this we need to defer the spurious detection of a threaded
interrupt to the next hardware interrupt context where we have
implicit serialization.
If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we
check whether the previous interrupt requested a deferred check. If
not, we request a deferred check for the next hardware interrupt and
return.
If set, we check whether one of the interrupt threads signaled
success. Depending on this information we feed the result into the
spurious detector.
If one primary handler of a shared interrupt returns IRQ_HANDLED we
disable the deferred check of irq threads on the same line, as we have
found at least one device driver who cared.
Reported-by: Till Straumann <strauman@slac.stanford.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Austin Schuh <austin@peloton-tech.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: linux-can@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos
[bwh: Backported to 3.2: adjust context, indentation]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 54a217887a7b658e2650c3feff22756ab80c7339 upstream.
The current implementation of lookup_pi_state has ambigous handling of
the TID value 0 in the user space futex. We can get into the kernel
even if the TID value is 0, because either there is a stale waiters bit
or the owner died bit is set or we are called from the requeue_pi path
or from user space just for fun.
The current code avoids an explicit sanity check for pid = 0 in case
that kernel internal state (waiters) are found for the user space
address. This can lead to state leakage and worse under some
circumstances.
Handle the cases explicit:
Waiter | pi_state | pi->owner | uTID | uODIED | ?
[1] NULL | --- | --- | 0 | 0/1 | Valid
[2] NULL | --- | --- | >0 | 0/1 | Valid
[3] Found | NULL | -- | Any | 0/1 | Invalid
[4] Found | Found | NULL | 0 | 1 | Valid
[5] Found | Found | NULL | >0 | 1 | Invalid
[6] Found | Found | task | 0 | 1 | Valid
[7] Found | Found | NULL | Any | 0 | Invalid
[8] Found | Found | task | ==taskTID | 0/1 | Valid
[9] Found | Found | task | 0 | 0 | Invalid
[10] Found | Found | task | !=taskTID | 0/1 | Invalid
[1] Indicates that the kernel can acquire the futex atomically. We
came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
[2] Valid, if TID does not belong to a kernel thread. If no matching
thread is found then it indicates that the owner TID has died.
[3] Invalid. The waiter is queued on a non PI futex
[4] Valid state after exit_robust_list(), which sets the user space
value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
[5] The user space value got manipulated between exit_robust_list()
and exit_pi_state_list()
[6] Valid state after exit_pi_state_list() which sets the new owner in
the pi_state but cannot access the user space value.
[7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
[8] Owner and user space value match
[9] There is no transient state which sets the user space TID to 0
except exit_robust_list(), but this is indicated by the
FUTEX_OWNER_DIED bit. See [4]
[10] There is no transient state which leaves owner and user space
TID out of sync.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 13fbca4c6ecd96ec1a1cfa2e4f2ce191fe928a5e upstream.
If the owner died bit is set at futex_unlock_pi, we currently do not
cleanup the user space futex. So the owner TID of the current owner
(the unlocker) persists. That's observable inconsistant state,
especially when the ownership of the pi state got transferred.
Clean it up unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b3eaa9fc5cd0a4d74b18f6b8dc617aeaf1873270 upstream.
We need to protect the atomic acquisition in the kernel against rogue
user space which sets the user space futex to 0, so the kernel side
acquisition succeeds while there is existing state in the kernel
associated to the real owner.
Verify whether the futex has waiters associated with kernel state. If
it has, return -EINVAL. The state is corrupted already, so no point in
cleaning it up. Subsequent calls will fail as well. Not our problem.
[ tglx: Use futex_top_waiter() and explain why we do not need to try
restoring the already corrupted user space state. ]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
in futex_requeue(..., requeue_pi=1)
commit e9c243a5a6de0be8e584c604d353412584b592f8 upstream.
If uaddr == uaddr2, then we have broken the rule of only requeueing from
a non-pi futex to a pi futex with this call. If we attempt this, then
dangling pointers may be left for rt_waiter resulting in an exploitable
condition.
This change brings futex_requeue() in line with futex_wait_requeue_pi()
which performs the same check as per commit 6f7b0a2a5c0f ("futex: Forbid
uaddr == uaddr2 in futex_wait_requeue_pi()")
[ tglx: Compare the resulting keys as well, as uaddrs might be
different depending on the mapping ]
Fixes CVE-2014-3153.
