Age | Commit message (Collapse) | Author |
|
commit 03b8c7b623c80af264c4c8d6111e5c6289933666 upstream.
If an architecture has futex_atomic_cmpxchg_inatomic() implemented and there
is no runtime check necessary, allow to skip the test within futex_init().
This allows to get rid of some code which would always give the same result,
and also allows the compiler to optimize a couple of if statements away.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Finn Thain <fthain@telegraphics.com.au>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Link: http://lkml.kernel.org/r/20140302120947.GA3641@osiris
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[geert: Backported to v3.10..v3.13]
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 41261b6a832ea0e788627f6a8707854423f9ff49 upstream.
In autogroup_create(), a tg is allocated and added to the task_groups
list. If CONFIG_RT_GROUP_SCHED is set, this tg is then modified while on
the list, without locking. This can race with someone walking the list,
like __enable_runtime() during CPU unplug, and result in a use-after-free
bug.
To fix this, move sched_online_group(), which adds the tg to the list,
to the end of the autogroup_create() function after the modification.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1369411669-46971-2-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 87291347c49dc40aa339f587b209618201c2e527 upstream.
In event format strings, the array size is reported in two locations.
One in array subscript and then via the "size:" attribute. The values
reported there have a mismatch.
For e.g., in sched:sched_switch the prev_comm and next_comm character
arrays have subscript values as [32] where as the actual field size is
16.
name: sched_switch
ID: 301
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1;signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:char prev_comm[32]; offset:8; size:16; signed:1;
field:pid_t prev_pid; offset:24; size:4; signed:1;
field:int prev_prio; offset:28; size:4; signed:1;
field:long prev_state; offset:32; size:8; signed:1;
field:char next_comm[32]; offset:40; size:16; signed:1;
field:pid_t next_pid; offset:56; size:4; signed:1;
field:int next_prio; offset:60; size:4; signed:1;
After bisection, the following commit was blamed:
92edca0 tracing: Use direct field, type and system names
This commit removes the duplication of strings for field->name and
field->type assuming that all the strings passed in
__trace_define_field() are immutable. This is not true for arrays, where
the type string is created in event_storage variable and field->type for
all array fields points to event_storage.
Use __stringify() to create a string constant for the type string.
Also, get rid of event_storage and event_storage_mutex that are not
needed anymore.
also, an added benefit is that this reduces the overhead of events a bit more:
text data bss dec hex filename
8424787 2036472 1302528 11763787 b3804b vmlinux
8420814 2036408 1302528 11759750 b37086 vmlinux.patched
Link: http://lkml.kernel.org/r/1392349908-29685-1-git-send-email-vnagarnaik@google.com
Cc: Laurent Chavey <chavey@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c9b5a266b103af873abb9ac03bc3d067702c8f4b upstream.
In periodic mode we remove offline cpus from the broadcast propagation
mask. In oneshot mode we fail to do so. This was not a problem so far,
but the recent changes to the broadcast propagation introduced a
constellation which can result in a NULL pointer dereference.
What happens is:
CPU0 CPU1
idle()
arch_idle()
tick_broadcast_oneshot_control(OFF);
set cpu1 in tick_broadcast_force_mask
if (cpu_offline())
arch_cpu_dead()
cpu_dead_cleanup(cpu1)
cpu1 tickdevice pointer = NULL
broadcast interrupt
dereference cpu1 tickdevice pointer -> OOPS
We dereference the pointer because cpu1 is still set in
tick_broadcast_force_mask and tick_do_broadcast() expects a valid
cpumask and therefor lacks any further checks.
Remove the cpu from the tick_broadcast_force_mask before we set the
tick device pointer to NULL. Also add a sanity check to the oneshot
broadcast function, so we can detect such issues w/o crashing the
machine.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: athorlton@sgi.com
Cc: CAI Qian <caiqian@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1306261303260.4013@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 45ab2813d40d88fc575e753c38478de242d03f88 upstream.
If a module fails to add its tracepoints due to module tainting, do not
create the module event infrastructure in the debugfs directory. As the events
will not work and worse yet, they will silently fail, making the user wonder
why the events they enable do not display anything.
