Age | Commit message (Collapse) | Author |
|
commit 6acbfb96976fc3350e30d964acb1dbbdf876d55e upstream.
Lai found that:
WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b()
...
migration_cpu_stop+0x1d/0x22
was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is
always a sub-set of cpu_online_mask.
This isn't true since 5fbd036b552f ("sched: Cleanup cpu_active madness").
So set active and online at the same time to avoid this particular
problem.
Fixes: 5fbd036b552f ("sched: Cleanup cpu_active madness")
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46ce0fe97a6be7532ce6126bb26ce89fed81528c upstream.
When removing a (sibling) event we do:
raw_spin_lock_irq(&ctx->lock);
perf_group_detach(event);
raw_spin_unlock_irq(&ctx->lock);
<hole>
perf_remove_from_context(event);
raw_spin_lock_irq(&ctx->lock);
...
raw_spin_unlock_irq(&ctx->lock);
Now, assuming the event is a sibling, it will be 'unreachable' for
things like ctx_sched_out() because that iterates the
groups->siblings, and we just unhooked the sibling.
So, if during <hole> we get ctx_sched_out(), it will miss the event
and not call event_sched_out() on it, leaving it programmed on the
PMU.
The subsequent perf_remove_from_context() call will find the ctx is
inactive and only call list_del_event() to remove the event from all
other lists.
Hereafter we can proceed to free the event; while still programmed!
Close this hole by moving perf_group_detach() inside the same
ctx->lock region(s) perf_remove_from_context() has.
The condition on inherited events only in __perf_event_exit_task() is
likely complete crap because non-inherited events are part of groups
too and we're tearing down just the same. But leave that for another
patch.
Most-likely-Fixes: e03a9a55b4e ("perf: Change close() semantics for group events")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Vince Weaver <vincent.weaver@maine.edu>
Much-staring-at-traces-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140505093124.GN17778@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0819b2e30ccb93edf04876237b6205eef84ec8d2 upstream.
Vince reported that using a large sample_period (one with bit 63 set)
results in wreckage since while the sample_period is fundamentally
unsigned (negative periods don't make sense) the way we implement
things very much rely on signed logic.
So limit sample_period to 63 bits to avoid tripping over this.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-p25fhunibl4y3qi0zuqmyf4b@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 39af6b1678afa5880dda7e375cf3f9d395087f6d upstream.
The perf cpu offline callback takes down all cpu context
events and releases swhash->swevent_hlist.
This could race with task context software event being just
scheduled on this cpu via perf_swevent_add while cpu hotplug
code already cleaned up event's data.
The race happens in the gap between the cpu notifier code
and the cpu being actually taken down. Note that only cpu
ctx events are terminated in the perf cpu hotplug code.
It's easily reproduced with:
$ perf record -e faults perf bench sched pipe
while putting one of the cpus offline:
# echo 0 > /sys/devices/system/cpu/cpu1/online
Console emits following warning:
WARNING: CPU: 1 PID: 2845 at kernel/events/core.c:5672 perf_swevent_add+0x18d/0x1a0()
Modules linked in:
CPU: 1 PID: 2845 Comm: sched-pipe Tainted: G W 3.14.0+ #256
Hardware name: Intel Corporation Montevina platform/To be filled by O.E.M., BIOS AMVACRB1.86C.0066.B00.0805070703 05/07/2008
0000000000000009 ffff880077233ab8 ffffffff81665a23 0000000000200005
0000000000000000 ffff880077233af8 ffffffff8104732c 0000000000000046
ffff88007467c800 0000000000000002 ffff88007a9cf2a0 0000000000000001
Call Trace:
[<ffffffff81665a23>] dump_stack+0x4f/0x7c
[<ffffffff8104732c>] warn_slowpath_common+0x8c/0xc0
[<ffffffff8104737a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8110fb3d>] perf_swevent_add+0x18d/0x1a0
[<ffffffff811162ae>] event_sched_in.isra.75+0x9e/0x1f0
[<ffffffff8111646a>] group_sched_in+0x6a/0x1f0
[<ffffffff81083dd5>] ? sched_clock_local+0x25/0xa0
[<ffffffff811167e6>] ctx_sched_in+0x1f6/0x450
[<ffffffff8111757b>] perf_event_sched_in+0x6b/0xa0
[<ffffffff81117a4b>] perf_event_context_sched_in+0x7b/0xc0
[<ffffffff81117ece>] __perf_event_task_sched_in+0x43e/0x460
[<ffffffff81096f1e>] ? put_lock_stats.isra.18+0xe/0x30
[<ffffffff8107b3c8>] finish_task_switch+0xb8/0x100
[<ffffffff8166a7de>] __schedule+0x30e/0xad0
[<ffffffff81172dd2>] ? pipe_read+0x3e2/0x560
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b45e>] ? preempt_schedule_irq+0x3e/0x70
[<ffffffff8166b464>] preempt_schedule_irq+0x44/0x70
[<ffffffff816707f0>] retint_kernel+0x20/0x30
[<ffffffff8109e60a>] ? lockdep_sys_exit+0x1a/0x90
[<ffffffff812a4234>] lockdep_sys_exit_thunk+0x35/0x67
[<ffffffff81679321>] ? sysret_check+0x5/0x56
Fixing this by tracking the cpu hotplug state and displaying
the WARN only if current cpu is initialized properly.
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1396861448-10097-1-git-send-email-jolsa@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6227cb00cc120f9a43ce8313bb0475ddabcb7d01 upstream.
The check at the beginning of cpupri_find() makes sure that the task_pri
variable does not exceed the cp->pri_to_cpu array length. But that length
is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two
priorities in that array.
As task_pri is computed from convert_prio() which should never be bigger
than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is
hit.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 54a217887a7b658e2650c3feff22756ab80c7339 upstream.
The current implementation of lookup_pi_state has ambigous handling of
the TID value 0 in the user space futex. We can get into the kernel
even if the TID value is 0, because either there is a stale waiters bit
or the owner died bit is set or we are called from the requeue_pi path
or from user space just for fun.
The current code avoids an explicit sanity check for pid = 0 in case
that kernel internal state (waiters) are found for the user space
address. This can lead to state leakage and worse under some
circumstances.
