aboutsummaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)Author
2014-03-23sched: Fix double normalization of vruntimeGeorge McCollister
commit 791c9e0292671a3bfa95286bb5c08129d8605618 upstream. dequeue_entity() is called when p->on_rq and sets se->on_rq = 0 which appears to guarentee that the !se->on_rq condition is met. If the task has done set_current_state(TASK_INTERRUPTIBLE) without schedule() the second condition will be met and vruntime will be incorrectly adjusted twice. In certain cases this can result in the task's vruntime never increasing past the vruntime of other tasks on the CFS' run queue, starving them of CPU time. This patch changes switched_from_fair() to use !p->on_rq instead of !se->on_rq. I'm able to cause a task with a priority of 120 to starve all other tasks with the same priority on an ARM platform running 3.2.51-rt72 PREEMPT RT by writing one character at time to a serial tty (16550 UART) in a tight loop. I'm also able to verify making this change corrects the problem on that platform and kernel version. Signed-off-by: George McCollister <george.mccollister@gmail.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-20sched/nohz: Fix rq->cpu_load calculations some morePeter Zijlstra
commit 5aaa0b7a2ed5b12692c9ffb5222182bd558d3146 upstream. Follow up on commit 556061b00 ("sched/nohz: Fix rq->cpu_load[] calculations") since while that fixed the busy case it regressed the mostly idle case. Add a callback from the nohz exit to also age the rq->cpu_load[] array. This closes the hole where either there was no nohz load balance pass during the nohz, or there was a 'significant' amount of idle time between the last nohz balance and the nohz exit. So we'll update unconditionally from the tick to not insert any accidental 0 load periods while busy, and we try and catch up from nohz idle balance and nohz exit. Both these are still prone to missing a jiffy, but that has always been the case. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: pjt@google.com Cc: Venkatesh Pallipadi <venki@google.com> Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-20sched/nohz: Fix rq->cpu_load[] calculationsPeter Zijlstra
commit 556061b00c9f2fd6a5524b6bde823ef12f299ecf upstream. While investigating why the load-balancer did funny I found that the rq->cpu_load[] tables were completely screwy.. a bit more digging revealed that the updates that got through were missing ticks followed by a catchup of 2 ticks. The catchup assumes the cpu was idle during that time (since only nohz can cause missed ticks and the machine is idle etc..) this means that esp. the higher indices were significantly lower than they ought to be. The reason for this is that its not correct to compare against jiffies on every jiffy on any other cpu than the cpu that updates jiffies. This patch cludges around it by only doing the catch-up stuff from nohz_idle_balance() and doing the regular stuff unconditionally from the tick. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: pjt@google.com Cc: Venkatesh Pallipadi <venki@google.com> Link: http://lkml.kernel.org/n/tip-tp4kj18xdd5aj4vvj0qg55s2@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched/rt: Avoid updating RT entry timeout twice within one tick periodYing Xue
commit 57d2aa00dcec67afa52478730f2b524521af14fb upstream. The issue below was found in 2.6.34-rt rather than mainline rt kernel, but the issue still exists upstream as well. So please let me describe how it was noticed on 2.6.34-rt: On this version, each softirq has its own thread, it means there is at least one RT FIFO task per cpu. The priority of these tasks is set to 49 by default. If user launches an RT FIFO task with priority lower than 49 of softirq RT tasks, it's possible there are two RT FIFO tasks enqueued one cpu runqueue at one moment. By current strategy of balancing RT tasks, when it comes to RT tasks, we really need to put them off to a CPU that they can run on as soon as possible. Even if it means a bit of cache line flushing, we want RT tasks to be run with the least latency. When the user RT FIFO task which just launched before is running, the sched timer tick of the current cpu happens. In this tick period, the timeout value of the user RT task will be updated once. Subsequently, we try to wake up one softirq RT task on its local cpu. As the priority of current user RT task is lower than the softirq RT task, the current task will be preempted by the higher priority softirq RT task. Before preemption, we check to see if current can readily move to a different cpu. If so, we will reschedule to allow the RT push logic to try to move current somewhere else. Whenever the woken softirq RT task runs, it first tries to migrate the user FIFO RT task over to a cpu that is running a task of lesser priority. If migration is done, it will send a reschedule request to the found cpu by IPI interrupt. Once the target cpu responds the IPI interrupt, it will pick the migrated user RT task to preempt its current task. When the user RT task is running on the new cpu, the sched timer tick of the cpu fires. So it will tick the user RT task again. This also means the RT task timeout value will be updated again. As the migration may be done in one tick period, it means the user RT task timeout value will be updated twice within one tick. If we set a limit on the amount of cpu time for the user RT task by setrlimit(RLIMIT_RTTIME), the SIGXCPU signal should be posted upon reaching the soft limit. But exactly when the SIGXCPU signal should be sent depends on the RT task timeout value. In fact the timeout mechanism of sending the SIGXCPU signal assumes the RT task timeout is increased once every tick. However, currently the timeout value may be added twice per tick. So it results in the SIGXCPU signal being sent earlier than expected. To solve this issue, we prevent the timeout value from increasing twice within one tick time by remembering the jiffies value of last updating the timeout. As long as the RT task's jiffies is different with the global jiffies value, we allow its timeout to be updated. Signed-off-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Fan Du <fan.du@windriver.com> Reviewed-by: Yong Zhang <yong.zhang0@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: <peterz@infradead.org> Link: http://lkml.kernel.org/r/1342508623-2887-1-git-send-email-ying.xue@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [ lizf: backported to 3.4: adjust context ] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched: Unthrottle rt runqueues in __disable_runtime()Peter Boonstoppel
