Age | Commit message (Collapse) | Author |
|
commit a7dc19b8652c862d5b7c4d2339bd3c428bd29c4a upstream.
Currently tick_check_broadcast_device doesn't reject clock_event_devices
with CLOCK_EVT_FEAT_DUMMY, and may select them in preference to real
hardware if they have a higher rating value. In this situation, the
dummy timer is responsible for broadcasting to itself, and the core
clockevents code may attempt to call non-existent callbacks for
programming the dummy, eventually leading to a panic.
This patch makes tick_check_broadcast_device always reject dummy timers,
preventing this problem.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Jon Medhurst (Tixy) <tixy@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 522cff142d7d2f9230839c9e1f21a4d8bcc22a4a upstream.
__ARCH_HAS_SA_RESTORER is the preferred conditional for use in 3.9 and
later kernels, per Kees.
Cc: Emese Revfy <re.emese@gmail.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Julien Tinnes <jln@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 613f04a0f51e6e68ac6fe571ab79da3c0a5eb4da upstream.
The latency tracers require the buffers to be in overwrite mode,
otherwise they get screwed up. Force the buffers to stay in overwrite
mode when latency tracers are enabled.
Added a flag_changed() method to the tracer structure to allow
the tracers to see what flags are being changed, and also be able
to prevent the change from happing.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[bwh: Backported to 3.2:
- Adjust context
- Drop some changes that are not needed because trace_set_options() is not
separate from tracing_trace_options_write()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 80902822658aab18330569587cdb69ac1dfdcea8 upstream.
Changing the overwrite mode for the ring buffer via the trace
option only sets the normal buffer. But the snapshot buffer could
swap with it, and then the snapshot would be in non overwrite mode
and the normal buffer would be in overwrite mode, even though the
option flag states otherwise.
Keep the two buffers overwrite modes in sync.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 69d34da2984c95b33ea21518227e1f9470f11d95 upstream.
Seems that the tracer flags have never been protected from
synchronous writes. Luckily, admins don't usually modify the
tracing flags via two different tasks. But if scripts were to
be used to modify them, then they could get corrupted.
Move the trace_types_lock that protects against tracers changing
to also protect the flags being set.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[bwh: Backported to 3.2: also move failure return in
tracing_trace_options_write() after unlocking]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 740466bc89ad8bd5afcc8de220f715f62b21e365 upstream.
Because function tracing is very invasive, and can even trace
calls to rcu_read_lock(), RCU access in function tracing is done
with preempt_disable_notrace(). This requires a synchronize_sched()
for updates and not a synchronize_rcu().
Function probes (traceon, traceoff, etc) must be freed after
a synchronize_sched() after its entry has been removed from the
hash. But call_rcu() is used. Fix this by using call_rcu_sched().
Also fix the usage to use hlist_del_rcu() instead of hlist_del().
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 2721e72dd10f71a3ba90f59781becf02638aa0d9 upstream.
Although the swap is wrapped with a spin_lock, the assignment
of the temp buffer used to swap is not within that lock.
It needs to be moved into that lock, otherwise two swaps
happening on two different CPUs, can end up using the wrong
temp buffer to assign in the swap.
Luckily, all current callers of the swap function appear to have
their own locks. But in case something is added that allows two
different callers to call the swap, then there's a chance that
this race can trigger and corrupt the buffers.
New code is coming soon that will allow for this race to trigger.
I've Cc'd stable, so this bug will not show up if someone backports
one of the changes that can trigger this bug.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 2ca39528c01a933f6689cd6505ce65bd6d68a530 upstream.
When the new signal handlers are set up, the location of sa_restorer is
not cleared, leaking a parent process's address space location to
children. This allows for a potential bypass of the parent's ASLR by
examining the sa_restorer value returned when calling sigaction().
Based on what should be considered "secret" about addresses, it only
matters across the exec not the fork (since the VMAs haven't changed
until the exec). But since exec sets SIG_DFL and keeps sa_restorer,
this is where it should be fixed.
Given the few uses of sa_restorer, a "set" function was not written
since this would be the only use. Instead, we use
__ARCH_HAS_SA_RESTORER, as already done in other places.
Example of the leak before applying this patch:
$ cat /proc/$$/maps
...
7fb9f3083000-7fb9f3238000 r-xp 00000000 fd:01 404469 .../libc-2.15.so
...
$ ./leak
...
7f278bc74000-7f278be29000 r-xp 00000000 fd:01 404469 .../libc-2.15.so
...
1 0 (nil) 0x7fb9f30b94a0
2 4000000 (nil) 0x7f278bcaa4a0
3 4000000 (nil) 0x7f278bcaa4a0
4 0 (nil) 0x7fb9f30b94a0
...
[akpm@linux-foundation.org: use SA_RESTORER for backportability]
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Emese Revfy <re.emese@gmail.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Julien Tinnes <jln@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit db05021d49a994ee40a9735d9c3cb0060c9babb8 upstream.
The prompt to enable DYNAMIC_FTRACE (the ability to nop and
enable function tracing at run time) had a confusing statement:
"enable/disable ftrace tracepoints dynamically"
This was written before tracepoints were added to the kernel,
but now that tracepoints have been added, this is very confusing
and has confused people enough to give wrong information during
presentations.
Not only that, I looked at the help text, and it still references
that dreaded daemon that use to wake up once a second to update
the nop locations and brick NICs, that hasn't been around for over
five years.
Time to bring the text up to the current decade.