Having a warning on module load and the events not visible to the users
will make the cause of the problem much clearer.
Link: http://lkml.kernel.org/r/20140227154923.265882695@goodmis.org
Fixes: 6d723736e472 "tracing/events: add support for modules to TRACE_EVENT"
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 99afb0fd5f05aac467ffa85c36778fec4396209b upstream.
It's not safe to access task's cpuset after releasing task_lock().
Holding callback_mutex won't help.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c685689fd24d310343ac33942e9a54a974ae9c43 upstream.
We hit one rare case below:
T1 calling disable_irq(), but hanging at synchronize_irq()
always;
The corresponding irq thread is in sleeping state;
And all CPUs are in idle state;
After analysis, we found there is one possible scenerio which
causes T1 is waiting there forever:
CPU0 CPU1
synchronize_irq()
wait_event()
spin_lock()
atomic_dec_and_test(&threads_active)
insert the __wait into queue
spin_unlock()
if(waitqueue_active)
atomic_read(&threads_active)
wake_up()
Here after inserted the __wait into queue on CPU0, and before
test if queue is empty on CPU1, there is no barrier, it maybe
cause it is not visible for CPU1 immediately, although CPU0 has
updated the queue list.
It is similar for CPU0 atomic_read() threads_active also.
So we'd need one smp_mb() before waitqueue_active.that, but removing
the waitqueue_active() check solves it as wel l and it makes
things simple and clear.
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Xiaoming Wang <xiaoming.wang@intel.com>
Link: http://lkml.kernel.org/r/1393212590-32543-1-git-send-email-chuansheng.liu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 791c9e0292671a3bfa95286bb5c08129d8605618 upstream.
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.
In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.
This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.
I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.
Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e3703f8cdfcf39c25c4338c3ad8e68891cca3731 upstream.
Drew Richardson reported that he could make the kernel go *boom* when hotplugging
while having perf events active.
It turned out that when you have a group event, the code in
__perf_event_exit_context() fails to remove the group siblings from
the context.
We then proceed with destroying and freeing the event, and when you
re-plug the CPU and try and add another event to that CPU, things go
*boom* because you've still got dead entries there.
Reported-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/n/tip-k6v5wundvusvcseqj1si0oz0@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5bdfff96c69a4d5ab9c49e60abf9e070ecd2acbb upstream.
When a kworker should die, the kworkre is notified through WORKER_DIE
flag instead of kthread_should_stop(). This, IIRC, is primarily to
keep the test synchronized inside worker_pool lock. WORKER_DIE is
first set while holding pool->lock, the lock is dropped and
kthread_stop() is called.
Unfortunately, this means that there's a slight chance that the target
kworker may see WORKER_DIE before kthread_stop() finishes and exits
and frees the target task before or during kthread_stop().
Fix it by pinning the target task before setting WORKER_DIE and
putting it after kthread_stop() is done.
tj: Improved patch description and comment. Moved pinning above
WORKER_DIE for better signify what it's protecting.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2c45aada341121438affc4cb8d5b4cfaa2813d3d upstream.
In allmodconfig builds for sparc and any other arch which does
not set CONFIG_SPARSE_IRQ, the following will be seen at modpost:
CC [M] lib/cpu-notifier-error-inject.o
CC [M] lib/pm-notifier-error-inject.o
ERROR: "irq_to_desc" [drivers/gpio/gpio-mcp23s08.ko] undefined!
make[2]: *** [__modpost] Error 1
This happens because commit 3911ff30f5 ("genirq: export
handle_edge_irq() and irq_to_desc()") added one export for it, but
there were actually two instances of it, in an if/else clause for
CONFIG_SPARSE_IRQ. Add the second one.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Link: http://lkml.kernel.org/r/1392057610-11514-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d651aa1d68a2f0a7ee65697b04c6a92f8c0a12f2 upstream.
Each sub-buffer (buffer page) has a full 64 bit timestamp. The events on
that page use a 27 bit delta against that timestamp in order to save on
bits written to the ring buffer. If the time between events is larger than
what the 27 bits can hold, a "time extend" event is added to hold the
entire 64 bit timestamp again and the events after that hold a delta from
that timestamp.