Handle the cases explicit:
Waiter | pi_state | pi->owner | uTID | uODIED | ?
[1] NULL | --- | --- | 0 | 0/1 | Valid
[2] NULL | --- | --- | >0 | 0/1 | Valid
[3] Found | NULL | -- | Any | 0/1 | Invalid
[4] Found | Found | NULL | 0 | 1 | Valid
[5] Found | Found | NULL | >0 | 1 | Invalid
[6] Found | Found | task | 0 | 1 | Valid
[7] Found | Found | NULL | Any | 0 | Invalid
[8] Found | Found | task | ==taskTID | 0/1 | Valid
[9] Found | Found | task | 0 | 0 | Invalid
[10] Found | Found | task | !=taskTID | 0/1 | Invalid
[1] Indicates that the kernel can acquire the futex atomically. We
came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
[2] Valid, if TID does not belong to a kernel thread. If no matching
thread is found then it indicates that the owner TID has died.
[3] Invalid. The waiter is queued on a non PI futex
[4] Valid state after exit_robust_list(), which sets the user space
value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
[5] The user space value got manipulated between exit_robust_list()
and exit_pi_state_list()
[6] Valid state after exit_pi_state_list() which sets the new owner in
the pi_state but cannot access the user space value.
[7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
[8] Owner and user space value match
[9] There is no transient state which sets the user space TID to 0
except exit_robust_list(), but this is indicated by the
FUTEX_OWNER_DIED bit. See [4]
[10] There is no transient state which leaves owner and user space
TID out of sync.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 13fbca4c6ecd96ec1a1cfa2e4f2ce191fe928a5e upstream.
If the owner died bit is set at futex_unlock_pi, we currently do not
cleanup the user space futex. So the owner TID of the current owner
(the unlocker) persists. That's observable inconsistant state,
especially when the ownership of the pi state got transferred.
Clean it up unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Cc: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b3eaa9fc5cd0a4d74b18f6b8dc617aeaf1873270 upstream.
We need to protect the atomic acquisition in the kernel against rogue
user space which sets the user space futex to 0, so the kernel side
acquisition succeeds while there is existing state in the kernel
associated to the real owner.
Verify whether the futex has waiters associated with kernel state. If
it has, return -EINVAL. The state is corrupted already, so no point in
cleaning it up. Subsequent calls will fail as well. Not our problem.
[ tglx: Use futex_top_waiter() and explain why we do not need to try
restoring the already corrupted user space state. ]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
in futex_requeue(..., requeue_pi=1)
commit e9c243a5a6de0be8e584c604d353412584b592f8 upstream.
If uaddr == uaddr2, then we have broken the rule of only requeueing from
a non-pi futex to a pi futex with this call. If we attempt this, then
dangling pointers may be left for rt_waiter resulting in an exploitable
condition.
This change brings futex_requeue() in line with futex_wait_requeue_pi()
which performs the same check as per commit 6f7b0a2a5c0f ("futex: Forbid
uaddr == uaddr2 in futex_wait_requeue_pi()")
[ tglx: Compare the resulting keys as well, as uaddrs might be
different depending on the mapping ]
Fixes CVE-2014-3153.
Reported-by: Pinkie Pie
Signed-off-by: Will Drewry <wad@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80902822658aab18330569587cdb69ac1dfdcea8 upstream.
Changing the overwrite mode for the ring buffer via the trace
option only sets the normal buffer. But the snapshot buffer could
swap with it, and then the snapshot would be in non overwrite mode
and the normal buffer would be in overwrite mode, even though the
option flag states otherwise.
Keep the two buffers overwrite modes in sync.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c481420248c6730246d2a1b1773d5d7007ae0835 upstream.
Fix to return -ENOMEM in the allocation error case instead of 0
(if pmu_bus_running == 1), as done elsewhere in this function.
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: a.p.zijlstra@chello.nl
Cc: paulus@samba.org
Cc: acme@ghostprotocols.net
Link: http://lkml.kernel.org/r/CAPgLHd8j_fWcgqe%3DKLWjpBj%2B%3Do0Pw6Z-SEq%3DNTPU08c2w1tngQ@mail.gmail.com
[ Tweaked the error code setting placement and the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd9b86d37a600488dbd80fe60cca46b822bff1cd upstream.
Commit 201c373e8e ("sched/debug: Limit sd->*_idx range on
sysctl") was an incomplete bug fix.
This patch fixes sd->*_idx limit range to [0 ~ CPU_LOAD_IDX_MAX-1]
avoiding array overflow caused by setting sd->*_idx to CPU_LOAD_IDX_MAX
on sysctl.
Signed-off-by: Libin <huawei.libin@huawei.com>
Cc: <jiang.liu@huawei.com>
Cc: <guohanjun@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51626610.2040607@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 201c373e8e4823700d3160d5c28e1ab18fd1193e upstream.
Various sd->*_idx's are used for refering the rq's load average table
when selecting a cpu to run. However they can be set to any number
with sysctl knobs so that it can crash the kernel if something bad is
given. Fix it by limiting them into the actual range.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345104204-8317-1-git-send-email-namhyung@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8c4f3c3fa9681dc549cd35419b259496082fef8b upstream.
There's been a nasty bug that would show up and not give much info.
The bug displayed the following warning:
WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230()
Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk
Call Trace:
[<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0
[<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20
[<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230
[<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0
[<ffffffff811401cc>] ? kfree+0x2c/0x110
[<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150
[<ffffffff81149f1e>] __fput+0xae/0x220
[<ffffffff8114a09e>] ____fput+0xe/0x10
[<ffffffff8105fa22>] task_work_run+0x72/0x90
[<ffffffff810028ec>] do_notify_resume+0x6c/0xc0
[<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[<ffffffff815c0f88>] int_signal+0x12/0x17
---[ end trace 793179526ee09b2c ]---
It was finally narrowed down to unloading a module that was being traced.
It was actually more than that. When functions are being traced, there's
a table of all functions that have a ref count of the number of active
tracers attached to that function. When a function trace callback is
registered to a function, the function's record ref count is incremented.
When it is unregistered, the function's record ref count is decremented.
