Age | Commit message (Collapse) | Author |
|
This reverts commit 48f0f14ffb6ff4852922994d11fbda418d40100e which was
commit 749c8814f08f12baa4a9c2812a7c6ede7d69507d upstream.
It seems to be misapplied, and not needed for 3.4-stable
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Charles Wang <muming.wq@taobao.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4b0c0f294f60abcdd20994a8341a95c8ac5eeb96 upstream.
Prarit reported a crash on CPU offline/online. The reason is that on
CPU down the NOHZ related per cpu data of the dead cpu is not cleaned
up. If at cpu online an interrupt happens before the per cpu tick
device is registered the irq_enter() check potentially sees stale data
and dereferences a NULL pointer.
Cleanup the data after the cpu is dead.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: Mike Galbraith <bitbucket@online.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305031451561.2886@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6f7a05d7018de222e40ca003721037a530979974 upstream.
Vitaliy reported that a per cpu HPET timer interrupt crashes the
system during hibernation. What happens is that the per cpu HPET timer
gets shut down when the nonboot cpus are stopped. When the nonboot
cpus are onlined again the HPET code sets up the MSI interrupt which
fires before the clock event device is registered. The event handler
is still set to hrtimer_interrupt, which then crashes the machine due
to highres mode not being active.
See http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=700333
There is no real good way to avoid that in the HPET code. The HPET
code alrady has a mechanism to detect spurious interrupts when event
handler == NULL for a similar reason.
We can handle that in the clockevent/tick layer and replace the
previous functional handler with a dummy handler like we do in
tick_setup_new_device().
The original clockevents code did this in clockevents_exchange_device(),
but that got removed by commit 7c1e76897 (clockevents: prevent
clockevent event_handler ending up handler_noop) which forgot to fix
it up in tick_shutdown(). Same issue with the broadcast device.
Reported-by: Vitaliy Fillipov <vitalif@yourcmc.ru>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: 700333@bugs.debian.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e5ab012c3271990e8457055c25cafddc1ae8aa6b upstream.
As it stands, irq_exit() may or may not be called with
irqs disabled, depending on __ARCH_IRQ_EXIT_IRQS_DISABLED
that the arch can define.
It makes tick_nohz_irq_exit() unsafe. For example two
interrupts can race in tick_nohz_stop_sched_tick(): the inner
most one computes the expiring time on top of the timer list,
then it's interrupted right before reprogramming the
clock. The new interrupt enqueues a new timer list timer,
it reprogram the clock to take it into account and it exits.
The CPUs resumes the inner most interrupt and performs the clock
reprogramming without considering the new timer list timer.
This regression has been introduced by:
280f06774afedf849f0b34248ed6aff57d0f6908
("nohz: Separate out irq exit and idle loop dyntick logic")
Let's fix it right now with the appropriate protections.
A saner long term solution will be to remove
__ARCH_IRQ_EXIT_IRQS_DISABLED and mandate that irq_exit() is called
with interrupts disabled.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Link: http://lkml.kernel.org/r/1361373336-11337-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Lingzhu Xiang <lxiang@redhat.com>
Reviewed-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a7dc19b8652c862d5b7c4d2339bd3c428bd29c4a upstream.
Currently tick_check_broadcast_device doesn't reject clock_event_devices
with CLOCK_EVT_FEAT_DUMMY, and may select them in preference to real
hardware if they have a higher rating value. In this situation, the
dummy timer is responsible for broadcasting to itself, and the core
clockevents code may attempt to call non-existent callbacks for
programming the dummy, eventually leading to a panic.
This patch makes tick_check_broadcast_device always reject dummy timers,
preventing this problem.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Jon Medhurst (Tixy) <tixy@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b3900cd409466c0070b234d941650685ad0c791 upstream.
We fixed a bunch of integer overflows in timekeeping code during the 3.6
cycle. I did an audit based on that and found this potential overflow.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20121009071823.GA19159@elgon.mountain
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ben Hutchings <ben@decadent.org.uk>
[ herton: adapt for 3.5, timekeeper instead of tk pointer ]
Signed-off-by: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cee58483cf56e0ba355fdd97ff5e8925329aa936 upstream
Andreas Bombe reported that the added ktime_t overflow checking added to
timespec_valid in commit 4e8b14526ca7 ("time: Improve sanity checking of
timekeeping inputs") was causing problems with X.org because it caused
timeouts larger then KTIME_T to be invalid.