As a "time extend" is always paired with an event, it is logical to just
allocate the event with the time extend, to make things a bit more efficient.
Unfortunately, when the pairing code was written, it removed the "delta = 0"
from the first commit on a page, causing the events on the page to be
slightly skewed.
Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80d767d770fd9c697e434fd080c2db7b5c60c6dd upstream.
When compiling for the IA-64 ski emulator, HZ is set to 32 because the
emulation is slow and we don't want to waste too many cycles processing
timers. Alpha also has an option to set HZ to 32.
This causes integer underflow in
kernel/time/jiffies.c:
kernel/time/jiffies.c:66:2: warning: large integer implicitly truncated to unsigned type [-Woverflow]
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
^
This patch reduces the JIFFIES_SHIFT value to avoid the overflow.
Signed-off-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1401241639100.23871@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dd5fd9b91a77b4c9c28b7ef9c181b1a875820d0a upstream.
AMD systems which use the C1E workaround in the amd_e400_idle routine
trigger the WARN_ON_ONCE in the broadcast code when onlining a CPU.
The reason is that the idle routine of those AMD systems switches the
cpu into forced broadcast mode early on before the newly brought up
CPU can switch over to high resolution / NOHZ mode. The timer related
CPU1 bringup looks like this:
clockevent_register_device(local_apic);
tick_setup(local_apic);
...
idle()
tick_broadcast_on_off(FORCE);
tick_broadcast_oneshot_control(ENTER)
cpumask_set(cpu, broadcast_oneshot_mask);
halt();
Now the broadcast interrupt on CPU0 sets CPU1 in the
broadcast_pending_mask and wakes CPU1. So CPU1 continues:
local_apic_timer_interrupt()
tick_handle_periodic();
softirq()
tick_init_highres();
cpumask_clr(cpu, broadcast_oneshot_mask);
tick_broadcast_oneshot_control(ENTER)
WARN_ON(cpumask_test(cpu, broadcast_pending_mask);
So while we remove CPU1 from the broadcast_oneshot_mask when we switch
over to highres mode, we do not clear the pending bit, which then
triggers the warning when we go back to idle.
The reason why this is only visible on C1E affected AMD systems is
that the other machines enter the deep sleep states via
acpi_idle/intel_idle and exit the broadcast mode before executing the
remote triggered local_apic_timer_interrupt. So the pending bit is
already cleared when the switch over to highres mode is clearing the
oneshot mask.
The solution is simple: Clear the pending bit together with the mask
bit when we switch over to highres mode.
Stanislaw came up independently with the same patch by enforcing the
C1E workaround and debugging the fallout. I picked mine, because mine
has a changelog :)
Reported-by: poma <pomidorabelisima@gmail.com>
Debugged-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Justin M. Forbes <jforbes@redhat.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402111434180.21991@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6fdda9a9c5db367130cf32df5d6618d08b89f46a upstream.
As part of normal operaions, the hrtimer subsystem frequently calls
into the timekeeping code, creating a locking order of
hrtimer locks -> timekeeping locks
clock_was_set_delayed() was suppoed to allow us to avoid deadlocks
between the timekeeping the hrtimer subsystem, so that we could
notify the hrtimer subsytem the time had changed while holding
the timekeeping locks. This was done by scheduling delayed work
that would run later once we were out of the timekeeing code.
But unfortunately the lock chains are complex enoguh that in
scheduling delayed work, we end up eventually trying to grab
an hrtimer lock.
Sasha Levin noticed this in testing when the new seqlock lockdep
enablement triggered the following (somewhat abrieviated) message:
[ 251.100221] ======================================================
[ 251.100221] [ INFO: possible circular locking dependency detected ]
[ 251.100221] 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 Not tainted
[ 251.101967] -------------------------------------------------------
[ 251.101967] kworker/10:1/4506 is trying to acquire lock:
[ 251.101967] (timekeeper_seq){----..}, at: [<ffffffff81160e96>] retrigger_next_event+0x56/0x70
[ 251.101967]
[ 251.101967] but task is already holding lock:
[ 251.101967] (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] which lock already depends on the new lock.