If an inconsistency is detected (ref count goes below zero) the above
warning is shown and the function tracing is permanently disabled until
reboot.
The ftrace callback ops holds a hash of functions that it filters on
(and/or filters off). If the hash is empty, the default means to filter
all functions (for the filter_hash) or to disable no functions (for the
notrace_hash).
When a module is unloaded, it frees the function records that represent
the module functions. These records exist on their own pages, that is
function records for one module will not exist on the same page as
function records for other modules or even the core kernel.
Now when a module unloads, the records that represents its functions are
freed. When the module is loaded again, the records are recreated with
a default ref count of zero (unless there's a callback that traces all
functions, then they will also be traced, and the ref count will be
incremented).
The problem is that if an ftrace callback hash includes functions of the
module being unloaded, those hash entries will not be removed. If the
module is reloaded in the same location, the hash entries still point
to the functions of the module but the module's ref counts do not reflect
that.
With the help of Steve and Joern, we found a reproducer:
Using uinput module and uinput_release function.
cd /sys/kernel/debug/tracing
modprobe uinput
echo uinput_release > set_ftrace_filter
echo function > current_tracer
rmmod uinput
modprobe uinput
# check /proc/modules to see if loaded in same addr, otherwise try again
echo nop > current_tracer
[BOOM]
The above loads the uinput module, which creates a table of functions that
can be traced within the module.
We add uinput_release to the filter_hash to trace just that function.
Enable function tracincg, which increments the ref count of the record
associated to uinput_release.
Remove uinput, which frees the records including the one that represents
uinput_release.
Load the uinput module again (and make sure it's at the same address).
This recreates the function records all with a ref count of zero,
including uinput_release.
Disable function tracing, which will decrement the ref count for uinput_release
which is now zero because of the module removal and reload, and we have
a mismatch (below zero ref count).
The solution is to check all currently tracing ftrace callbacks to see if any
are tracing any of the module's functions when a module is loaded (it already does
that with callbacks that trace all functions). If a callback happens to have
a module function being traced, it increments that records ref count and starts
tracing that function.
There may be a strange side effect with this, where tracing module functions
on unload and then reloading a new module may have that new module's functions
being traced. This may be something that confuses the user, but it's not
a big deal. Another approach is to disable all callback hashes on module unload,
but this leaves some ftrace callbacks that may not be registered, but can
still have hashes tracing the module's function where ftrace doesn't know about
it. That situation can cause the same bug. This solution solves that case too.
Another benefit of this solution, is it is possible to trace a module's
function on unload and load.
Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com
Reported-by: Jörn Engel <joern@logfs.org>
Reported-by: Dave Jones <davej@redhat.com>
Reported-by: Steve Hodgson <steve@purestorage.com>
Tested-by: Steve Hodgson <steve@purestorage.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf378d341e4873ed928dc3c636252e6895a21f50 upstream.
The PPC64 people noticed a missing memory barrier and crufty old
comments in the perf ring buffer code. So update all the comments and
add the missing barrier.
When the architecture implements local_t using atomic_long_t there
will be double barriers issued; but short of introducing more
conditional barrier primitives this is the best we can do.
Reported-by: Victor Kaplansky <victork@il.ibm.com>
Tested-by: Victor Kaplansky <victork@il.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: michael@ellerman.id.au
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: anton@samba.org
Cc: benh@kernel.crashing.org
Link: http://lkml.kernel.org/r/20131025173749.GG19466@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Rui Xiang <rui.xiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 84ea7fe37908254c3bd90910921f6e1045c1747a upstream.
switch_hrtimer_base() calls hrtimer_check_target() which ensures that
we do not migrate a timer to a remote cpu if the timer expires before
the current programmed expiry time on that remote cpu.
But __hrtimer_start_range_ns() calls switch_hrtimer_base() before the
new expiry time is set. So the sanity check in hrtimer_check_target()
is operating on stale or even uninitialized data.
Update expiry time before calling switch_hrtimer_base().
[ tglx: Rewrote changelog once again ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: linaro-networking@linaro.org
Cc: fweisbec@gmail.com
Cc: arvind.chauhan@arm.com
Link: http://lkml.kernel.org/r/81999e148745fc51bbcd0615823fbab9b2e87e23.1399882253.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 012a45e3f4af68e86d85cce060c6c2fed56498b2 upstream.
If a cpu is idle and starts an hrtimer which is not pinned on that
same cpu, the nohz code might target the timer to a different cpu.
In the case that we switch the cpu base of the timer we already have a
sanity check in place, which determines whether the timer is earlier
than the current leftmost timer on the target cpu. In that case we
enqueue the timer on the current cpu because we cannot reprogram the
clock event device on the target.
If the timers base is already the target CPU we do not have this
sanity check in place so we enqueue the timer as the leftmost timer in
the target cpus rb tree, but we cannot reprogram the clock event
device on the target cpu. So the timer expires late and subsequently
prevents the reprogramming of the target cpu clock event device until
the previously programmed event fires or a timer with an earlier
expiry time gets enqueued on the target cpu itself.
Add the same target check as we have for the switch base case and
start the timer on the current cpu if it would become the leftmost
timer on the target.
[ tglx: Rewrote subject and changelog ]
Signed-off-by: Leon Ma <xindong.ma@intel.com>
Link: http://lkml.kernel.org/r/1398847391-5994-1-git-send-email-xindong.ma@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6c6c0d5a1c949d2e084706f9e5fb1fccc175b265 upstream.
If the last hrtimer interrupt detected a hang it sets hang_detected=1
and programs the clock event device with a delay to let the system
make progress.
If hang_detected == 1, we prevent reprogramming of the clock event
device in hrtimer_reprogram() but not in hrtimer_force_reprogram().
This can lead to the following situation:
hrtimer_interrupt()
hang_detected = 1;
program ce device to Xms from now (hang delay)
We have two timers pending:
T1 expires 50ms from now
T2 expires 5s from now
Now T1 gets canceled, which causes hrtimer_force_reprogram() to be
invoked, which in turn programs the clock event device to T2 (5
seconds from now).