Reported-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1cc684ab75123efe7ff446eb821d44375ba8fa30 upstream.
As Tetsuo Handa pointed out, request_module() can stress the system
while the oom-killed caller sleeps in TASK_UNINTERRUPTIBLE.
The task T uses "almost all" memory, then it does something which
triggers request_module(). Say, it can simply call sys_socket(). This
in turn needs more memory and leads to OOM. oom-killer correctly
chooses T and kills it, but this can't help because it sleeps in
TASK_UNINTERRUPTIBLE and after that oom-killer becomes "disabled" by the
TIF_MEMDIE task T.
Make __request_module() killable. The only necessary change is that
call_modprobe() should kmalloc argv and module_name, they can't live in
the stack if we use UMH_KILLABLE. This memory is freed via
call_usermodehelper_freeinfo()->cleanup.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 3e63a93b987685f02421e18b2aa452d20553a88b upstream.
No functional changes. Move the call_usermodehelper code from
__request_module() into the new simple helper, call_modprobe().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5b9bd473e3b8a8c6c4ae99be475e6e9b27568555 upstream.
Minor cleanup. ____call_usermodehelper() can simply return, no need to
call do_exit() explicitely.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d0bd587a80960d7ba7e0c8396e154028c9045c54 upstream.
Implement UMH_KILLABLE, should be used along with UMH_WAIT_EXEC/PROC.
The caller must ensure that subprocess_info->path/etc can not go away
until call_usermodehelper_freeinfo().
call_usermodehelper_exec(UMH_KILLABLE) does
wait_for_completion_killable. If it fails, it uses
xchg(&sub_info->complete, NULL) to serialize with umh_complete() which
does the same xhcg() to access sub_info->complete.
If call_usermodehelper_exec wins, it can safely return. umh_complete()
should get NULL and call call_usermodehelper_freeinfo().
Otherwise we know that umh_complete() was already called, in this case
call_usermodehelper_exec() falls back to wait_for_completion() which
should succeed "very soon".
Note: UMH_NO_WAIT == -1 but it obviously should not be used with
UMH_KILLABLE. We delay the neccessary cleanup to simplify the back
porting.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b3449922502f5a161ee2b5022a33aec8472fbf18 upstream.
Preparation. Add the new trivial helper, umh_complete(). Currently it
simply does complete(sub_info->complete).
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit df1778be1a33edffa51d094eeda87c858ded6560 upstream.
The null check of `strchr() + 1' is broken, which is always non-null,
leading to OOB read. Instead, check the result of strchr().
Signed-off-by: Xi Wang <xi.wang@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e182bb38d7db7494fa5dcd82da17fe0dedf60ecf upstream.
When idr_find() was fed a negative ID, it used to look up the ID
ignoring the sign bit before recent ("idr: remove MAX_IDR_MASK and
move left MAX_IDR_* into idr.c") patch. Now a negative ID triggers
a WARN_ON_ONCE().
__lock_timer() feeds timer_id from userland directly to idr_find()
without sanitizing it which can trigger the above malfunctions. Add a
range check on @timer_id before invoking idr_find() in __lock_timer().
While timer_t is defined as int by all archs at the moment, Andrew
worries that it may be defined as a larger type later on. Make the
test cover larger integers too so that it at least is guaranteed to
not return the wrong timer.
Note that WARN_ON_ONCE() in idr_find() on id < 0 is transitional
precaution while moving away from ignoring MSB. Once it's gone we can
remove the guard as long as timer_t isn't larger than int.
Signed-off-by: Tejun Heo <tj@kernel.org>nnn
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20130220232412.GL3570@htj.dyndns.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8c189ea64eea01ca20d102ddb74d6936dd16c579 upstream.
Commit: c1bf08ac "ftrace: Be first to run code modification on modules"
changed ftrace module notifier's priority to INT_MAX in order to
process the ftrace nops before anything else could touch them
(namely kprobes). This was the correct thing to do.
Unfortunately, the ftrace module notifier also contains the ftrace
clean up code. As opposed to the set up code, this code should be
run *after* all the module notifiers have run in case a module is doing
correct clean-up and unregisters its ftrace hooks. Basically, ftrace
needs to do clean up on module removal, as it needs to know about code
being removed so that it doesn't try to modify that code. But after it
removes the module from its records, if a ftrace user tries to remove
a probe, that removal will fail due as the record of that code segment
no longer exists.
Nothing really bad happens if the probe removal is called after ftrace
did the clean up, but the ftrace removal function will return an error.
Correct code (such as kprobes) will produce a WARN_ON() if it fails
to remove the probe. As people get annoyed by frivolous warnings, it's
best to do the ftrace clean up after everything else.
By splitting the ftrace_module_notifier into two notifiers, one that
does the module load setup that is run at high priority, and the other
that is called for module clean up that is run at low priority, the
problem is solved.
Reported-by: Frank Ch. Eigler <fche@redhat.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 63f43f55c9bbc14f76b582644019b8a07dc8219a upstream.
rename() will change dentry->d_name. The result of this race can
be worse than seeing partially rewritten name, but we might access
a stale pointer because rename() will re-allocate memory to hold
a longer name.
It's safe in the protection of dentry->d_lock.
v2: check NULL dentry before acquiring dentry lock.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 71b5707e119653039e6e95213f00479668c79b75 upstream.