[ 251.101967]
[ 251.101967]
[ 251.101967] the existing dependency chain (in reverse order) is:
[ 251.101967]
-> #5 (hrtimer_bases.lock#11){-.-...}:
[snipped]
-> #4 (&rt_b->rt_runtime_lock){-.-...}:
[snipped]
-> #3 (&rq->lock){-.-.-.}:
[snipped]
-> #2 (&p->pi_lock){-.-.-.}:
[snipped]
-> #1 (&(&pool->lock)->rlock){-.-...}:
[ 251.101967] [<ffffffff81194803>] validate_chain+0x6c3/0x7b0
[ 251.101967] [<ffffffff81194d9d>] __lock_acquire+0x4ad/0x580
[ 251.101967] [<ffffffff81194ff2>] lock_acquire+0x182/0x1d0
[ 251.101967] [<ffffffff84398500>] _raw_spin_lock+0x40/0x80
[ 251.101967] [<ffffffff81153e69>] __queue_work+0x1a9/0x3f0
[ 251.101967] [<ffffffff81154168>] queue_work_on+0x98/0x120
[ 251.101967] [<ffffffff81161351>] clock_was_set_delayed+0x21/0x30
[ 251.101967] [<ffffffff811c4bd1>] do_adjtimex+0x111/0x160
[ 251.101967] [<ffffffff811e2711>] compat_sys_adjtimex+0x41/0x70
[ 251.101967] [<ffffffff843a4b49>] ia32_sysret+0x0/0x5
[ 251.101967]
-> #0 (timekeeper_seq){----..}:
[snipped]
[ 251.101967] other info that might help us debug this:
[ 251.101967]
[ 251.101967] Chain exists of:
timekeeper_seq --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock#11
[ 251.101967] Possible unsafe locking scenario:
[ 251.101967]
[ 251.101967] CPU0 CPU1
[ 251.101967] ---- ----
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(&rt_b->rt_runtime_lock);
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(timekeeper_seq);
[ 251.101967]
[ 251.101967] *** DEADLOCK ***
[ 251.101967]
[ 251.101967] 3 locks held by kworker/10:1/4506:
[ 251.101967] #0: (events){.+.+.+}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #1: (hrtimer_work){+.+...}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #2: (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] stack backtrace:
[ 251.101967] CPU: 10 PID: 4506 Comm: kworker/10:1 Not tainted 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053
[ 251.101967] Workqueue: events clock_was_set_work
So the best solution is to avoid calling clock_was_set_delayed() while
holding the timekeeping lock, and instead using a flag variable to
decide if we should call clock_was_set() once we've released the locks.
This works for the case here, where the do_adjtimex() was the deadlock
trigger point. Unfortuantely, in update_wall_time() we still hold
the jiffies lock, which would deadlock with the ipi triggered by
clock_was_set(), preventing us from calling it even after we drop the
timekeeping lock. So instead call clock_was_set_delayed() at that point.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 330a1617b0a6268d427aa5922c94d082b1d3e96d upstream.
Since 48cdc135d4840 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
In the timekeeping suspend path, we udpate the timekeeper
structure, so we should be sure to update the shadow-timekeeper
before releasing the timekeeping locks. Currently this isn't done.
In most cases, the next time related code to run would be
timekeeping_resume, which does update the shadow-timekeeper, but
in an abundence of caution, this patch adds the call to
timekeeping_update() in the suspend path.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 04005f6011e3b504cd4d791d9769f7cb9a3b2eae upstream.
A think-o in the calculation of the monotonic -> tai time offset
results in CLOCK_TAI timers and nanosleeps to expire late (the
latency is ~2x the tai offset).
Fix this by adding the tai offset from the realtime offset instead
of subtracting.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f55c07607a38f84b5c7e6066ee1cfe433fa5643c upstream.
Since 48cdc135d4840 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
Unfortunately, the updates to the tai offset via adjtimex do not
trigger this update, causing adjustments to the tai offset to be
made and then over-written by the previous value at the next
update_wall_time() call.
This patch resovles the issue by calling timekeeping_update()
right after setting the tai offset.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 23a8e8441a0a74dd612edf81dc89d1600bc0a3d1 upstream.