Any hrtimer_start after that will not reprogram the hardware due to
hang_detected still being set. So we effectivly block all timers until
the T2 event fires and cleans up the hang situation.
Add a check for hang_detected to hrtimer_force_reprogram() which
prevents the reprogramming of the hang delay in the hardware
timer. The subsequent hrtimer_interrupt will resolve all outstanding
issues.
[ tglx: Rewrote subject and changelog and fixed up the comment in
hrtimer_force_reprogram() ]
Signed-off-by: Stuart Hayes <stuart.w.hayes@gmail.com>
Link: http://lkml.kernel.org/r/53602DC6.2060101@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98a01e779f3c66b0b11cd7e64d531c0e41c95762 upstream.
On architectures with sizeof(int) < sizeof (long), the
computation of mask inside apply_slack() can be undefined if the
computed bit is > 32.
E.g. with: expires = 0xffffe6f5 and slack = 25, we get:
expires_limit = 0x20000000e
bit = 33
mask = (1 << 33) - 1 /* undefined */
On x86, mask becomes 1 and and the slack is not applied properly.
On s390, mask is -1, expires is set to 0 and the timer fires immediately.
Use 1UL << bit to solve that issue.
Suggested-by: Deborah Townsend <dstownse@us.ibm.com>
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Link: http://lkml.kernel.org/r/20140418152310.GA13654@midget.suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a949ae560a511fe4e3adf48fa44fefded93e5c2b upstream.
A race exists between module loading and enabling of function tracer.
CPU 1 CPU 2
----- -----
load_module()
module->state = MODULE_STATE_COMING
register_ftrace_function()
mutex_lock(&ftrace_lock);
ftrace_startup()
update_ftrace_function();
ftrace_arch_code_modify_prepare()
set_all_module_text_rw();
<enables-ftrace>
ftrace_arch_code_modify_post_process()
set_all_module_text_ro();
[ here all module text is set to RO,
including the module that is
loading!! ]
blocking_notifier_call_chain(MODULE_STATE_COMING);
ftrace_init_module()
[ tries to modify code, but it's RO, and fails!
ftrace_bug() is called]
When this race happens, ftrace_bug() will produces a nasty warning and
all of the function tracing features will be disabled until reboot.
The simple solution is to treate module load the same way the core
kernel is treated at boot. To hardcode the ftrace function modification
of converting calls to mcount into nops. This is done in init/main.c
there's no reason it could not be done in load_module(). This gives
a better control of the changes and doesn't tie the state of the
module to its notifiers as much. Ftrace is special, it needs to be
treated as such.
The reason this would work, is that the ftrace_module_init() would be
called while the module is in MODULE_STATE_UNFORMED, which is ignored
by the set_all_module_text_ro() call.
Link: http://lkml.kernel.org/r/1395637826-3312-1-git-send-email-indou.takao@jp.fujitsu.com
Reported-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f0d71b3dcb8332f7971b5f2363632573e6d9486a upstream.
We happily allow userspace to declare a random kernel thread to be the
owner of a user space PI futex.
Found while analysing the fallout of Dave Jones syscall fuzzer.
We also should validate the thread group for private futexes and find
some fast way to validate whether the "alleged" owner has RW access on
the file which backs the SHM, but that's a separate issue.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <darren@dvhart.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Carlos ODonell <carlos@redhat.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20140512201701.194824402@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 866293ee54227584ffcb4a42f69c1f365974ba7f upstream.
Dave Jones trinity syscall fuzzer exposed an issue in the deadlock
detection code of rtmutex:
http://lkml.kernel.org/r/20140429151655.GA14277@redhat.com
That underlying issue has been fixed with a patch to the rtmutex code,
but the futex code must not call into rtmutex in that case because
- it can detect that issue early
- it avoids a different and more complex fixup for backing out
If the user space variable got manipulated to 0x80000000 which means
no lock holder, but the waiters bit set and an active pi_state in the
kernel is found we can figure out the recursive locking issue by
looking at the pi_state owner. If that is the current task, then we
can safely return -EDEADLK.
The check should have been added in commit 59fa62451 (futex: Handle
futex_pi OWNER_DIED take over correctly) already, but I did not see
the above issue caused by user space manipulation back then.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <darren@dvhart.com>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Carlos ODonell <carlos@redhat.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20140512201701.097349971@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 008208c6b26f21c2648c250a09c55e737c02c5f8 ]
Add two trivial helpers list_next_entry() and list_prev_entry(), they
can have a lot of users including list.h itself. In fact the 1st one is
already defined in events/core.c and bnx2x_sp.c, so the patch simply
moves the definition to list.h.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Eilon Greenstein <eilong@broadcom.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7dec935a3aa04412cba2cebe1524ae0d34a30c24 upstream.
No reason to allocate tp_module structures for modules that have no
tracepoints. This just wastes memory.
Fixes: b75ef8b44b1c "Tracepoint: Dissociate from module mutex"
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit af5040da01ef980670b3741b3e10733ee3e33566 upstream.
trace_block_rq_complete does not take into account that request can
be partially completed, so we can get the following incorrect output
of blkparser:
C R 232 + 240 [0]
C R 240 + 232 [0]
C R 248 + 224 [0]
C R 256 + 216 [0]
but should be:
C R 232 + 8 [0]
C R 240 + 8 [0]
C R 248 + 8 [0]
C R 256 + 8 [0]
Also, the whole output summary statistics of completed requests and
final throughput will be incorrect.
This patch takes into account real completion size of the request and
fixes wrong completion accounting.
Signed-off-by: Roman Pen <r.peniaev@gmail.com>
CC: Steven Rostedt <rostedt@goodmis.org>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: linux-kernel@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80df28476505ed4e6701c3448c63c9229a50c655 upstream.
As sysctl_hung_task_timeout_sec is unsigned long, when this value is
larger then LONG_MAX/HZ, the function schedule_timeout_interruptible in
watchdog will return immediately without sleep and with print :
schedule_timeout: wrong timeout value ffffffffffffff83
and then the funtion watchdog will call schedule_timeout_interruptible
again and again. The screen will be filled with
"schedule_timeout: wrong timeout value ffffffffffffff83"
This patch does some check and correction in sysctl, to let the function
schedule_timeout_interruptible allways get the valid parameter.