In cgroup_exit() put_css_set_taskexit() is called without any lock,
which might lead to accessing a freed cgroup:
thread1 thread2
---------------------------------------------
exit()
cgroup_exit()
put_css_set_taskexit()
atomic_dec(cgrp->count);
rmdir();
/* not safe !! */
check_for_release(cgrp);
rcu_read_lock() can be used to make sure the cgroup is alive.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e6c42c295e071dd74a66b5a9fcf4f44049888ed8 upstream.
The trinity fuzzer triggered a task_struct reference leak via
clock_nanosleep with CPU_TIMERs. do_cpu_nanosleep() calls
posic_cpu_timer_create(), but misses a corresponding
posix_cpu_timer_del() which leads to the task_struct reference leak.
Reported-and-tested-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20130215100810.GF4392@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 63a3f603413ffe82ad775f2d62a5afff87fd94a0 upstream.
defined(@array) is deprecated in Perl and gives off a warning.
Restructure the code to remove that warning.
[ hpa: it would be interesting to revert to the timeconst.bc script.
It appears that the failures reported by akpm during testing of
that script was due to a known broken version of make, not a problem
with bc. The Makefile rules could probably be restructured to avoid
the make bug, or it is probably old enough that it doesn't matter. ]
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b22affe0aef429d657bc6505aacb1c569340ddd2 upstream.
hrtimer_enqueue_reprogram contains a race which could result in
timer.base switch during unlock/lock sequence.
hrtimer_enqueue_reprogram is releasing the lock protecting the timer
base for calling raise_softirq_irqsoff() due to a lock ordering issue
versus rq->lock.
If during that time another CPU calls __hrtimer_start_range_ns() on
the same hrtimer, the timer base might switch, before the current CPU
can lock base->lock again and therefor the unlock_timer_base() call
will unlock the wrong lock.
[ tglx: Added comment and massaged changelog ]
Signed-off-by: Leonid Shatz <leonid.shatz@ravellosystems.com>
Signed-off-by: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/1359981217-389-1-git-send-email-izik.eidus@ravellosystems.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a2c1c57be8d9fd5b716113c8991d3d702eeacf77 upstream.
To avoid executing the same work item concurrenlty, workqueue hashes
currently busy workers according to their current work items and looks
up the the table when it wants to execute a new work item. If there
already is a worker which is executing the new work item, the new item
is queued to the found worker so that it gets executed only after the
current execution finishes.
Unfortunately, a work item may be freed while being executed and thus
recycled for different purposes. If it gets recycled for a different
work item and queued while the previous execution is still in
progress, workqueue may make the new work item wait for the old one
although the two aren't really related in any way.
In extreme cases, this false dependency may lead to deadlock although
it's extremely unlikely given that there aren't too many self-freeing
work item users and they usually don't wait for other work items.
To alleviate the problem, record the current work function in each
busy worker and match it together with the work item address in
find_worker_executing_work(). While this isn't complete, it ensures
that unrelated work items don't interact with each other and in the
very unlikely case where a twisted wq user triggers it, it's always
onto itself making the culprit easy to spot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Andrey Isakov <andy51@gmx.ru>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=51701
[bwh: Backported to 3.2:
- Adjust context
- Incorporate earlier logging cleanup in process_one_work() from
044c782ce3a9 ('workqueue: fix checkpatch issues')]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e716efde75267eab919cdb2bef5b2cb77f305326 upstream.
commit 52553ddf(genirq: fix regression in irqfixup, irqpoll)
introduced a potential deadlock by calling the action handler with the
irq descriptor lock held.
Remove the call and let the handling code run even for an interrupt
where only a single action is registered. That matches the goal of
the above commit and avoids the deadlock.
Document the confusing action = desc->action reload in the handling
loop while at it.
Reported-and-tested-by: "Wang, Warner" <warner.wang@hp.com>
Tested-by: Edward Donovan <edward.donovan@numble.net>
Cc: "Wang, Song-Bo (Stoney)" <song-bo.wang@hp.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4965f5667f36a95b41cda6638875bc992bd7d18b upstream.
Using a recursive call add a non-conflicting region in
__reserve_region_with_split() could result in a stack overflow in the case
that the recursive calls are too deep. Convert the recursive calls to an
iterative loop to avoid the problem.
Tested on a machine containing 135 regions. The kernel no longer panicked
with stack overflow.
Also tested with code arbitrarily adding regions with no conflict,
embedding two consecutive conflicts and embedding two non-consecutive
conflicts.
Signed-off-by: T Makphaibulchoke <tmac@hp.com>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@gmail.com>
Cc: Wei Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9067ac85d533651b98c2ff903182a20cbb361fcb upstream.
wake_up_process() should never wakeup a TASK_STOPPED/TRACED task.
Change it to use TASK_NORMAL and add the WARN_ON().
TASK_ALL has no other users, probably can be killed.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9899d11f654474d2d54ea52ceaa2a1f4db3abd68 upstream.
putreg() assumes that the tracee is not running and pt_regs_access() can
safely play with its stack. However a killed tracee can return from
ptrace_stop() to the low-level asm code and do RESTORE_REST, this means
that debugger can actually read/modify the kernel stack until the tracee
does SAVE_REST again.
set_task_blockstep() can race with SIGKILL too and in some sense this
race is even worse, the very fact the tracee can be woken up breaks the
logic.
As Linus suggested we can clear TASK_WAKEKILL around the arch_ptrace()
call, this ensures that nobody can ever wakeup the tracee while the
debugger looks at it. Not only this fixes the mentioned problems, we
can do some cleanups/simplifications in arch_ptrace() paths.