Previously, these large timeouts would be clamped to KTIME_MAX and would
never expire, which is valid.
This patch splits the ktime_t overflow checking into a new
timespec_valid_strict function, and converts the timekeeping codes
internal checking to use this more strict function.
Reported-and-tested-by: Andreas Bombe <aeb@debian.org>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf2ac312195155511a0f79325515cbb61929898a upstream.
If update_wall_time() is called and the current offset isn't large
enough to accumulate, avoid re-calling timekeeping_adjust which may
change the clock freq and can cause 1ns inconsistencies with
CLOCK_REALTIME_COARSE/CLOCK_MONOTONIC_COARSE.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1345595449-34965-5-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4e8b14526ca7fb046a81c94002c1c43b6fdf0e9b upstream.
Unexpected behavior could occur if the time is set to a value large
enough to overflow a 64bit ktime_t (which is something larger then the
year 2262).
Also unexpected behavior could occur if large negative offsets are
injected via adjtimex.
So this patch improves the sanity check timekeeping inputs by
improving the timespec_valid() check, and then makes better use of
timespec_valid() to make sure we don't set the time to an invalid
negative value or one that overflows ktime_t.
Note: This does not protect from setting the time close to overflowing
ktime_t and then letting natural accumulation cause the overflow.
Reported-by: CAI Qian <caiqian@redhat.com>
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 749c8814f08f12baa4a9c2812a7c6ede7d69507d upstream.
Azat Khuzhin reported high loadavg in Linux v3.6
After checking the upstream scheduler code, I found Peter's commit:
5167e8d5417b sched/nohz: Rewrite and fix load-avg computation -- again
not fully applied, missing the call to calc_load_exit_idle().
After that idle exit in sampling window will always be calculated
to non-idle, and the load will be higher than normal.
This patch adds the missing call to calc_load_exit_idle().
Signed-off-by: Charles Wang <muming.wq@taobao.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345449754-27130-1-git-send-email-muming.wq@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6b1859dba01c7d512b72d77e3fd7da8354235189 upstream.
In commit 6b43ae8a619d17c4935c3320d2ef9e92bdeed05d, I
introduced a bug that kept the STA_INS or STA_DEL bit
from being cleared from time_status via adjtimex()
without forcing STA_PLL first.
Usually once the STA_INS is set, it isn't cleared
until the leap second is applied, so its unlikely this
affected anyone. However during testing I noticed it
took some effort to cancel a leap second once STA_INS
was set.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a backport of 3e997130bd2e8c6f5aaa49d6e3161d4d29b43ab0
The leap second rework unearthed another issue of inconsistent data.
On timekeeping_resume() the timekeeper data is updated, but nothing
calls timekeeping_update(), so now the update code in the timer
interrupt sees stale values.
This has been the case before those changes, but then the timer
interrupt was using stale data as well so this went unnoticed for quite
some time.
Add the missing update call, so all the data is consistent everywhere.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Reported-and-tested-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Reported-and-tested-by: Martin Steigerwald <Martin@lichtvoll.de>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>,
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a backport of f6c06abfb3972ad4914cef57d8348fcb2932bc3b
To finally fix the infamous leap second issue and other race windows
caused by functions which change the offsets between the various time
bases (CLOCK_MONOTONIC, CLOCK_REALTIME and CLOCK_BOOTTIME) we need a
function which atomically gets the current monotonic time and updates
the offsets of CLOCK_REALTIME and CLOCK_BOOTTIME with minimalistic
overhead. The previous patch which provides ktime_t offsets allows us
to make this function almost as cheap as ktime_get() which is going to
be replaced in hrtimer_interrupt().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-7-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a backport of 5b9fe759a678e05be4937ddf03d50e950207c1c0
We need to update the hrtimer clock offsets from the hrtimer interrupt
context. To avoid conversions from timespec to ktime_t maintain a
ktime_t based representation of those offsets in the timekeeper. This
puts the conversion overhead into the code which updates the
underlying offsets and provides fast accessible values in the hrtimer
interrupt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-4-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a backport of 4873fa070ae84a4115f0b3c9dfabc224f1bc7c51
The timekeeping code misses an update of the hrtimer subsystem after a
leap second happened. Due to that timers based on CLOCK_REALTIME are
either expiring a second early or late depending on whether a leap
second has been inserted or deleted until an operation is initiated
which causes that update. Unless the update happens by some other
means this discrepancy between the timekeeping and the hrtimer data
stays forever and timers are expired either early or late.