Signed-off-by: Liu Hua <sdu.liu@huawei.com>
Tested-by: Satoru Takeuchi <satoru.takeuchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dfccbb5e49a621c1b21a62527d61fc4305617aca upstream.
wait_task_zombie() first does EXIT_ZOMBIE->EXIT_DEAD transition and
drops tasklist_lock. If this task is not the natural child and it is
traced, we change its state back to EXIT_ZOMBIE for ->real_parent.
The last transition is racy, this is even documented in 50b8d257486a
"ptrace: partially fix the do_wait(WEXITED) vs EXIT_DEAD->EXIT_ZOMBIE
race". wait_consider_task() tries to detect this transition and clear
->notask_error but we can't rely on ptrace_reparented(), debugger can
exit and do ptrace_unlink() before its sub-thread sets EXIT_ZOMBIE.
And there is another problem which were missed before: this transition
can also race with reparent_leader() which doesn't reset >exit_signal if
EXIT_DEAD, assuming that this task must be reaped by someone else. So
the tracee can be re-parented with ->exit_signal != SIGCHLD, and if
/sbin/init doesn't use __WALL it becomes unreapable.
Change reparent_leader() to update ->exit_signal even if EXIT_DEAD.
Note: this is the simple temporary hack for -stable, it doesn't try to
solve all problems, it will be reverted by the next changes.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Reported-by: Michal Schmidt <mschmidt@redhat.com>
Tested-by: Michal Schmidt <mschmidt@redhat.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Lennart Poettering <lpoetter@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b22ce2785d97423846206cceec4efee0c4afd980 upstream.
If !PREEMPT, a kworker running work items back to back can hog CPU.
This becomes dangerous when a self-requeueing work item which is
waiting for something to happen races against stop_machine. Such
self-requeueing work item would requeue itself indefinitely hogging
the kworker and CPU it's running on while stop_machine would wait for
that CPU to enter stop_machine while preventing anything else from
happening on all other CPUs. The two would deadlock.
Jamie Liu reports that this deadlock scenario exists around
scsi_requeue_run_queue() and libata port multiplier support, where one
port may exclude command processing from other ports. With the right
timing, scsi_requeue_run_queue() can end up requeueing itself trying
to execute an IO which is asked to be retried while another device has
an exclusive access, which in turn can't make forward progress due to
stop_machine.
Fix it by invoking cond_resched() after executing each work item.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jamie Liu <jamieliu@google.com>
References: http://thread.gmane.org/gmane.linux.kernel/1552567
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Qiang Huang <h.huangqiang@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dbda92d16f8655044e082930e4e9d244b87fde77 upstream.
commit 07354eb1a74d1 ("locking printk: Annotate logbuf_lock as raw")
reintroduced a lock inversion problem which was fixed in commit
0b5e1c5255 ("printk: Release console_sem after logbuf_lock"). This
happened probably when fixing up patch rejects.
Restore the ordering and unlock logbuf_lock before releasing
console_sem.
Signed-off-by: ybu <ybu@qti.qualcomm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/E807E903FE6CBE4D95E420FBFCC273B827413C@nasanexd01h.na.qualcomm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Qiang Huang <h.huangqiang@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f000cfdde5de4fc15dead5ccf524359c07eadf2b upstream.
audit_log_start() does wait_for_auditd() in a loop until
audit_backlog_wait_time passes or audit_skb_queue has a room.
If signal_pending() is true this becomes a busy-wait loop, schedule() in
TASK_INTERRUPTIBLE won't block.
Thanks to Guy for fully investigating and explaining the problem.
(akpm: that'll cause the system to lock up on a non-preemptible
uniprocessor kernel)
(Guy: "Our customer was in fact running a uniprocessor machine, and they
reported a system hang.")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Guy Streeter <streeter@redhat.com>
Cc: Eric Paris <eparis@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust context, indentation]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Qiang Huang <h.huangqiang@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 45ab2813d40d88fc575e753c38478de242d03f88 upstream.
If a module fails to add its tracepoints due to module tainting, do not
create the module event infrastructure in the debugfs directory. As the events
will not work and worse yet, they will silently fail, making the user wonder
why the events they enable do not display anything.
Having a warning on module load and the events not visible to the users
will make the cause of the problem much clearer.
Link: http://lkml.kernel.org/r/20140227154923.265882695@goodmis.org
Fixes: 6d723736e472 "tracing/events: add support for modules to TRACE_EVENT"
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 99afb0fd5f05aac467ffa85c36778fec4396209b upstream.
It's not safe to access task's cpuset after releasing task_lock().
Holding callback_mutex won't help.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c685689fd24d310343ac33942e9a54a974ae9c43 upstream.
We hit one rare case below:
T1 calling disable_irq(), but hanging at synchronize_irq()
always;
The corresponding irq thread is in sleeping state;
And all CPUs are in idle state;
After analysis, we found there is one possible scenerio which
causes T1 is waiting there forever:
CPU0 CPU1
synchronize_irq()
wait_event()
spin_lock()
atomic_dec_and_test(&threads_active)
insert the __wait into queue
spin_unlock()
if(waitqueue_active)
atomic_read(&threads_active)
wake_up()
Here after inserted the __wait into queue on CPU0, and before
test if queue is empty on CPU1, there is no barrier, it maybe
cause it is not visible for CPU1 immediately, although CPU0 has
updated the queue list.
It is similar for CPU0 atomic_read() threads_active also.
So we'd need one smp_mb() before waitqueue_active.that, but removing
the waitqueue_active() check solves it as wel l and it makes
things simple and clear.
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Xiaoming Wang <xiaoming.wang@intel.com>
Link: http://lkml.kernel.org/r/1393212590-32543-1-git-send-email-chuansheng.liu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 791c9e0292671a3bfa95286bb5c08129d8605618 upstream.
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.
In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.
This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.
I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.
Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
css_set
commit 5edee61edeaaebafe584f8fb7074c1ef4658596b upstream.
cgroup core has a bug which violates a basic rule about event
notifications - when a new entity needs to be added, you add that to
the notification list first and then make the new entity conform to
the current state. If done in the reverse order, an event happening
inbetween will be lost.
cgroup_subsys->fork() is invoked way before the new task is added to
the css_set. Currently, cgroup_freezer is the only user of ->fork()
and uses it to make new tasks conform to the current state of the
freezer. If FROZEN state is requested while fork is in progress
between cgroup_fork_callbacks() and cgroup_post_fork(), the child
could escape freezing - the cgroup isn't frozen when ->fork() is
called and the freezer couldn't see the new task on the css_set.
This patch moves cgroup_subsys->fork() invocation to
cgroup_post_fork() after the new task is added to the css_set.
cgroup_fork_callbacks() is removed.
Because now a task may be migrated during cgroup_subsys->fork(),
freezer_fork() is updated so that it adheres to the usual RCU locking
and the rather pointless comment on why locking can be different there
is removed (if it doesn't make anything simpler, why even bother?).
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
[hq: Backported to 3.4:
- Adjust context
- Iterate over first CGROUP_BUILTIN_SUBSYS_COUNT elements of subsys]
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e3703f8cdfcf39c25c4338c3ad8e68891cca3731 upstream.
Drew Richardson reported that he could make the kernel go *boom* when hotplugging
while having perf events active.
It turned out that when you have a group event, the code in
__perf_event_exit_context() fails to remove the group siblings from
the context.
We then proceed with destroying and freeing the event, and when you
re-plug the CPU and try and add another event to that CPU, things go
*boom* because you've still got dead entries there.
Reported-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/n/tip-k6v5wundvusvcseqj1si0oz0@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5bdfff96c69a4d5ab9c49e60abf9e070ecd2acbb upstream.
When a kworker should die, the kworkre is notified through WORKER_DIE
flag instead of kthread_should_stop(). This, IIRC, is primarily to
keep the test synchronized inside worker_pool lock. WORKER_DIE is
first set while holding pool->lock, the lock is dropped and
kthread_stop() is called.
Unfortunately, this means that there's a slight chance that the target
kworker may see WORKER_DIE before kthread_stop() finishes and exits
and frees the target task before or during kthread_stop().
Fix it by pinning the target task before setting WORKER_DIE and
putting it after kthread_stop() is done.
tj: Improved patch description and comment. Moved pinning above
WORKER_DIE for better signify what it's protecting.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2c45aada341121438affc4cb8d5b4cfaa2813d3d upstream.
In allmodconfig builds for sparc and any other arch which does
not set CONFIG_SPARSE_IRQ, the following will be seen at modpost:
CC [M] lib/cpu-notifier-error-inject.o
CC [M] lib/pm-notifier-error-inject.o
ERROR: "irq_to_desc" [drivers/gpio/gpio-mcp23s08.ko] undefined!
make[2]: *** [__modpost] Error 1
This happens because commit 3911ff30f5 ("genirq: export
handle_edge_irq() and irq_to_desc()") added one export for it, but
there were actually two instances of it, in an if/else clause for
CONFIG_SPARSE_IRQ. Add the second one.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Link: http://lkml.kernel.org/r/1392057610-11514-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d651aa1d68a2f0a7ee65697b04c6a92f8c0a12f2 upstream.
Each sub-buffer (buffer page) has a full 64 bit timestamp. The events on
that page use a 27 bit delta against that timestamp in order to save on
bits written to the ring buffer. If the time between events is larger than
what the 27 bits can hold, a "time extend" event is added to hold the
entire 64 bit timestamp again and the events after that hold a delta from
that timestamp.
As a "time extend" is always paired with an event, it is logical to just
allocate the event with the time extend, to make things a bit more efficient.
Unfortunately, when the pairing code was written, it removed the "delta = 0"
from the first commit on a page, causing the events on the page to be
slightly skewed.
Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80d767d770fd9c697e434fd080c2db7b5c60c6dd upstream.
When compiling for the IA-64 ski emulator, HZ is set to 32 because the
emulation is slow and we don't want to waste too many cycles processing
timers. Alpha also has an option to set HZ to 32.
This causes integer underflow in
kernel/time/jiffies.c:
kernel/time/jiffies.c:66:2: warning: large integer implicitly truncated to unsigned type [-Woverflow]
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
^
This patch reduces the JIFFIES_SHIFT value to avoid the overflow.
Signed-off-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1401241639100.23871@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5a21d489fd9541a4a66b9a500659abaca1b19a51 upstream.
1. Do not allocate memory for buffers from emergency pools, unless
absolutely required. Do not warn about and do not retry non-essential
failed allocations.
2. Do not check the amount of free pages left on every single page
write, but wait until one map is completely populated and then check.
3. Set maximum number of pages for read buffering consistently, instead
of inadvertently depending on the size of the sector type.
4. Fix copyright line, which I missed when I submitted the hibernation
threading patch.
5. Dispense with bit shifting arithmetic to improve readability.
6. Really recalculate the number of pages required to be free after all
allocations have been done.
7. Fix calculation of pages required for read buffering. Only count in
pages that do not belong to high memory.
Signed-off-by: Bojan Smojver <bojan@rexursive.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5aaa0b7a2ed5b12692c9ffb5222182bd558d3146 upstream.
Follow up on commit 556061b00 ("sched/nohz: Fix rq->cpu_load[]
calculations") since while that fixed the busy case it regressed the
mostly idle case.
Add a callback from the nohz exit to also age the rq->cpu_load[]
array. This closes the hole where either there was no nohz load
balance pass during the nohz, or there was a 'significant' amount of
idle time between the last nohz balance and the nohz exit.
So we'll update unconditionally from the tick to not insert any
accidental 0 load periods while busy, and we try and catch up from
nohz idle balance and nohz exit. Both these are still prone to missing
a jiffy, but that has always been the case.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 556061b00c9f2fd6a5524b6bde823ef12f299ecf upstream.
While investigating why the load-balancer did funny I found that the
rq->cpu_load[] tables were completely screwy.. a bit more digging
revealed that the updates that got through were missing ticks followed
by a catchup of 2 ticks.
The catchup assumes the cpu was idle during that time (since only nohz
can cause missed ticks and the machine is idle etc..) this means that
esp. the higher indices were significantly lower than they ought to
be.