Probably ptrace_unfreeze_traced() needs more callers, for example it
makes sense to make the tracee killable for oom-killer before
access_process_vm().
While at it, add the comment into may_ptrace_stop() to explain why
ptrace_stop() still can't rely on SIGKILL and signal_pending_state().
Reported-by: Salman Qazi <sqazi@google.com>
Reported-by: Suleiman Souhlal <suleiman@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 910ffdb18a6408e14febbb6e4b6840fd2c928c82 upstream.
Cleanup and preparation for the next change.
signal_wake_up(resume => true) is overused. None of ptrace/jctl callers
actually want to wakeup a TASK_WAKEKILL task, but they can't specify the
necessary mask.
Turn signal_wake_up() into signal_wake_up_state(state), reintroduce
signal_wake_up() as a trivial helper, and add ptrace_signal_wake_up()
which adds __TASK_TRACED.
This way ptrace_signal_wake_up() can work "inside" ptrace_request()
even if the tracee doesn't have the TASK_WAKEKILL bit set.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit aa7f67304d1a03180f463258aa6f15a8b434e77d upstream.
When the system has multiple domains do_sched_rt_period_timer()
can run on any CPU and may iterate over all rt_rq in
cpu_online_mask. This means when balance_runtime() is run for a
given rt_rq that rt_rq may be in a different rd than the current
processor. Thus if we use smp_processor_id() to get rd in
do_balance_runtime() we may borrow runtime from a rt_rq that is
not part of our rd.
This changes do_balance_runtime to get the rd from the passed in
rt_rq ensuring that we borrow runtime only from the correct rd
for the given rt_rq.
This fixes a BUG at kernel/sched/rt.c:687! in __disable_runtime
when we try reclaim runtime lent to other rt_rq but runtime has
been lent to a rt_rq in another rd.
Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Mike Galbraith <bitbucket@online.de>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1358186131-29494-1-git-send-email-sbohrer@rgmadvisors.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
call_console_drivers
This patch corrects a buffer overflow in kernels from 3.0 to 3.4 when calling
log_prefix() function from call_console_drivers().
This bug existed in previous releases but has been revealed with commit
162a7e7500f9664636e649ba59defe541b7c2c60 (2.6.39 => 3.0) that made changes
about how to allocate memory for early printk buffer (use of memblock_alloc).
It disappears with commit 7ff9554bb578ba02166071d2d487b7fc7d860d62 (3.4 => 3.5)
that does a refactoring of printk buffer management.
In log_prefix(), the access to "p[0]", "p[1]", "p[2]" or
"simple_strtoul(&p[1], &endp, 10)" may cause a buffer overflow as this
function is called from call_console_drivers by passing "&LOG_BUF(cur_index)"
where the index must be masked to do not exceed the buffer's boundary.
The trick is to prepare in call_console_drivers() a buffer with the necessary
data (PRI field of syslog message) to be safely evaluated in log_prefix().
This patch can be applied to stable kernel branches 3.0.y, 3.2.y and 3.4.y.
Without this patch, one can freeze a server running this loop from shell :
$ export DUMMY=`cat /dev/urandom | tr -dc '12345AZERTYUIOPQSDFGHJKLMWXCVBNazertyuiopqsdfghjklmwxcvbn' | head -c255`
$ while true do ; echo $DUMMY > /dev/kmsg ; done
The "server freeze" depends on where memblock_alloc does allocate printk buffer :
if the buffer overflow is inside another kernel allocation the problem may not
be revealed, else the server may hangs up.
Signed-off-by: Alexandre SIMON <Alexandre.Simon@univ-lorraine.fr>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit f44310b98ddb7f0d06550d73ed67df5865e3eda5 upstream.
I get the following warning every day with v3.7, once or
twice a day:
[ 2235.186027] WARNING: at /mnt/sda7/kernel/linux/arch/x86/kernel/apic/ipi.c:109 default_send_IPI_mask_logical+0x2f/0xb8()
As explained by Linus as well:
|
| Once we've done the "list_add_rcu()" to add it to the
| queue, we can have (another) IPI to the target CPU that can
| now see it and clear the mask.
|
| So by the time we get to actually send the IPI, the mask might
| have been cleared by another IPI.
|
This patch also fixes a system hang problem, if the data->cpumask
gets cleared after passing this point:
if (WARN_ONCE(!mask, "empty IPI mask"))
return;
then the problem in commit 83d349f35e1a ("x86: don't send an IPI to
the empty set of CPU's") will happen again.
Signed-off-by: Wang YanQing <udknight@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Jan Beulich <jbeulich@suse.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: peterz@infradead.org
Cc: mina86@mina86.org
Cc: srivatsa.bhat@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/20130126075357.GA3205@udknight
[ Tidied up the changelog and the comment in the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c1bf08ac26e92122faab9f6c32ea8aba94612dae upstream.
If some other kernel subsystem has a module notifier, and adds a kprobe
to a ftrace mcount point (now that kprobes work on ftrace points),
when the ftrace notifier runs it will fail and disable ftrace, as well
as kprobes that are attached to ftrace points.