The reported immediate workaround - $ data -s "`date`" - is causing a
call to clock_was_set() which updates the hrtimer data structures.
See: http://www.sheeri.com/content/mysql-and-leap-second-high-cpu-and-fix
Add the missing clock_was_set() call to update_wall_time() in case of
a leap second event. The actual update is deferred to softirq context
as the necessary smp function call cannot be invoked from hard
interrupt context.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-3-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5167e8d5417bf5c322a703d2927daec727ea40dd upstream.
Thanks to Charles Wang for spotting the defects in the current code:
- If we go idle during the sample window -- after sampling, we get a
negative bias because we can negate our own sample.
- If we wake up during the sample window we get a positive bias
because we push the sample to a known active period.
So rewrite the entire nohz load-avg muck once again, now adding
copious documentation to the code.
Reported-and-tested-by: Doug Smythies <dsmythies@telus.net>
Reported-and-tested-by: Charles Wang <muming.wq@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dd48d708ff3e917f6d6b6c2b696c3f18c019feed upstream.
When repeating a UTC time value during a leap second (when the UTC
time should be 23:59:60), the TAI timescale should not stop. The kernel
NTP code increments the TAI offset one second too late. This patch fixes
the issue by incrementing the offset during the leap second itself.
Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fad0c66c4bb836d57a5f125ecd38bed653ca863a upstream.
Commit 6b43ae8a61 (ntp: Fix leap-second hrtimer livelock) broke the
leapsecond update of CLOCK_MONOTONIC. The missing leapsecond update to
wall_to_monotonic causes discontinuities in CLOCK_MONOTONIC.
Adjust wall_to_monotonic when NTP inserted a leapsecond.
Reported-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Richard Cochran <richardcochran@gmail.com>
Link: http://lkml.kernel.org/r/1338400497-12420-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
During resume, tick_resume_broadcast() programs the broadcast timer in
oneshot mode unconditionally. On the platforms where broadcast timer
is not really required, this will generate spurious broadcast timer
ticks upon resume. For example, on the always running apic timer
platforms with HPET, I see spurious hpet tick once every ~5minutes
(which is the 32-bit hpet counter wraparound time).
Similar to boot time, during resume make the oneshot mode setting of
the broadcast clock event device conditional on the state of active
broadcast users.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: svenjoac@gmx.de
Cc: torvalds@linux-foundation.org
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/1334802459.28674.209.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Santosh found another trap when we avoid to initialize the broadcast
device in the switch_to_oneshot code. The broadcast device might be
still in SHUTDOWN state when we actually need to use it. That
obviously breaks, as set_next_event() is called on a shutdown
device. This did not break on x86, but Suresh analyzed it:
From the review, most likely on Sven's system we are force enabling
the hpet using the pci quirk's method very late. And in this case,
hpet_clockevent (which will be global_clock_event) handler can be
null, specifically as this platform might not be using deeper c-states
and using the reliable APIC timer.
Prior to commit 'fa4da365bc7772c', that handler will be set to
'tick_handle_oneshot_broadcast' when we switch the broadcast timer to
oneshot mode, even though we don't use it. Post commit
'fa4da365bc7772c', we stopped switching the broadcast mode to oneshot
as this is not really needed and his platform's global_clock_event's
handler will remain null. While on my SNB laptop, same is set to
'clockevents_handle_noop' because hpet gets enabled very early. (noop
handler on my platform set when the early enabled hpet timer gets
replaced by the lapic timer).