The reason for this is that its not correct to compare against jiffies
on every jiffy on any other cpu than the cpu that updates jiffies.
This patch cludges around it by only doing the catch-up stuff from
nohz_idle_balance() and doing the regular stuff unconditionally from
the tick.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 23a8e8441a0a74dd612edf81dc89d1600bc0a3d1 upstream.
Doing some different tests, I discovered that function graph tracing, when
filtered via the set_ftrace_filter and set_ftrace_notrace files, does
not always keep with them if another function ftrace_ops is registered
to trace functions.
The reason is that function graph just happens to trace all functions
that the function tracer enables. When there was only one user of
function tracing, the function graph tracer did not need to worry about
being called by functions that it did not want to trace. But now that there
are other users, this becomes a problem.
For example, one just needs to do the following:
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo function_graph > current_tracer
# cat trace
[..]
0) | schedule() {
------------------------------------------
0) <idle>-0 => rcu_pre-7
------------------------------------------
0) ! 2980.314 us | }
0) | schedule() {
------------------------------------------
0) rcu_pre-7 => <idle>-0
------------------------------------------
0) + 20.701 us | }
# echo 1 > /proc/sys/kernel/stack_tracer_enabled
# cat trace
[..]
1) + 20.825 us | }
1) + 21.651 us | }
1) + 30.924 us | } /* SyS_ioctl */
1) | do_page_fault() {
1) | __do_page_fault() {
1) 0.274 us | down_read_trylock();
1) 0.098 us | find_vma();
1) | handle_mm_fault() {
1) | _raw_spin_lock() {
1) 0.102 us | preempt_count_add();
1) 0.097 us | do_raw_spin_lock();
1) 2.173 us | }
1) | do_wp_page() {
1) 0.079 us | vm_normal_page();
1) 0.086 us | reuse_swap_page();
1) 0.076 us | page_move_anon_rmap();
1) | unlock_page() {
1) 0.082 us | page_waitqueue();
1) 0.086 us | __wake_up_bit();
1) 1.801 us | }
1) 0.075 us | ptep_set_access_flags();
1) | _raw_spin_unlock() {
1) 0.098 us | do_raw_spin_unlock();
1) 0.105 us | preempt_count_sub();
1) 1.884 us | }
1) 9.149 us | }
1) + 13.083 us | }
1) 0.146 us | up_read();
When the stack tracer was enabled, it enabled all functions to be traced, which
now the function graph tracer also traces. This is a side effect that should
not occur.
To fix this a test is added when the function tracing is changed, as well as when
the graph tracer is enabled, to see if anything other than the ftrace global_ops
function tracer is enabled. If so, then the graph tracer calls a test trampoline
that will look at the function that is being traced and compare it with the
filters defined by the global_ops.
As an optimization, if there's no other function tracers registered, or if
the only registered function tracers also use the global ops, the function
graph infrastructure will call the registered function graph callback directly
and not go through the test trampoline.
Fixes: d2d45c7a03a2 "tracing: Have stack_tracer use a separate list of functions"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a4c35ed241129dd142be4cadb1e5a474a56d5464 upstream.
The synchronization needed after ftrace_ops are unregistered must happen
after the callback is disabled from becing called by functions.
The current location happens after the function is being removed from the
internal lists, but not after the function callbacks were disabled, leaving
the functions susceptible of being called after their callbacks are freed.
This affects perf and any externel users of function tracing (LTTng and
SystemTap).
Fixes: cdbe61bfe704 "ftrace: Allow dynamically allocated function tracers"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 405e1d834807e51b2ebd3dea81cb51e53fb61504 upstream.
[ Partial commit backported to 3.4. The ftrace_sync() code by this is
required for other fixes that 3.4 needs. ]
ftrace_trace_function is a variable that holds what function will be called
directly by the assembly code (mcount). If just a single function is
registered and it handles recursion itself, then the assembly will call that
function directly without any helper function. It also passes in the
ftrace_op that was registered with the callback. The ftrace_op to send is
stored in the function_trace_op variable.
The ftrace_trace_function and function_trace_op needs to be coordinated such
that the called callback wont be called with the wrong ftrace_op, otherwise
bad things can happen if it expected a different op. Luckily, there's no
callback that doesn't use the helper functions that requires this. But
there soon will be and this needs to be fixed.
Use a set_function_trace_op to store the ftrace_op to set the
function_trace_op to when it is safe to do so (during the update function
within the breakpoint or stop machine calls). Or if dynamic ftrace is not
being used (static tracing) then we have to do a bit more synchronization
when the ftrace_trace_function is set as that takes affect immediately
(as oppose to dynamic ftrace doing it with the modification of the trampoline).
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85eae82a0855d49852b87deac8653e4ebc8b291f upstream.
The console_cpu_notify() function runs with interrupts disabled in the
CPU_DYING case. It therefore cannot block, for example, as will happen
when it calls console_lock(). Therefore, remove the CPU_DYING leg of
the switch statement to avoid this problem.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guillaume Morin <guillaume@morinfr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c
get_monotonic_boottime adds three nanonsecond values stored
in longs, followed by an s64. If the long values are all
close to 1e9 the first three additions can overflow and
become negative when added to the s64. Cast the first
value to s64 so that all additions are 64 bit.
Signed-off-by: Colin Cross <ccross@android.com>
[jstultz: Fished this out of the AOSP commong.git tree. This was
fixed upstream in v3.6 by ec145babe754f9ea1079034a108104b6001e001c]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6fdda9a9c5db367130cf32df5d6618d08b89f46a upstream.
As part of normal operaions, the hrtimer subsystem frequently calls
into the timekeeping code, creating a locking order of
hrtimer locks -> timekeeping locks
clock_was_set_delayed() was suppoed to allow us to avoid deadlocks
between the timekeeping the hrtimer subsystem, so that we could
notify the hrtimer subsytem the time had changed while holding
the timekeeping locks. This was done by scheduling delayed work
that would run later once we were out of the timekeeing code.
But unfortunately the lock chains are complex enoguh that in
scheduling delayed work, we end up eventually trying to grab
an hrtimer lock.