Reported-by: Pinkie Pie
Signed-off-by: Will Drewry <wad@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit f0d71b3dcb8332f7971b5f2363632573e6d9486a upstream.
We happily allow userspace to declare a random kernel thread to be the
owner of a user space PI futex.
Found while analysing the fallout of Dave Jones syscall fuzzer.
We also should validate the thread group for private futexes and find
some fast way to validate whether the "alleged" owner has RW access on
the file which backs the SHM, but that's a separate issue.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <darren@dvhart.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Carlos ODonell <carlos@redhat.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20140512201701.194824402@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 866293ee54227584ffcb4a42f69c1f365974ba7f upstream.
Dave Jones trinity syscall fuzzer exposed an issue in the deadlock
detection code of rtmutex:
http://lkml.kernel.org/r/20140429151655.GA14277@redhat.com
That underlying issue has been fixed with a patch to the rtmutex code,
but the futex code must not call into rtmutex in that case because
- it can detect that issue early
- it avoids a different and more complex fixup for backing out
If the user space variable got manipulated to 0x80000000 which means
no lock holder, but the waiters bit set and an active pi_state in the
kernel is found we can figure out the recursive locking issue by
looking at the pi_state owner. If that is the current task, then we
can safely return -EDEADLK.
The check should have been added in commit 59fa62451 (futex: Handle
futex_pi OWNER_DIED take over correctly) already, but I did not see
the above issue caused by user space manipulation back then.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <darren@dvhart.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Carlos ODonell <carlos@redhat.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20140512201701.097349971@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 39af6b1678afa5880dda7e375cf3f9d395087f6d upstream.
The perf cpu offline callback takes down all cpu context
events and releases swhash->swevent_hlist.
This could race with task context software event being just
scheduled on this cpu via perf_swevent_add while cpu hotplug
code already cleaned up event's data.
The race happens in the gap between the cpu notifier code
and the cpu being actually taken down. Note that only cpu
ctx events are terminated in the perf cpu hotplug code.
It's easily reproduced with:
$ perf record -e faults perf bench sched pipe
while putting one of the cpus offline:
# echo 0 > /sys/devices/system/cpu/cpu1/online
Console emits following warning:
WARNING: CPU: 1 PID: 2845 at kernel/events/core.c:5672 perf_swevent_add+0x18d/0x1a0()
Modules linked in:
CPU: 1 PID: 2845 Comm: sched-pipe Tainted: G W 3.14.0+ #256
Hardware name: Intel Corporation Montevina platform/To be filled by O.E.M., BIOS AMVACRB1.86C.0066.B00.0805070703 05/07/2008
0000000000000009 ffff880077233ab8 ffffffff81665a23 0000000000200005
0000000000000000 ffff880077233af8 ffffffff8104732c 0000000000000046
ffff88007467c800 0000000000000002 ffff88007a9cf2a0 0000000000000001
Call Trace:
[<ffffffff81665a23>] dump_stack+0x4f/0x7c
[<ffffffff8104732c>] warn_slowpath_common+0x8c/0xc0
[<ffffffff8104737a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8110fb3d>] perf_swevent_add+0x18d/0x1a0
[<ffffffff811162ae>] event_sched_in.isra.75+0x9e/0x1f0
[<ffffffff8111646a>] group_sched_in+0x6a/0x1f0
[<ffffffff81083dd5>] ? sched_clock_local+0x25/0xa0
[<ffffffff811167e6>] ctx_sched_in+0x1f6/0x450
[<ffffffff8111757b>] perf_event_sched_in+0x6b/0xa0
[<ffffffff81117a4b>] perf_event_context_sched_in+0x7b/0xc0
[<ffffffff81117ece>] __perf_event_task_sched_in+0x43e/0x460
[<ffffffff81096f1e>] ? put_lock_stats.isra.18+0xe/0x30
[<ffffffff8107b3c8>] finish_task_switch+0xb8/0x100
[<ffffffff8166a7de>] __schedule+0x30e/0xad0
[<ffffffff81172dd2>] ? pipe_read+0x3e2/0x560
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b464>] preempt_schedule_irq+0x44/0x70
[<ffffffff816707f0>] retint_kernel+0x20/0x30
[<ffffffff8109e60a>] ? lockdep_sys_exit+0x1a/0x90
[<ffffffff812a4234>] lockdep_sys_exit_thunk+0x35/0x67
[<ffffffff81679321>] ? sysret_check+0x5/0x56
Fixing this by tracking the cpu hotplug state and displaying
the WARN only if current cpu is initialized properly.