But the commit 'fa4da365bc7772c' tracked the broadcast timer mode in
the SW as oneshot, even though it didn't touch the HW timer. During
resume however, tick_resume_broadcast() saw the SW broadcast mode as
oneshot and actually programmed the broadcast device also into oneshot
mode. So this triggered the null pointer de-reference after the hpet
wraps around and depending on what the hpet counter is set to. On the
normal platforms where hpet gets enabled early we should be seeing a
spurious interrupt (in my SNB laptop I see one spurious interrupt
after around 5 minutes ;) which is 32-bit hpet counter wraparound
time), but that's a separate issue.
Enforce the mode setting when trying to set an event.
Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: torvalds@linux-foundation.org
Cc: svenjoac@gmx.de
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181723350.2542@ionos
|
|
Sven Joachim reported, that suspend/resume on rc3 trips over a NULL
pointer dereference. Linus spotted the clockevent handler being NULL.
commit fa4da365b(clockevents: tTack broadcast device mode change in
tick_broadcast_switch_to_oneshot()) tried to fix a problem with the
broadcast device setup, which was introduced in commit 77b0d60c5(
clockevents: Leave the broadcast device in shutdown mode when not
needed).
The initial commit avoided to set up the broadcast device when no
broadcast request bits were set, but that left the broadcast device
disfunctional. In consequence deep idle states which need the
broadcast device were not woken up.
commit fa4da365b tried to fix that by initializing the state of the
broadcast facility, but that missed the fact, that nothing initializes
the event handler and some other state of the underlying clock event
device.
The fix is to revert both commits and make only the mode setting of
the clock event device conditional on the state of active broadcast
users.
That initializes everything except the low level device mode, but this
happens when the broadcast functionality is invoked by deep idle.
Reported-and-tested-by: Sven Joachim <svenjoac@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181205540.2542@ionos
|
|
tick_broadcast_switch_to_oneshot()
In the commit 77b0d60c5adf39c74039e2142a1d3cd1e4d53799,
"clockevents: Leave the broadcast device in shutdown mode when not needed",
we were bailing out too quickly in tick_broadcast_switch_to_oneshot(),
with out tracking the broadcast device mode change to 'TICKDEV_MODE_ONESHOT'.
This breaks the platforms which need broadcast device oneshot services during
deep idle states. tick_broadcast_oneshot_control() thinks that it is
in periodic mode and fails to take proper decisions based on the
CLOCK_EVT_NOTIFY_BROADCAST_[ENTER, EXIT] notifications during deep
idle entry/exit.
Fix this by tracking the broadcast device mode as 'TICKDEV_MODE_ONESHOT',
before leaving the broadcast HW device in shutdown mode if there are no active
requests for the moment.
Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: johnstul@us.ibm.com
Link: http://lkml.kernel.org/r/1334011304.12400.81.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Fix tick_nohz_restart() to not use a stale ktime_t "now" value when
calling tick_do_update_jiffies64(now).
If we reach this point in the loop it means that we crossed a tick
boundary since we grabbed the "now" timestamp, so at this point "now"
refers to a time in the old jiffy, so using the old value for "now" is
incorrect, and is likely to give us a stale jiffies value.
In particular, the first time through the loop the
tick_do_update_jiffies64(now) call is always a no-op, since the
caller, tick_nohz_restart_sched_tick(), will have already called
tick_do_update_jiffies64(now) with that "now" value.
Note that tick_nohz_stop_sched_tick() already uses the correct
approach: when we notice we cross a jiffy boundary, grab a new
timestamp with ktime_get(), and *then* update jiffies.
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1332875377-23014-1-git-send-email-ncardwell@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
This option has been selected from arch code as it was assumed that
it's necessary to support oneshot mode clockevent devices. But it's
just a core internal helper to compile tick-oneshot.c if NOHZ or
HIG_RES_TIMERS are selected.
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer core updates from Thomas Gleixner.