Here's the error:
WARNING: at kernel/trace/ftrace.c:1618 ftrace_bug+0x239/0x280()
Hardware name: Bochs
Modules linked in: fat(+) stap_56d28a51b3fe546293ca0700b10bcb29__8059(F) nfsv4 auth_rpcgss nfs dns_resolver fscache xt_nat iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack lockd sunrpc ppdev parport_pc parport microcode virtio_net i2c_piix4 drm_kms_helper ttm drm i2c_core [last unloaded: bid_shared]
Pid: 8068, comm: modprobe Tainted: GF 3.7.0-0.rc8.git0.1.fc19.x86_64 #1
Call Trace:
[<ffffffff8105e70f>] warn_slowpath_common+0x7f/0xc0
[<ffffffff81134106>] ? __probe_kernel_read+0x46/0x70
[<ffffffffa0180000>] ? 0xffffffffa017ffff
[<ffffffffa0180000>] ? 0xffffffffa017ffff
[<ffffffff8105e76a>] warn_slowpath_null+0x1a/0x20
[<ffffffff810fd189>] ftrace_bug+0x239/0x280
[<ffffffff810fd626>] ftrace_process_locs+0x376/0x520
[<ffffffff810fefb7>] ftrace_module_notify+0x47/0x50
[<ffffffff8163912d>] notifier_call_chain+0x4d/0x70
[<ffffffff810882f8>] __blocking_notifier_call_chain+0x58/0x80
[<ffffffff81088336>] blocking_notifier_call_chain+0x16/0x20
[<ffffffff810c2a23>] sys_init_module+0x73/0x220
[<ffffffff8163d719>] system_call_fastpath+0x16/0x1b
---[ end trace 9ef46351e53bbf80 ]---
ftrace failed to modify [<ffffffffa0180000>] init_once+0x0/0x20 [fat]
actual: cc:bb:d2:4b:e1
A kprobe was added to the init_once() function in the fat module on load.
But this happened before ftrace could have touched the code. As ftrace
didn't run yet, the kprobe system had no idea it was a ftrace point and
simply added a breakpoint to the code (0xcc in the cc:bb:d2:4b:e1).
Then when ftrace went to modify the location from a call to mcount/fentry
into a nop, it didn't see a call op, but instead it saw the breakpoint op
and not knowing what to do with it, ftrace shut itself down.
The solution is to simply give the ftrace module notifier the max priority.
This should have been done regardless, as the core code ftrace modification
also happens very early on in boot up. This makes the module modification
closer to core modification.
Link: http://lkml.kernel.org/r/20130107140333.593683061@goodmis.org
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reported-by: Frank Ch. Eigler <fche@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 54f7be5b831254199522523ccab4c3d954bbf576 upstream.
The function rb_set_head_page() searches the list of ring buffer
pages for a the page that has the HEAD page flag set. If it does
not find it, it will do a WARN_ON(), disable the ring buffer and
return NULL, as this should never happen.
But if this bug happens to happen, not all callers of this function
can handle a NULL pointer being returned from it. That needs to be
fixed.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 175431635ec09b1d1bba04979b006b99e8305a83 upstream.
cgroup_create_dir() does weird dancing with dentry refcnt. On
success, it gets and then puts it achieving nothing. On failure, it
puts but there isn't no matching get anywhere leading to the following
oops if cgroup_create_file() fails for whatever reason.
------------[ cut here ]------------
kernel BUG at /work/os/work/fs/dcache.c:552!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Modules linked in:
CPU 2
Pid: 697, comm: mkdir Not tainted 3.7.0-rc4-work+ #3 Bochs Bochs
RIP: 0010:[<ffffffff811d9c0c>] [<ffffffff811d9c0c>] dput+0x1dc/0x1e0
RSP: 0018:ffff88001a3ebef8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88000e5b1ef8 RCX: 0000000000000403
RDX: 0000000000000303 RSI: 2000000000000000 RDI: ffff88000e5b1f58
RBP: ffff88001a3ebf18 R08: ffffffff82c76960 R09: 0000000000000001
R10: ffff880015022080 R11: ffd9bed70f48a041 R12: 00000000ffffffea
R13: 0000000000000001 R14: ffff88000e5b1f58 R15: 00007fff57656d60
FS: 00007ff05fcb3800(0000) GS:ffff88001fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004046f0 CR3: 000000001315f000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process mkdir (pid: 697, threadinfo ffff88001a3ea000, task ffff880015022080)
Stack:
ffff88001a3ebf48 00000000ffffffea 0000000000000001 0000000000000000
ffff88001a3ebf38 ffffffff811cc889 0000000000000001 ffff88000e5b1ef8
ffff88001a3ebf68 ffffffff811d1fc9 ffff8800198d7f18 ffff880019106ef8
Call Trace:
[<ffffffff811cc889>] done_path_create+0x19/0x50
[<ffffffff811d1fc9>] sys_mkdirat+0x59/0x80
[<ffffffff811d2009>] sys_mkdir+0x19/0x20
[<ffffffff81be1e02>] system_call_fastpath+0x16/0x1b
Code: 00 48 8d 90 18 01 00 00 48 89 93 c0 00 00 00 4c 89 a0 18 01 00 00 48 8b 83 a0 00 00 00 83 80 28 01 00 00 01 e8 e6 6f a0 00 eb 92 <0f> 0b 66 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 49 89 fe 41
RIP [<ffffffff811d9c0c>] dput+0x1dc/0x1e0
RSP <ffff88001a3ebef8>
---[ end trace 1277bcfd9561ddb0 ]---
Fix it by dropping the unnecessary dget/dput() pair.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 70f77b3f7ec010ff9624c1f2e39a81babc9e2429 upstream.