Doing some different tests, I discovered that function graph tracing, when
filtered via the set_ftrace_filter and set_ftrace_notrace files, does
not always keep with them if another function ftrace_ops is registered
to trace functions.
The reason is that function graph just happens to trace all functions
that the function tracer enables. When there was only one user of
function tracing, the function graph tracer did not need to worry about
being called by functions that it did not want to trace. But now that there
are other users, this becomes a problem.
For example, one just needs to do the following:
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo function_graph > current_tracer
# cat trace
[..]
0) | schedule() {
------------------------------------------
0) <idle>-0 => rcu_pre-7
------------------------------------------
0) ! 2980.314 us | }
0) | schedule() {
------------------------------------------
0) rcu_pre-7 => <idle>-0
------------------------------------------
0) + 20.701 us | }
# echo 1 > /proc/sys/kernel/stack_tracer_enabled
# cat trace
[..]
1) + 20.825 us | }
1) + 21.651 us | }
1) + 30.924 us | } /* SyS_ioctl */
1) | do_page_fault() {
1) | __do_page_fault() {
1) 0.274 us | down_read_trylock();
1) 0.098 us | find_vma();
1) | handle_mm_fault() {
1) | _raw_spin_lock() {
1) 0.102 us | preempt_count_add();
1) 0.097 us | do_raw_spin_lock();
1) 2.173 us | }
1) | do_wp_page() {
1) 0.079 us | vm_normal_page();
1) 0.086 us | reuse_swap_page();
1) 0.076 us | page_move_anon_rmap();
1) | unlock_page() {
1) 0.082 us | page_waitqueue();
1) 0.086 us | __wake_up_bit();
1) 1.801 us | }
1) 0.075 us | ptep_set_access_flags();
1) | _raw_spin_unlock() {
1) 0.098 us | do_raw_spin_unlock();
1) 0.105 us | preempt_count_sub();
1) 1.884 us | }
1) 9.149 us | }
1) + 13.083 us | }
1) 0.146 us | up_read();
When the stack tracer was enabled, it enabled all functions to be traced, which
now the function graph tracer also traces. This is a side effect that should
not occur.
To fix this a test is added when the function tracing is changed, as well as when
the graph tracer is enabled, to see if anything other than the ftrace global_ops
function tracer is enabled. If so, then the graph tracer calls a test trampoline
that will look at the function that is being traced and compare it with the
filters defined by the global_ops.
As an optimization, if there's no other function tracers registered, or if
the only registered function tracers also use the global ops, the function
graph infrastructure will call the registered function graph callback directly
and not go through the test trampoline.
Fixes: d2d45c7a03a2 "tracing: Have stack_tracer use a separate list of functions"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a4c35ed241129dd142be4cadb1e5a474a56d5464 upstream.
The synchronization needed after ftrace_ops are unregistered must happen
after the callback is disabled from becing called by functions.
The current location happens after the function is being removed from the
internal lists, but not after the function callbacks were disabled, leaving
the functions susceptible of being called after their callbacks are freed.
This affects perf and any externel users of function tracing (LTTng and
SystemTap).
Fixes: cdbe61bfe704 "ftrace: Allow dynamically allocated function tracers"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 405e1d834807e51b2ebd3dea81cb51e53fb61504 upstream.
ftrace_trace_function is a variable that holds what function will be called
directly by the assembly code (mcount). If just a single function is
registered and it handles recursion itself, then the assembly will call that
function directly without any helper function. It also passes in the
ftrace_op that was registered with the callback. The ftrace_op to send is
stored in the function_trace_op variable.
The ftrace_trace_function and function_trace_op needs to be coordinated such
that the called callback wont be called with the wrong ftrace_op, otherwise
bad things can happen if it expected a different op. Luckily, there's no
callback that doesn't use the helper functions that requires this. But
there soon will be and this needs to be fixed.
Use a set_function_trace_op to store the ftrace_op to set the
function_trace_op to when it is safe to do so (during the update function
within the breakpoint or stop machine calls). Or if dynamic ftrace is not
being used (static tracing) then we have to do a bit more synchronization
when the ftrace_trace_function is set as that takes affect immediately
(as oppose to dynamic ftrace doing it with the modification of the trampoline).