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1396861448-10097-1-git-send-email-jolsa@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 0819b2e30ccb93edf04876237b6205eef84ec8d2 upstream.
Vince reported that using a large sample_period (one with bit 63 set)
results in wreckage since while the sample_period is fundamentally
unsigned (negative periods don't make sense) the way we implement
things very much rely on signed logic.
So limit sample_period to 63 bits to avoid tripping over this.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-p25fhunibl4y3qi0zuqmyf4b@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 84ea7fe37908254c3bd90910921f6e1045c1747a upstream.
switch_hrtimer_base() calls hrtimer_check_target() which ensures that
we do not migrate a timer to a remote cpu if the timer expires before
the current programmed expiry time on that remote cpu.
But __hrtimer_start_range_ns() calls switch_hrtimer_base() before the
new expiry time is set. So the sanity check in hrtimer_check_target()
is operating on stale or even uninitialized data.
Update expiry time before calling switch_hrtimer_base().
[ tglx: Rewrote changelog once again ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: linaro-networking@linaro.org
Cc: fweisbec@gmail.com
Cc: arvind.chauhan@arm.com
Link: http://lkml.kernel.org/r/81999e148745fc51bbcd0615823fbab9b2e87e23.1399882253.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6227cb00cc120f9a43ce8313bb0475ddabcb7d01 upstream.
The check at the beginning of cpupri_find() makes sure that the task_pri
variable does not exceed the cp->pri_to_cpu array length. But that length
is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two
priorities in that array.
As task_pri is computed from convert_prio() which should never be bigger
than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is
hit.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 98a01e779f3c66b0b11cd7e64d531c0e41c95762 upstream.
On architectures with sizeof(int) < sizeof (long), the
computation of mask inside apply_slack() can be undefined if the
computed bit is > 32.
E.g. with: expires = 0xffffe6f5 and slack = 25, we get:
expires_limit = 0x20000000e
bit = 33
mask = (1 << 33) - 1 /* undefined */
On x86, mask becomes 1 and and the slack is not applied properly.
On s390, mask is -1, expires is set to 0 and the timer fires immediately.
Use 1UL << bit to solve that issue.
Suggested-by: Deborah Townsend <dstownse@us.ibm.com>
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Link: http://lkml.kernel.org/r/20140418152310.GA13654@midget.suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 012a45e3f4af68e86d85cce060c6c2fed56498b2 upstream.
If a cpu is idle and starts an hrtimer which is not pinned on that
same cpu, the nohz code might target the timer to a different cpu.
In the case that we switch the cpu base of the timer we already have a
sanity check in place, which determines whether the timer is earlier
than the current leftmost timer on the target cpu. In that case we
enqueue the timer on the current cpu because we cannot reprogram the
clock event device on the target.
If the timers base is already the target CPU we do not have this
sanity check in place so we enqueue the timer as the leftmost timer in
the target cpus rb tree, but we cannot reprogram the clock event
device on the target cpu. So the timer expires late and subsequently
prevents the reprogramming of the target cpu clock event device until
the previously programmed event fires or a timer with an earlier
expiry time gets enqueued on the target cpu itself.
Add the same target check as we have for the switch base case and
start the timer on the current cpu if it would become the leftmost
timer on the target.
[ tglx: Rewrote subject and changelog ]
Signed-off-by: Leon Ma <xindong.ma@intel.com>
Link: http://lkml.kernel.org/r/1398847391-5994-1-git-send-email-xindong.ma@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6c6c0d5a1c949d2e084706f9e5fb1fccc175b265 upstream.
If the last hrtimer interrupt detected a hang it sets hang_detected=1
and programs the clock event device with a delay to let the system
make progress.
If hang_detected == 1, we prevent reprogramming of the clock event
device in hrtimer_reprogram() but not in hrtimer_force_reprogram().
This can lead to the following situation:
hrtimer_interrupt()
hang_detected = 1;
program ce device to Xms from now (hang delay)
We have two timers pending:
T1 expires 50ms from now
T2 expires 5s from now
Now T1 gets canceled, which causes hrtimer_force_reprogram() to be
invoked, which in turn programs the clock event device to T2 (5
seconds from now).