There is a typo here where '&' is used instead of '|' and it turns the
statement into a noop. The original code is equivalent to:
iter->flags &= ~((1 << 2) & (1 << 4));
Link: http://lkml.kernel.org/r/20120609161027.GD6488@elgon.mountain
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 878d7439d0f45a95869e417576774673d1fa243f upstream.
Commit 29c00b4a1d9e27 (rcu: Add event-tracing for RCU callback
invocation) added a regression in rcu_do_batch()
Under stress, RCU is supposed to allow to process all items in queue,
instead of a batch of 10 items (blimit), but an integer overflow makes
the effective limit being 1. So, unless there is frequent idle periods
(during which RCU ignores batch limits), RCU can be forced into a
state where it cannot keep up with the callback-generation rate,
eventually resulting in OOM.
This commit therefore converts a few variables in rcu_do_batch() from
int to long to fix this problem, along with the module parameters
controlling the batch limits.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[bwh: Backported to 3.2:
- Adjust context
- Module parameters remain hidden from sysfs]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 04aa530ec04f61875b99c12721162e2964e3318c upstream.
Sankara reported that the genirq core code fails to adjust the
affinity of an interrupt thread in several cases:
1) On request/setup_irq() the call to setup_affinity() happens before
the new action is registered, so the new thread is not notified.
2) For secondary shared interrupts nothing notifies the new thread to
change its affinity.
3) Interrupts which have the IRQ_NO_BALANCE flag set are not moving
the thread either.
Fix this by setting the thread affinity flag right on thread creation
time. This ensures that under all circumstances the thread moves to
the right place. Requires a check in irq_thread_check_affinity for an
existing affinity mask (CONFIG_CPU_MASK_OFFSTACK=y)
Reported-and-tested-by: Sankara Muthukrishnan <sankara.m@gmail.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1209041738200.2754@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
css_set
commit 5edee61edeaaebafe584f8fb7074c1ef4658596b upstream.
cgroup core has a bug which violates a basic rule about event
notifications - when a new entity needs to be added, you add that to
the notification list first and then make the new entity conform to
the current state. If done in the reverse order, an event happening
inbetween will be lost.
cgroup_subsys->fork() is invoked way before the new task is added to
the css_set. Currently, cgroup_freezer is the only user of ->fork()
and uses it to make new tasks conform to the current state of the
freezer. If FROZEN state is requested while fork is in progress
between cgroup_fork_callbacks() and cgroup_post_fork(), the child
could escape freezing - the cgroup isn't frozen when ->fork() is
called and the freezer couldn't see the new task on the css_set.
This patch moves cgroup_subsys->fork() invocation to
cgroup_post_fork() after the new task is added to the css_set.
cgroup_fork_callbacks() is removed.
Because now a task may be migrated during cgroup_subsys->fork(),
freezer_fork() is updated so that it adheres to the usual RCU locking
and the rather pointless comment on why locking can be different there
is removed (if it doesn't make anything simpler, why even bother?).
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
[bwh: Backported to 3.2:
- Adjust context
- Iterate over first CGROUP_BUILTIN_SUBSYS_COUNT elements of subsys
- cgroup_subsys::fork takes cgroup_subsys pointer as first parameter]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit fd8ef11730f1d03d5d6555aa53126e9e34f52f12 upstream.
This reverts commit 800d4d30c8f20bd728e5741a3b77c4859a613f7c.
Between commits 8323f26ce342 ("sched: Fix race in task_group()") and
800d4d30c8f2 ("sched, autogroup: Stop going ahead if autogroup is
disabled"), autogroup is a wreck.
With both applied, all you have to do to crash a box is disable
autogroup during boot up, then reboot.. boom, NULL pointer dereference
due to commit 800d4d30c8f2 not allowing autogroup to move things, and
commit 8323f26ce342 making that the only way to switch runqueues:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff81063ac0>] effective_load.isra.43+0x50/0x90
Pid: 7047, comm: systemd-user-se Not tainted 3.6.8-smp #7 MEDIONPC MS-7502/MS-7502
RIP: effective_load.isra.43+0x50/0x90
Process systemd-user-se (pid: 7047, threadinfo ffff880221dde000, task ffff88022618b3a0)
Call Trace:
select_task_rq_fair+0x255/0x780
try_to_wake_up+0x156/0x2c0
wake_up_state+0xb/0x10
signal_wake_up+0x28/0x40
complete_signal+0x1d6/0x250
__send_signal+0x170/0x310
send_signal+0x40/0x80
do_send_sig_info+0x47/0x90
group_send_sig_info+0x4a/0x70
kill_pid_info+0x3a/0x60
sys_kill+0x97/0x1a0
? vfs_read+0x120/0x160
? sys_read+0x45/0x90
system_call_fastpath+0x16/0x1b
Code: 49 0f af 41 50 31 d2 49 f7 f0 48 83 f8 01 48 0f 46 c6 48 2b 07 48 8b bf 40 01 00 00 48 85 ff 74 3a 45 31 c0 48 8b 8f 50 01 00 00 <48> 8b 11 4c 8b 89 80 00 00 00 49 89 d2 48 01 d0 45 8b 59 58 4c
RIP [<ffffffff81063ac0>] effective_load.isra.43+0x50/0x90
RSP <ffff880221ddfbd8>
CR2: 0000000000000000
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Yong Zhang <yong.zhang0@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust filenames]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 31fd84b95eb211d5db460a1dda85e004800a7b52 upstream.