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e789e561a50de0aaa8c695662d97aaa5eac9d55f upstream.
When the audit queue overflows and times out (audit_backlog_wait_time), the
audit queue overflow timeout is set to zero. Once the audit queue overflow
timeout condition recovers, the timeout should be reset to the original value.
See also:
https://lkml.org/lkml/2013/9/2/473
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Dan Duval <dan.duval@oracle.com>
Signed-off-by: Chuck Anderson <chuck.anderson@oracle.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3132e107d608f8753240d82d61303c500fd515b4 upstream.
If trace_puts() is used very early in boot up, it can crash the machine
if it is called before the ring buffer is allocated. If a trace_printk()
is used with no arguments, then it will be converted into a trace_puts()
and suffer the same fate.
Fixes: 09ae72348ecc "tracing: Add trace_puts() for even faster trace_printk() tracing"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dced341b2d4f06668efaab33f88de5d287c0f45b upstream.
The trace buffer has a descriptor pointer that goes back to the trace
array. But it was never assigned. Luckily, nothing uses it (yet), but
it will in the future.
Although nothing currently uses this, if any of the new features get
backported to older kernels, and because this is such a simple change,
I'm marking it for stable too.
Fixes: 12883efb670c "tracing: Consolidate max_tr into main trace_array structure"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0ac9b1c21874d2490331233b3242085f8151e166 upstream.
Currently, group entity load-weights are initialized to zero. This
admits some races with respect to the first time they are re-weighted in
earlty use. ( Let g[x] denote the se for "g" on cpu "x". )
Suppose that we have root->a and that a enters a throttled state,
immediately followed by a[0]->t1 (the only task running on cpu[0])
blocking:
put_prev_task(group_cfs_rq(a[0]), t1)
put_prev_entity(..., t1)
check_cfs_rq_runtime(group_cfs_rq(a[0]))
throttle_cfs_rq(group_cfs_rq(a[0]))
Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first
time:
enqueue_task_fair(rq[0], t2)
enqueue_entity(group_cfs_rq(b[0]), t2)
enqueue_entity_load_avg(group_cfs_rq(b[0]), t2)
account_entity_enqueue(group_cfs_ra(b[0]), t2)
update_cfs_shares(group_cfs_rq(b[0]))
< skipped because b is part of a throttled hierarchy >
enqueue_entity(group_cfs_rq(a[0]), b[0])
...
We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0
which violates invariants in several code-paths. Eliminate the
possibility of this by initializing group entity weight.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 927b54fccbf04207ec92f669dce6806848cbec7d upstream.
__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock.
Fix this by ensuring that cfs_b->timer_active is cleared only if the
_latest_ call to do_sched_cfs_period_timer is returning as idle. Then
__start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for
that to succeed or timer_active == 1.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit db06e78cc13d70f10877e0557becc88ab3ad2be8 upstream.
hrtimer_expires_remaining does not take internal hrtimer locks and thus
must be guarded against concurrent __hrtimer_start_range_ns (but
returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1ee14e6c8cddeeb8a490d7b54cd9016e4bb900b4 upstream.
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.
Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.
Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 20841405940e7be0617612d521e206e4b6b325db upstream.
There are a few subtle races, between change_protection_range (used by
mprotect and change_prot_numa) on one side, and NUMA page migration and
compaction on the other side.
The basic race is that there is a time window between when the PTE gets
made non-present (PROT_NONE or NUMA), and the TLB is flushed.
During that time, a CPU may continue writing to the page.
This is fine most of the time, however compaction or the NUMA migration
code may come in, and migrate the page away.
When that happens, the CPU may continue writing, through the cached
translation, to what is no longer the current memory location of the
process.
This only affects x86, which has a somewhat optimistic pte_accessible.
All other architectures appear to be safe, and will either always flush,
or flush whenever there is a valid mapping, even with no permissions
(SPARC).
The basic race looks like this:
CPU A CPU B CPU C
load TLB entry
make entry PTE/PMD_NUMA
fault on entry
read/write old page
start migrating page
change PTE/PMD to new page
read/write old page [*]
flush TLB
reload TLB from new entry
read/write new page
lose data
[*] the old page may belong to a new user at this point!