Any hrtimer_start after that will not reprogram the hardware due to
hang_detected still being set. So we effectivly block all timers until
the T2 event fires and cleans up the hang situation.
Add a check for hang_detected to hrtimer_force_reprogram() which
prevents the reprogramming of the hang delay in the hardware
timer. The subsequent hrtimer_interrupt will resolve all outstanding
issues.
[ tglx: Rewrote subject and changelog and fixed up the comment in
hrtimer_force_reprogram() ]
Signed-off-by: Stuart Hayes <stuart.w.hayes@gmail.com>
Link: http://lkml.kernel.org/r/53602DC6.2060101@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a949ae560a511fe4e3adf48fa44fefded93e5c2b upstream.
A race exists between module loading and enabling of function tracer.
CPU 1 CPU 2
----- -----
load_module()
module->state = MODULE_STATE_COMING
register_ftrace_function()
mutex_lock(&ftrace_lock);
ftrace_startup()
update_ftrace_function();
ftrace_arch_code_modify_prepare()
set_all_module_text_rw();
<enables-ftrace>
ftrace_arch_code_modify_post_process()
set_all_module_text_ro();
[ here all module text is set to RO,
including the module that is
loading!! ]
blocking_notifier_call_chain(MODULE_STATE_COMING);
ftrace_init_module()
[ tries to modify code, but it's RO, and fails!
ftrace_bug() is called]
When this race happens, ftrace_bug() will produces a nasty warning and
all of the function tracing features will be disabled until reboot.
The simple solution is to treate module load the same way the core
kernel is treated at boot. To hardcode the ftrace function modification
of converting calls to mcount into nops. This is done in init/main.c
there's no reason it could not be done in load_module(). This gives
a better control of the changes and doesn't tie the state of the
module to its notifiers as much. Ftrace is special, it needs to be
treated as such.
The reason this would work, is that the ftrace_module_init() would be
called while the module is in MODULE_STATE_UNFORMED, which is ignored
by the set_all_module_text_ro() call.
Link: http://lkml.kernel.org/r/1395637826-3312-1-git-send-email-indou.takao@jp.fujitsu.com
Reported-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7dec935a3aa04412cba2cebe1524ae0d34a30c24 upstream.
No reason to allocate tp_module structures for modules that have no
tracepoints. This just wastes memory.
Fixes: b75ef8b44b1c "Tracepoint: Dissociate from module mutex"
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit dfccbb5e49a621c1b21a62527d61fc4305617aca upstream.
wait_task_zombie() first does EXIT_ZOMBIE->EXIT_DEAD transition and
drops tasklist_lock. If this task is not the natural child and it is
traced, we change its state back to EXIT_ZOMBIE for ->real_parent.
The last transition is racy, this is even documented in 50b8d257486a
"ptrace: partially fix the do_wait(WEXITED) vs EXIT_DEAD->EXIT_ZOMBIE
race". wait_consider_task() tries to detect this transition and clear
->notask_error but we can't rely on ptrace_reparented(), debugger can
exit and do ptrace_unlink() before its sub-thread sets EXIT_ZOMBIE.
And there is another problem which were missed before: this transition
can also race with reparent_leader() which doesn't reset >exit_signal if
EXIT_DEAD, assuming that this task must be reaped by someone else. So
the tracee can be re-parented with ->exit_signal != SIGCHLD, and if
/sbin/init doesn't use __WALL it becomes unreapable.
Change reparent_leader() to update ->exit_signal even if EXIT_DEAD.
Note: this is the simple temporary hack for -stable, it doesn't try to
solve all problems, it will be reverted by the next changes.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Reported-by: Michal Schmidt <mschmidt@redhat.com>
Tested-by: Michal Schmidt <mschmidt@redhat.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Lennart Poettering <lpoetter@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c92cdeb45eea38515e82187f48c2e4f435fb4e25 upstream.
sys_getppid() returns the parent pid of the current process in its own pid
namespace. Since audit filters are based in the init pid namespace, a process
could avoid a filter or trigger an unintended one by being in an alternate pid
namespace or log meaningless information.
Switch to task_ppid_nr() for PPIDs to anchor all audit filters in the
init_pid_ns.