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ia64: vsyscall: Add missing paranthesis
alarmtimer: Don't call rtc_timer_init() when CONFIG_RTC_CLASS=n
x86: vdso: Put declaration before code
x86-64: Inline vdso clock_gettime helpers
x86-64: Simplify and optimize vdso clock_gettime monotonic variants
kernel-time: fix s/then/than/ spelling errors
time: remove no_sync_cmos_clock
time: Avoid scary backtraces when warning of > 11% adj
alarmtimer: Make sure we initialize the rtctimer
ntp: Fix leap-second hrtimer livelock
x86, tsc: Skip refined tsc calibration on systems with reliable TSC
rtc: Provide flag for rtc devices that don't support UIE
ia64: vsyscall: Use seqcount instead of seqlock
x86: vdso: Use seqcount instead of seqlock
x86: vdso: Remove bogus locking in update_vsyscall_tz()
time: Remove bogus comments
time: Fix change_clocksource locking
time: x86: Fix race switching from vsyscall to non-vsyscall clock
|
|
rtc_timer_init() is not available when CONFIG_RTC_CLASS=n. Provide a
proper wrapper in the RTC section of alarmtimer.c
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
|
|
Use than for comparisons, like more than.
CC: John Stultz <john.stultz@linaro.org>
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Commit 9863c90f682fba34cdc26c3437e8c00da6c83fa4 (x86, vmware: Remove
deprecated VMI kernel support) removed the only place which set
no_sync_cmos_clock. Since that commit, this variable is never set.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Folks have been getting a number of warnings about time
adjustments > 11%. The WARN_ON leaves a big useless backtrace
so this patch removes it for a printk_once().
I'm still working to narrow down the cause of the > 11% adjustment.
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
jonghwan Choi reported seeing warnings with the alarmtimer
code at suspend/resume time, and pointed out that the
rtctimer isn't being properly initialized.
This patch corrects this issue.
Reported-by: jonghwan Choi <jhbird.choi@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
Pull input subsystem updates from Dmitry Torokhov:
"- we finally merged driver for USB version of Synaptics touchpads
(I guess most commonly found in IBM/Lenovo keyboard/touchpad combo);
- a bunch of new drivers for embedded platforms (Cypress
touchscreens, DA9052 OnKey, MAX8997-haptic, Ilitek ILI210x
touchscreens, TI touchscreen);
- input core allows clients to specify desired clock source for
timestamps on input events (EVIOCSCLOCKID ioctl);
- input core allows querying state of all MT slots for given event
code via EVIOCGMTSLOTS ioctl;
- various driver fixes and improvements."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input: (45 commits)
Input: ili210x - add support for Ilitek ILI210x based touchscreens
Input: altera_ps2 - use of_match_ptr()
Input: synaptics_usb - switch to module_usb_driver()
Input: convert I2C drivers to use module_i2c_driver()
Input: convert SPI drivers to use module_spi_driver()
Input: omap4-keypad - move platform_data to <linux/platform_data>
Input: kxtj9 - who_am_i check value and initial data rate fixes
Input: add driver support for MAX8997-haptic
Input: tegra-kbc - revise device tree support
Input: of_keymap - add device tree bindings for simple key matrices
Input: wacom - fix physical size calculation for 3rd-gen Bamboo
Input: twl4030-vibra - really switch from #if to #ifdef
Input: hp680_ts_input - ensure arguments to request_irq and free_irq are compatible
Input: max8925_onkey - avoid accessing input device too early
Input: max8925_onkey - allow to be used as a wakeup source
Input: atmel-wm97xx - convert to dev_pm_ops
Input: atmel-wm97xx - set driver owner
Input: add cyttsp touchscreen maintainer entry
Input: cyttsp - remove useless checks in cyttsp_probe()
Input: usbtouchscreen - add support for Data Modul EasyTouch TP 72037
...
|
|
Since commit 7dffa3c673fbcf835cd7be80bb4aec8ad3f51168 the ntp
subsystem has used an hrtimer for triggering the leapsecond
adjustment. However, this can cause a potential livelock.
Thomas diagnosed this as the following pattern:
CPU 0 CPU 1
do_adjtimex()
spin_lock_irq(&ntp_lock);
process_adjtimex_modes(); timer_interrupt()
process_adj_status(); do_timer()
ntp_start_leap_timer(); write_lock(&xtime_lock);
hrtimer_start(); update_wall_time();
hrtimer_reprogram(); ntp_tick_length()
tick_program_event() spin_lock(&ntp_lock);
clockevents_program_event()
ktime_get()
seq = req_seqbegin(xtime_lock);
This patch tries to avoid the problem by reverting back to not using
an hrtimer to inject leapseconds, and instead we handle the leapsecond
processing in the second_overflow() function.