The obvious fix is to flush remote TLB entries, by making sure that
pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may
still be accessible if there is a TLB flush pending for the mm.
This should fix both NUMA migration and compaction.
[mgorman@suse.de: fix build]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e0acd0a68ec7dbf6b7a81a87a867ebd7ac9b76c4 upstream.
This is only theoretical, but after try_to_wake_up(p) was changed
to check p->state under p->pi_lock the code like
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
can miss a signal. This is the special case of wait-for-condition,
it relies on try_to_wake_up/schedule interaction and thus it does
not need mb() between __set_current_state() and if(signal_pending).
However, this __set_current_state() can move into the critical
section protected by rq->lock, now that try_to_wake_up() takes
another lock we need to ensure that it can't be reordered with
"if (signal_pending(current))" check inside that section.
The patch is actually one-liner, it simply adds smp_wmb() before
spin_lock_irq(rq->lock). This is what try_to_wake_up() already
does by the same reason.
We turn this wmb() into the new helper, smp_mb__before_spinlock(),
for better documentation and to allow the architectures to change
the default implementation.
While at it, kill smp_mb__after_lock(), it has no callers.
Perhaps we can also add smp_mb__before/after_spinunlock() for
prepare_to_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85fbd722ad0f5d64d1ad15888cd1eb2188bfb557 upstream.
Freezable kthreads and workqueues are fundamentally problematic in
that they effectively introduce a big kernel lock widely used in the
kernel and have already been the culprit of several deadlock
scenarios. This is the latest occurrence.
During resume, libata rescans all the ports and revalidates all
pre-existing devices. If it determines that a device has gone
missing, the device is removed from the system which involves
invalidating block device and flushing bdi while holding driver core
layer locks. Unfortunately, this can race with the rest of device
resume. Because freezable kthreads and workqueues are thawed after
device resume is complete and block device removal depends on
freezable workqueues and kthreads (e.g. bdi_wq, jbd2) to make
progress, this can lead to deadlock - block device removal can't
proceed because kthreads are frozen and kthreads can't be thawed
because device resume is blocked behind block device removal.
839a8e8660b6 ("writeback: replace custom worker pool implementation
with unbound workqueue") made this particular deadlock scenario more
visible but the underlying problem has always been there - the
original forker task and jbd2 are freezable too. In fact, this is
highly likely just one of many possible deadlock scenarios given that
freezer behaves as a big kernel lock and we don't have any debug
mechanism around it.
I believe the right thing to do is getting rid of freezable kthreads
and workqueues. This is something fundamentally broken. For now,
implement a funny workaround in libata - just avoid doing block device
hot[un]plug while the system is frozen. Kernel engineering at its
finest. :(
v2: Add EXPORT_SYMBOL_GPL(pm_freezing) for cases where libata is built
as a module.
v3: Comment updated and polling interval changed to 10ms as suggested
by Rafael.
v4: Add #ifdef CONFIG_FREEZER around the hack as pm_freezing is not
defined when FREEZER is not configured thus breaking build.
Reported by kbuild test robot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Tomaž Šolc <tomaz.solc@tablix.org>
Reviewed-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=62801
Link: http://lkml.kernel.org/r/20131213174932.GA27070@htj.dyndns.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 757dfcaa41844595964f1220f1d33182dae49976 upstream.
This patch touches the RT group scheduling case.
Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's
priority, while rt_rq passed to them may be not the top-level rt_rq.
This is wrong, because changing of priority on a child level does not
guarantee that the priority is the highest all over the rq. So, this
leak makes RT balancing unusable.
The short example: the task having the highest priority among all rq's
RT tasks (no one other task has the same priority) are waking on a
throttle rt_rq. The rq's cpupri is set to the task's priority
equivalent, but real rq->rt.highest_prio.curr is less.
The patch below fixes the problem.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
CC: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c67f474558748b604e247d92b55dfe89654c81d upstream.
Inaccessible VMA should not be trapping NUMA hint faults. Skip them.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c4602c1c818bd6626178d6d3fcc152d9f2f48ac0 upstream.
Ftrace currently initializes only the online CPUs. This implementation has
two problems:
- If we online a CPU after we enable the function profile, and then run the
test, we will lose the trace information on that CPU.