The min/max call needed to have explicit types on some architectures
(e.g. mn10300). Use clamp_t instead to avoid the warning:
kernel/sys.c: In function 'override_release':
kernel/sys.c:1287:10: warning: comparison of distinct pointer types lacks a cast [enabled by default]
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit fc4b514f2727f74a4587c31db87e0e93465518c3 upstream.
8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().
Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work. 8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().
Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>
[Shuah Khan: This change is back-ported from upstream change that
converted BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s.]
Tested on Stable Trees: 3.0.x, 3.4.x, 3.6.x
Signed-off-by: Shuah Khan <shuah.khan@hp.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 412d32e6c98527078779e5b515823b2810e40324 upstream.
A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again. In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.
PID: 18105 TASK: ffff8807fd412180 CPU: 5 COMMAND: "kdmflush"
#0 [ffff8808157e7670] schedule at ffffffff8143f489
#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
#5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
#6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
#7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
#8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
#9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
[exception RIP: kernel_thread_helper]
RIP: ffffffff8144a5c0 RSP: ffff8808157e7f58 RFLAGS: 00000202
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8107af60 RDI: ffff8803ee491d18
RBP: 0000000000000000 R8: 0000000000000000 R9: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit aa10990e028cac3d5e255711fb9fb47e00700e35 upstream.
Dave Jones reported a bug with futex_lock_pi() that his trinity test
exposed. Sometime between queue_me() and taking the q.lock_ptr, the
lock_ptr became NULL, resulting in a crash.
While futex_wake() is careful to not call wake_futex() on futex_q's with
a pi_state or an rt_waiter (which are either waiting for a
futex_unlock_pi() or a PI futex_requeue()), futex_wake_op() and
futex_requeue() do not perform the same test.
Update futex_wake_op() and futex_requeue() to test for q.pi_state and
q.rt_waiter and abort with -EINVAL if detected. To ensure any future
breakage is caught, add a WARN() to wake_futex() if the same condition
is true.
This fix has seen 3 hours of testing with "trinity -c futex" on an
x86_64 VM with 4 CPUS.
[akpm@linux-foundation.org: tidy up the WARN()]
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Reported-by: Dave Jones <davej@redat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: John Kacur <jkacur@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8ffeb9b0e6369135bf03a073514f571ef10606b9 upstream.
In get_sample_period(), unsigned long is not enough:
watchdog_thresh * 2 * (NSEC_PER_SEC / 5)
case1:
watchdog_thresh is 10 by default, the sample value will be: 0xEE6B2800
case2:
set watchdog_thresh is 20, the sample value will be: 0x1 DCD6 5000
In case2, we need use u64 to express the sample period. Otherwise,
changing the threshold thru proc often can not be successful.
Signed-off-by: liu chuansheng <chuansheng.liu@intel.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 59fa6245192159ab5e1e17b8e31f15afa9cff4bf upstream.
Siddhesh analyzed a failure in the take over of pi futexes in case the
owner died and provided a workaround.
See: http://sourceware.org/bugzilla/show_bug.cgi?id=14076
The detailed problem analysis shows:
Futex F is initialized with PTHREAD_PRIO_INHERIT and
PTHREAD_MUTEX_ROBUST_NP attributes.
T1 lock_futex_pi(F);
T2 lock_futex_pi(F);
--> T2 blocks on the futex and creates pi_state which is associated
to T1.
T1 exits
--> exit_robust_list() runs
--> Futex F userspace value TID field is set to 0 and
FUTEX_OWNER_DIED bit is set.
T3 lock_futex_pi(F);
--> Succeeds due to the check for F's userspace TID field == 0
--> Claims ownership of the futex and sets its own TID into the
userspace TID field of futex F
--> returns to user space
T1 --> exit_pi_state_list()
--> Transfers pi_state to waiter T2 and wakes T2 via
rt_mutex_unlock(&pi_state->mutex)
T2 --> acquires pi_state->mutex and gains real ownership of the
pi_state
--> Claims ownership of the futex and sets its own TID into the
userspace TID field of futex F
--> returns to user space
T3 --> observes inconsistent state
This problem is independent of UP/SMP, preemptible/non preemptible
kernels, or process shared vs. private. The only difference is that
certain configurations are more likely to expose it.
So as Siddhesh correctly analyzed the following check in
futex_lock_pi_atomic() is the culprit:
if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
We check the userspace value for a TID value of 0 and take over the
futex unconditionally if that's true.
AFAICT this check is there as it is correct for a different corner
case of futexes: the WAITERS bit became stale.
Now the proposed change
- if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
+ if (unlikely(ownerdied ||
+ !(curval & (FUTEX_TID_MASK | FUTEX_WAITERS)))) {
solves the problem, but it's not obvious why and it wreckages the
"stale WAITERS bit" case.
What happens is, that due to the WAITERS bit being set (T2 is blocked
on that futex) it enforces T3 to go through lookup_pi_state(), which
in the above case returns an existing pi_state and therefor forces T3
to legitimately fight with T2 over the ownership of the pi_state (via
pi_state->mutex). Probelm solved!
Though that does not work for the "WAITERS bit is stale" problem
because if lookup_pi_state() does not find existing pi_state it
returns -ERSCH (due to TID == 0) which causes futex_lock_pi() to
return -ESRCH to user space because the OWNER_DIED bit is not set.