The downside to this change is that on systems that support highres
timers, the leap second processing will occur on a HZ tick boundary,
(ie: ~1-10ms, depending on HZ) after the leap second instead of
possibly sooner (~34us in my tests w/ x86_64 lapic).
This patch applies on top of tip/timers/core.
CC: Sasha Levin <levinsasha928@gmail.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Diagnoised-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
change_clocksource() fails to grab locks or call timekeeping_update(),
which leaves a race window for time inconsistencies.
This adds proper locking and a call to timekeeping_update() to fix this.
CC: Andy Lutomirski <luto@amacapital.net>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
'long secs' is passed as divisor to div_s64, which accepts a 32bit
divisor. On 64bit machines that value is trimmed back from 8 bytes
back to 4, causing a divide by zero when the number is bigger than
(1 << 32) - 1 and all 32 lower bits are 0.
Use div64_long() instead.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: johnstul@us.ibm.com
Link: http://lkml.kernel.org/r/1331829374-31543-2-git-send-email-levinsasha928@gmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
into timers/core
|
|
ts->inidle is set by tick_nohz_idle_enter() and unset by
tick_nohz_idle_exit(). However these two calls are assumed
to be always paired. This means that by the time we call
tick_nohz_idle_exit(), ts->inidle is supposed to be always
set to 1.
Remove the checks for ts->inidle in tick_nohz_idle_exit().
This simplifies a bit the code and improves its debuggability
(ie: ensure the call is paired with a tick_nohz_idle_enter()
call).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/1327427984-23282-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
There is no reason to call update_ts_time_stat from tick_nohz_start_idle
anymore (after e0e37c20 sched: Eliminate the ts->idle_lastupdate field)
when we updated idle_lastupdate unconditionally.
We haven't set idle_active yet and do not provide last_update_time so
the whole call end up being just 2 wasted branches.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Link: http://lkml.kernel.org/r/1322755222-6951-1-git-send-email-mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Platforms with Always Running APIC Timer doesn't use the broadcast timer
but the kernel is leaving the broadcast timer (HPET in this case)
in oneshot mode.
On these platforms, before the switch to oneshot mode, broadcast device is
actually in shutdown mode. Code checks for empty tick_broadcast_mask and
avoids going into the periodic mode.
During switch to oneshot mode, add the same tick_broadcast_mask checks in the
tick_broadcast_switch_to_oneshot() and avoid the broadcast device going into
the oneshot mode.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: john stultz <johnstul@us.ibm.com>
Cc: venki@google.com
Link: http://lkml.kernel.org/r/1320452301.15071.16.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
As noted by Arve and others, since wall time can jump backwards, it is
difficult to use for input because one cannot determine if one event
occurred before another or for how long a key was pressed.
However, the timestamp field is part of the kernel ABI, and cannot be
changed without possibly breaking existing users.
This patch adds a new IOCTL that allows a clockid to be set in the
evdev_client struct that will specify which time base to use for event
timestamps (ie: CLOCK_MONOTONIC instead of CLOCK_REALTIME).
For now we only support CLOCK_MONOTONIC and CLOCK_REALTIME, but
in the future we could support other clockids if appropriate.
The default remains CLOCK_REALTIME, so we don't change the ABI.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Daniel Kurtz <djkurtz@google.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
|
|
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Keep all the interesting data in a single cache line.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Now that ntp.c's locking is reworked, we can remove most
of the xtime_lock usage in timekeeping.c
The remaining xtime_lock presence is really for jiffies access
and the global load calculation.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Use a ntp_lock spin lock to replace xtime_lock locking in ntp.c
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Currently the NTP managed tick_length value is accessed globally,
in preparations for locking cleanups, make sure it is accessed via
a function and mark it as static.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Move ntp_sycned to ntp.c and mark time_status as static.
Also yank function declaration for non-existant function.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Now that all the timekeeping variables are stored in
the timekeeper structure, add a new lock to protect the
structure.
For now, this lock nests under the xtime_lock for writes.
For readers, we don't need to take xtime_lock anymore.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Move global xtime_lock and timekeeping_suspended values up
to the top of timekeeping.c
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
In preparation for locking cleanups, move raw_time into
timekeeper structure.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
In preparation for locking cleanups, move xtime into
timekeeper structure.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|