Steps to reproduce:
# echo 0 > /sys/devices/system/cpu/cpu1/online
# cd <debugfs>/tracing/
# echo <some function name> >> set_ftrace_filter
# echo 1 > function_profile_enabled
# echo 1 > /sys/devices/system/cpu/cpu1/online
# run test
- If we offline a CPU before we enable the function profile, we will not clear
the trace information when we enable the function profile. It will trouble
the users.
Steps to reproduce:
# cd <debugfs>/tracing/
# echo <some function name> >> set_ftrace_filter
# echo 1 > function_profile_enabled
# run test
# cat trace_stat/function*
# echo 0 > /sys/devices/system/cpu/cpu1/online
# echo 0 > function_profile_enabled
# echo 1 > function_profile_enabled
# cat trace_stat/function*
# run test
# cat trace_stat/function*
So it is better that we initialize the ftrace profiler for each possible cpu
every time we enable the function profile instead of just the online ones.
Link: http://lkml.kernel.org/r/1387178401-10619-1-git-send-email-miaox@cn.fujitsu.com
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9f9ffc237dd924f048204e8799da74f9ecf40cf upstream.
throttle_cfs_rq() doesn't check to make sure that period_timer is running,
and while update_curr/assign_cfs_runtime does, a concurrently running
period_timer on another cpu could cancel itself between this cpu's
update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running
in the tg to restart the timer, this causes the cfs_rq to be stranded
forever.
Fix this by calling __start_cfs_bandwidth() in throttle if the timer is
inactive.
(Also add some sched_debug lines for cfs_bandwidth.)
Tested: make a run/sleep task in a cgroup, loop switching the cgroup
between 1ms/100ms quota and unlimited, checking for timer_active=0 and
throttled=1 as a failure. With the throttle_cfs_rq() change commented out
this fails, with the full patch it passes.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f12d5bfceb7e1f9051563381ec047f7f13956c3c upstream.
The hugepage code had the exact same bug that regular pages had in
commit 7485d0d3758e ("futexes: Remove rw parameter from
get_futex_key()").
The regular page case was fixed by commit 9ea71503a8ed ("futex: Fix
regression with read only mappings"), but the transparent hugepage case
(added in a5b338f2b0b1: "thp: update futex compound knowledge") case
remained broken.
Found by Dave Jones and his trinity tool.
Reported-and-tested-by: Dave Jones <davej@fedoraproject.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4fc9bbf98fd66f879e628d8537ba7c240be2b58e upstream.
Add a flag to tell the PCI subsystem that kernel is shutting down in
preparation to kexec a kernel. Add code in PCI subsystem to use this flag
to clear Bus Master bit on PCI devices only in case of kexec reboot.
This fixes a power-off problem on Acer Aspire V5-573G and likely other
machines and avoids any other issues caused by clearing Bus Master bit on
PCI devices in normal shutdown path. The problem was introduced by
b566a22c2332 ("PCI: disable Bus Master on PCI device shutdown").
This patch is based on discussion at
http://marc.info/?l=linux-pci&m=138425645204355&w=2
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63861
Reported-by: Chang Liu <cl91tp@gmail.com>
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ac01810c9d2814238f08a227062e66a35a0e1ea2 upstream.
When the system enters suspend, it disables all interrupts in
suspend_device_irqs(), including the interrupts marked EARLY_RESUME.
On the resume side things are different. The EARLY_RESUME interrupts
are reenabled in sys_core_ops->resume and the non EARLY_RESUME
interrupts are reenabled in the normal system resume path.
When suspend_noirq() failed or suspend is aborted for any other
reason, we might omit the resume side call to sys_core_ops->resume()
and therefor the interrupts marked EARLY_RESUME are not reenabled and
stay disabled forever.
To solve this, enable all irqs unconditionally in irq_resume()
regardless whether interrupts marked EARLY_RESUMEhave been already
enabled or not.
This might try to reenable already enabled interrupts in the non
failure case, but the only affected platform is XEN and it has been
confirmed that it does not cause any side effects.
[ tglx: Massaged changelog. ]
Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com>
Acked-by-and-tested-by: Konrad Rzes |