Sasha Levin noticed this in testing when the new seqlock lockdep
enablement triggered the following (somewhat abrieviated) message:
[ 251.100221] ======================================================
[ 251.100221] [ INFO: possible circular locking dependency detected ]
[ 251.100221] 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 Not tainted
[ 251.101967] -------------------------------------------------------
[ 251.101967] kworker/10:1/4506 is trying to acquire lock:
[ 251.101967] (timekeeper_seq){----..}, at: [<ffffffff81160e96>] retrigger_next_event+0x56/0x70
[ 251.101967]
[ 251.101967] but task is already holding lock:
[ 251.101967] (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] which lock already depends on the new lock.
[ 251.101967]
[ 251.101967]
[ 251.101967] the existing dependency chain (in reverse order) is:
[ 251.101967]
-> #5 (hrtimer_bases.lock#11){-.-...}:
[snipped]
-> #4 (&rt_b->rt_runtime_lock){-.-...}:
[snipped]
-> #3 (&rq->lock){-.-.-.}:
[snipped]
-> #2 (&p->pi_lock){-.-.-.}:
[snipped]
-> #1 (&(&pool->lock)->rlock){-.-...}:
[ 251.101967] [<ffffffff81194803>] validate_chain+0x6c3/0x7b0
[ 251.101967] [<ffffffff81194d9d>] __lock_acquire+0x4ad/0x580
[ 251.101967] [<ffffffff81194ff2>] lock_acquire+0x182/0x1d0
[ 251.101967] [<ffffffff84398500>] _raw_spin_lock+0x40/0x80
[ 251.101967] [<ffffffff81153e69>] __queue_work+0x1a9/0x3f0
[ 251.101967] [<ffffffff81154168>] queue_work_on+0x98/0x120
[ 251.101967] [<ffffffff81161351>] clock_was_set_delayed+0x21/0x30
[ 251.101967] [<ffffffff811c4bd1>] do_adjtimex+0x111/0x160
[ 251.101967] [<ffffffff811e2711>] compat_sys_adjtimex+0x41/0x70
[ 251.101967] [<ffffffff843a4b49>] ia32_sysret+0x0/0x5
[ 251.101967]
-> #0 (timekeeper_seq){----..}:
[snipped]
[ 251.101967] other info that might help us debug this:
[ 251.101967]
[ 251.101967] Chain exists of:
timekeeper_seq --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock#11
[ 251.101967] Possible unsafe locking scenario:
[ 251.101967]
[ 251.101967] CPU0 CPU1
[ 251.101967] ---- ----
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(&rt_b->rt_runtime_lock);
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(timekeeper_seq);
[ 251.101967]
[ 251.101967] *** DEADLOCK ***
[ 251.101967]
[ 251.101967] 3 locks held by kworker/10:1/4506:
[ 251.101967] #0: (events){.+.+.+}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #1: (hrtimer_work){+.+...}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #2: (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] stack backtrace:
[ 251.101967] CPU: 10 PID: 4506 Comm: kworker/10:1 Not tainted 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053
[ 251.101967] Workqueue: events clock_was_set_work
So the best solution is to avoid calling clock_was_set_delayed() while
holding the timekeeping lock, and instead using a flag variable to
decide if we should call clock_was_set() once we've released the locks.
This works for the case here, where the do_adjtimex() was the deadlock
trigger point. Unfortuantely, in update_wall_time() we still hold
the jiffies lock, which would deadlock with the ipi triggered by
clock_was_set(), preventing us from calling it even after we drop the
timekeeping lock. So instead call clock_was_set_delayed() at that point.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 57d2aa00dcec67afa52478730f2b524521af14fb upstream.
The issue below was found in 2.6.34-rt rather than mainline rt
kernel, but the issue still exists upstream as well.
So please let me describe how it was noticed on 2.6.34-rt:
On this version, each softirq has its own thread, it means there
is at least one RT FIFO task per cpu. The priority of these
tasks is set to 49 by default. If user launches an RT FIFO task
with priority lower than 49 of softirq RT tasks, it's possible
there are two RT FIFO tasks enqueued one cpu runqueue at one
moment. By current strategy of balancing RT tasks, when it comes
to RT tasks, we really need to put them off to a CPU that they
can run on as soon as possible. Even if it means a bit of cache
line flushing, we want RT tasks to be run with the least latency.
When the user RT FIFO task which just launched before is
running, the sched timer tick of the current cpu happens. In this
tick period, the timeout value of the user RT task will be
updated once. Subsequently, we try to wake up one softirq RT
task on its local cpu. As the priority of current user RT task
is lower than the softirq RT task, the current task will be
preempted by the higher priority softirq RT task. Before
preemption, we check to see if current can readily move to a
different cpu. If so, we will reschedule to allow the RT push logic
to try to move current somewhere else. Whenever the woken
softirq RT task runs, it first tries to migrate the user FIFO RT
task over to a cpu that is running a task of lesser priority. If
migration is done, it will send a reschedule request to the found
cpu by IPI interrupt. Once the target cpu responds the IPI
interrupt, it will pick the migrated user RT task to preempt its
current task. When the user RT task is running on the new cpu,
the sched timer tick of the cpu fires. So it will tick the user
RT task again. This also means the RT task timeout value will be
updated again. As the migration may be done in one tick period,
it means the user RT task timeout value will be updated twice
within one tick.
If we set a limit on the amount of cpu time for the user RT task
by setrlimit(RLIMIT_RTTIME), the SIGXCPU signal should be posted
upon reaching the soft limit.
But exactly when the SIGXCPU signal should be sent depends on the
RT task timeout value. In fact the timeout mechanism of sending
the SIGXCPU signal assumes the RT task timeout is increased once
every tick.
However, currently the timeout value may be added twice per
tick. So it results in the SIGXCPU signal being sent earlier
than expected.
To solve this issue, we prevent the timeout value from increasing
twice within one tick time by remembering the jiffies value of
last updating the timeout. As long as the RT task's jiffies is
different with the global jiffies value, we allow its timeout to
be updated.
Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Fan Du <fan.du@windriver.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1342508623-2887-1-git-send-email-ying.xue@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ lizf: backported to 3.4: adjust context ]
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|