(informed by ebiederman's 6c621b7e)
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
[bwh: Backported to 3.2: sys_getppid() is used by audit_exit() but not
audit_log_task_info()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit af5040da01ef980670b3741b3e10733ee3e33566 upstream.
trace_block_rq_complete does not take into account that request can
be partially completed, so we can get the following incorrect output
of blkparser:
C R 232 + 240 [0]
C R 240 + 232 [0]
C R 248 + 224 [0]
C R 256 + 216 [0]
but should be:
C R 232 + 8 [0]
C R 240 + 8 [0]
C R 248 + 8 [0]
C R 256 + 8 [0]
Also, the whole output summary statistics of completed requests and
final throughput will be incorrect.
This patch takes into account real completion size of the request and
fixes wrong completion accounting.
Signed-off-by: Roman Pen <r.peniaev@gmail.com>
CC: Steven Rostedt <rostedt@goodmis.org>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: linux-kernel@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
[bwh: Backported to 3.2: drop change in blk-mq.c]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 85eae82a0855d49852b87deac8653e4ebc8b291f upstream.
The console_cpu_notify() function runs with interrupts disabled in the
CPU_DYING case. It therefore cannot block, for example, as will happen
when it calls console_lock(). Therefore, remove the CPU_DYING leg of
the switch statement to avoid this problem.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c
get_monotonic_boottime adds three nanonsecond values stored
in longs, followed by an s64. If the long values are all
close to 1e9 the first three additions can overflow and
become negative when added to the s64. Cast the first
value to s64 so that all additions are 64 bit.
Signed-off-by: Colin Cross <ccross@android.com>
[jstultz: Fished this out of the AOSP commong.git tree. This was
fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 23a8e8441a0a74dd612edf81dc89d1600bc0a3d1 upstream.
Doing some different tests, I discovered that function graph tracing, when
filtered via the set_ftrace_filter and set_ftrace_notrace files, does
not always keep with them if another function ftrace_ops is registered
to trace functions.
The reason is that function graph just happens to trace all functions
that the function tracer enables. When there was only one user of
function tracing, the function graph tracer did not need to worry about
being called by functions that it did not want to trace. But now that there
are other users, this becomes a problem.
For example, one just needs to do the following:
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo function_graph > current_tracer
# cat trace
[..]
0) | schedule() {
------------------------------------------
0) <idle>-0 => rcu_pre-7
------------------------------------------
0) ! 2980.314 us | }
0) | schedule() {
------------------------------------------
0) rcu_pre-7 => <idle>-0
------------------------------------------
0) + 20.701 us | }
# echo 1 > /proc/sys/kernel/stack_tracer_enabled
# cat trace
[..]
1) + 20.825 us | }
1) + 21.651 us | }
1) + 30.924 us | } /* SyS_ioctl */
1) | do_page_fault() {
1) | __do_page_fault() {
1) 0.274 us | down_read_trylock();
1) 0.098 us | find_vma();
1) | handle_mm_fault() {
1) | _raw_spin_lock() {
1) 0.102 us | preempt_count_add();
1) 0.097 us | do_raw_spin_lock();
1) 2.173 us | }
1) | do_wp_page() {
1) 0.079 us | vm_normal_page();
1) 0.086 us | reuse_swap_page();
1) 0.076 us | page_move_anon_rmap();
1) | unlock_page() {
1) 0.082 us | page_waitqueue();
1) 0.086 us | __wake_up_bit();
1) 1.801 us | }
1) 0.075 us | ptep_set_access_flags();
1) | _raw_spin_unlock() {
1) 0.098 us | do_raw_spin_unlock();
1) 0.105 us | preempt_count_sub();
1) 1.884 us | }
1) 9.149 us | }
1) + 13.083 us | }
1) 0.146 us | up_read();
When the stack tracer was enabled, it enabled all functions to be traced, which
now the function graph tracer also traces. This is a side effect that should
not occur.
To fix this a test is added when the function tracing is changed, as well as when
the graph tracer is enabled, to see if anything other than the ftrace global_ops
function tracer is enabled. If so, then the graph tracer calls a test trampoline
that will look at the function that is being traced and compare it with the
filters defined by the global_ops.
As an optimization, if there's no other function tracers registered, or if
the only registered function tracers also use the global ops, the function
graph infrastructure will call the registered function graph callback directly
and not go through the test trampoline.