Now there is a different solution to that problem. Do not look at the
user space value at all and enforce a lookup of possibly available
pi_state. If pi_state can be found, then the new incoming locker T3
blocks on that pi_state and legitimately races with T2 to acquire the
rt_mutex and the pi_state and therefor the proper ownership of the
user space futex.
lookup_pi_state() has the correct order of checks. It first tries to
find a pi_state associated with the user space futex and only if that
fails it checks for futex TID value = 0. If no pi_state is available
nothing can create new state at that point because this happens with
the hash bucket lock held.
So the above scenario changes to:
T1 lock_futex_pi(F);
T2 lock_futex_pi(F);
--> T2 blocks on the futex and creates pi_state which is associated
to T1.
T1 exits
--> exit_robust_list() runs
--> Futex F userspace value TID field is set to 0 and
FUTEX_OWNER_DIED bit is set.
T3 lock_futex_pi(F);
--> Finds pi_state and blocks on pi_state->rt_mutex
T1 --> exit_pi_state_list()
--> Transfers pi_state to waiter T2 and wakes it via
rt_mutex_unlock(&pi_state->mutex)
T2 --> acquires pi_state->mutex and gains ownership of the pi_state
--> Claims ownership of the futex and sets its own TID into the
userspace TID field of futex F
--> returns to user space
This covers all gazillion points on which T3 might come in between
T1's exit_robust_list() clearing the TID field and T2 fixing it up. It
also solves the "WAITERS bit stale" problem by forcing the take over.
Another benefit of changing the code this way is that it makes it less
dependent on untrusted user space values and therefor minimizes the
possible wreckage which might be inflicted.
As usual after staring for too long at the futex code my brain hurts
so much that I really want to ditch that whole optimization of
avoiding the syscall for the non contended case for PI futexes and rip
out the maze of corner case handling code. Unfortunately we can't as
user space relies on that existing behaviour, but at least thinking
about it helps me to preserve my mental sanity. Maybe we should
nevertheless :)
Reported-and-tested-by: Siddhesh Poyarekar <siddhesh.poyarekar@gmail.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1210232138540.2756@ionos
Acked-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 59ef28b1f14899b10d6b2682c7057ca00a9a3f47 upstream.
Masaki found and patched a kallsyms issue: the last symbol in a
module's symtab wasn't transferred. This is because we manually copy
the zero'th entry (which is always empty) then copy the rest in a loop
starting at 1, though from src[0]. His fix was minimal, I prefer to
rewrite the loops in more standard form.
There are two loops: one to get the size, and one to copy. Make these
identical: always count entry 0 and any defined symbol in an allocated
non-init section.
This bug exists since the following commit was introduced.
module: reduce symbol table for loaded modules (v2)
commit: 4a4962263f07d14660849ec134ee42b63e95ea9a
LKML: http://lkml.org/lkml/2012/10/24/27
Reported-by: Masaki Kimura <masaki.kimura.kz@hitachi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
[bwh: Backported to 3.2: we're still using a bitmap to compress the string
table]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 2702b1526c7278c4d65d78de209a465d4de2885e upstream.
Calling uname() with the UNAME26 personality set allows a leak of kernel
stack contents. This fixes it by defensively calculating the length of
copy_to_user() call, making the len argument unsigned, and initializing
the stack buffer to zero (now technically unneeded, but hey, overkill).
CVE-2012-0957
Reported-by: PaX Team <pageexec@freemail.hu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1f5320d5972aa50d3e8d2b227b636b370e608359 upstream.
notify_on_release must be triggered when the last process in a cgroup is
move to another. But if the first(and only) process in a cgroup is moved to
another, notify_on_release is not triggered.
# mkdir /cgroup/cpu/SRC
# mkdir /cgroup/cpu/DST
#
# echo 1 >/cgroup/cpu/SRC/notify_on_release
# echo 1 >/cgroup/cpu/DST/notify_on_release
#
# sleep 300 &
[1] 8629
#
# echo 8629 >/cgroup/cpu/SRC/tasks
# echo 8629 >/cgroup/cpu/DST/tasks
-> notify_on_release for /SRC must be triggered at this point,
but it isn't.
This is because put_css_set() is called before setting CGRP_RELEASABLE
in cgroup_task_migrate(), and is a regression introduce by the
commit:74a1166d(cgroups: make procs file writable), which was merged
into v3.0.
Cc: Ben Blum <bblum@andrew.cmu.edu>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5b3900cd409466c0070b234d941650685ad0c791 upstream.
We fixed a bunch of integer overflows in timekeeping code during the 3.6
cycle. I did an audit based on that and found this potential overflow.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20121009071823.GA19159@elgon.mountain
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.2: adjust context; use timekeeper.raw_interval]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 26cff4e2aa4d666dc6a120ea34336b5057e3e187 upstream.
Adding two (or more) timers with large values for "expires" (they have
to reside within tv5 in the same list) leads to endless looping
between cascade() and internal_add_timer() in case CONFIG_BASE_SMALL
is one and jiffies are crossing the value 1 << 18. The bug was
introduced between 2.6.11 and 2.6.12 (and survived for quite some
time).
This patch ensures that when cascade() is called timers within tv5 are
not added endlessly to their own list again, instead they are added to
the next lower tv level tv4 (as expected).
Signed-off-by: Christian Hildner <christian.hildner@siemens.com>
Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com>
Link: http://lkml.kernel.org/r/98673C87CB31274881CFFE0B65ECC87B0F5FC1963E@DEFTHW99EA4MSX.ww902.siemens.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|