Fixes: d2d45c7a03a2 "tracing: Have stack_tracer use a separate list of functions"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 45ab2813d40d88fc575e753c38478de242d03f88 upstream.
If a module fails to add its tracepoints due to module tainting, do not
create the module event infrastructure in the debugfs directory. As the events
will not work and worse yet, they will silently fail, making the user wonder
why the events they enable do not display anything.
Having a warning on module load and the events not visible to the users
will make the cause of the problem much clearer.
Link: http://lkml.kernel.org/r/20140227154923.265882695@goodmis.org
Fixes: 6d723736e472 "tracing/events: add support for modules to TRACE_EVENT"
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 99afb0fd5f05aac467ffa85c36778fec4396209b upstream.
It's not safe to access task's cpuset after releasing task_lock().
Holding callback_mutex won't help.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e3703f8cdfcf39c25c4338c3ad8e68891cca3731 upstream.
Drew Richardson reported that he could make the kernel go *boom* when hotplugging
while having perf events active.
It turned out that when you have a group event, the code in
__perf_event_exit_context() fails to remove the group siblings from
the context.
We then proceed with destroying and freeing the event, and when you
re-plug the CPU and try and add another event to that CPU, things go
*boom* because you've still got dead entries there.
Reported-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/n/tip-k6v5wundvusvcseqj1si0oz0@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 791c9e0292671a3bfa95286bb5c08129d8605618 upstream.
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.
In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.
This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.
I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.
Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c685689fd24d310343ac33942e9a54a974ae9c43 upstream.
We hit one rare case below:
T1 calling disable_irq(), but hanging at synchronize_irq()
always;
The corresponding irq thread is in sleeping state;
And all CPUs are in idle state;
After analysis, we found there is one possible scenerio which
causes T1 is waiting there forever:
CPU0 CPU1
synchronize_irq()
wait_event()
spin_lock()
atomic_dec_and_test(&threads_active)
insert the __wait into queue
spin_unlock()
if(waitqueue_active)
atomic_read(&threads_active)
wake_up()
Here after inserted the __wait into queue on CPU0, and before
test if queue is empty on CPU1, there is no barrier, it maybe
cause it is not visible for CPU1 immediately, although CPU0 has
updated the queue list.
It is similar for CPU0 atomic_read() threads_active also.
So we'd need one smp_mb() before waitqueue_active.that, but removing
the waitqueue_active() check solves it as wel l and it makes
things simple and clear.
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Xiaoming Wang <xiaoming.wang@intel.com>
Link: http://lkml.kernel.org/r/1393212590-32543-1-git-send-email-chuansheng.liu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: The corresponding check is in irq_thread()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 532de3fc72adc2a6525c4d53c07bf81e1732083d upstream.
Currently, there's nothing preventing cgroup_enable_task_cg_lists()
from missing set PF_EXITING and race against cgroup_exit(). Depending
on the timing, cgroup_exit() may finish with the task still linked on
css_set leading to list corruption. Fix it by grabbing siglock in
cgroup_enable_task_cg_lists() so that PF_EXITING is guaranteed to be
visible.
This whole on-demand cg_list optimization is extremely fragile and has
ample possibility to lead to bugs which can cause things like
once-a-year oops during boot. I'm wondering whether the better
approach would be just adding "cgroup_disable=all" handling which
disables the whole cgroup rather than tempting fate with this
on-demand craziness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5bdfff96c69a4d5ab9c49e60abf9e070ecd2acbb upstream.
When a kworker should die, the kworkre is notified through WORKER_DIE
flag instead of kthread_should_stop(). This, IIRC, is primarily to
keep the test synchronized inside worker_pool lock. WORKER_DIE is
first set while holding pool->lock, the lock is dropped and
kthread_stop() is called.
Unfortunately, this means that there's a slight chance that the target
kworker may see WORKER_DIE before kthread_stop() finishes and exits
and frees the target task before or during kthread_stop().
Fix it by pinning the target task before setting WORKER_DIE and
putting it after kthread_stop() is done.
tj: Improved patch description and comment. Moved pinning above
WORKER_DIE for better signify what it's protecting.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d651aa1d68a2f0a7ee65697b04c6a92f8c0a12f2 upstream.
Each sub-buffer (buffer page) has a full 64 bit timestamp. The events on |