commit a4c96ae319b8047f62dedbe1eac79e321c185749 upstream. migrate_tasks() uses _pick_next_task_rt() to get tasks from the real-time runqueues to be migrated. When rt_rq is throttled _pick_next_task_rt() won't return anything, in which case migrate_tasks() can't move all threads over and gets stuck in an infinite loop. Instead unthrottle rt runqueues before migrating tasks. Additionally: move unthrottle_offline_cfs_rqs() to rq_offline_fair() Signed-off-by: Peter Boonstoppel <pboonstoppel@nvidia.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/5FBF8E85CA34454794F0F7ECBA79798F379D3648B7@HQMAIL04.nvidia.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [ lizf: backported to 3.4: adjust context ] Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched,rt: fix isolated CPUs leaving root_task_group indefinitely throttledMike Galbraith
commit e221d028bb08b47e624c5f0a31732c642db9d19a upstream. Root task group bandwidth replenishment must service all CPUs, regardless of where the timer was last started, and regardless of the isolation mechanism, lest 'Quoth the Raven, "Nevermore"' become rt scheduling policy. Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1344326558.6968.25.camel@marge.simpson.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13sched/rt: Fix SCHED_RR across cgroupsColin Cross
commit 454c79999f7eaedcdf4c15c449e43902980cbdf5 upstream. task_tick_rt() has an optimization to only reschedule SCHED_RR tasks if they were the only element on their rq. However, with cgroups a SCHED_RR task could be the only element on its per-cgroup rq but still be competing with other SCHED_RR tasks in its parent's cgroup. In this case, the SCHED_RR task in the child cgroup would never yield at the end of its timeslice. If the child cgroup rt_runtime_us was the same as the parent cgroup rt_runtime_us, the task in the parent cgroup would starve completely. Modify task_tick_rt() to check that the task is the only task on its rq, and that the each of the scheduling entities of its ancestors is also the only entity on its rq. Signed-off-by: Colin Cross <ccross@android.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1337229266-15798-1-git-send-email-ccross@android.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Guarantee new group-entities always have weightPaul Turner
commit 0ac9b1c21874d2490331233b3242085f8151e166 upstream. Currently, group entity load-weights are initialized to zero. This admits some races with respect to the first time they are re-weighted in earlty use. ( Let g[x] denote the se for "g" on cpu "x". ) Suppose that we have root->a and that a enters a throttled state, immediately followed by a[0]->t1 (the only task running on cpu[0]) blocking: put_prev_task(group_cfs_rq(a[0]), t1) put_prev_entity(..., t1) check_cfs_rq_runtime(group_cfs_rq(a[0])) throttle_cfs_rq(group_cfs_rq(a[0])) Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first time: enqueue_task_fair(rq[0], t2) enqueue_entity(group_cfs_rq(b[0]), t2) enqueue_entity_load_avg(group_cfs_rq(b[0]), t2) account_entity_enqueue(group_cfs_ra(b[0]), t2) update_cfs_shares(group_cfs_rq(b[0])) < skipped because b is part of a throttled hierarchy > enqueue_entity(group_cfs_rq(a[0]), b[0]) ... We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0 which violates invariants in several code-paths. Eliminate the possibility of this by initializing group entity weight. Signed-off-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix hrtimer_cancel()/rq->lock deadlockBen Segall
commit 927b54fccbf04207ec92f669dce6806848cbec7d upstream. __start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock, waiting for the hrtimer to finish. However, if sched_cfs_period_timer runs for another loop iteration, the hrtimer can attempt to take rq->lock, resulting in deadlock. Fix this by ensuring that cfs_b->timer_active is cleared only if the _latest_ call to do_sched_cfs_period_timer is returning as idle. Then __start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for that to succeed or timer_active == 1. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix cfs_bandwidth misuse of hrtimer_expires_remainingBen Segall
commit db06e78cc13d70f10877e0557becc88ab3ad2be8 upstream. hrtimer_expires_remaining does not take internal hrtimer locks and thus must be guarded against concurrent __hrtimer_start_range_ns (but returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-15sched: Fix race on toggling cfs_bandwidth_usedBen Segall
commit 1ee14e6c8cddeeb8a490d7b54cd9016e4bb900b4 upstream. When we transition cfs_bandwidth_used to false, any currently throttled groups will incorrectly return false from cfs_rq_throttled. While tg_set_cfs_bandwidth will unthrottle them eventually, currently running code (including at least dequeue_task_fair and distribute_cfs_runtime) will cause errors. Fix this by turning off cfs_bandwidth_used only after unthrottling all cfs_rqs. Tested: toggle bandwidth back and forth on a loaded cgroup. Caused crashes in minutes without the patch, hasn't crashed with it. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-08sched: Avoid throttle_cfs_rq() racing with period_timer stoppingBen Segall
commit f9f9ffc237dd924f048204e8799da74f9ecf40cf upstream. throttle_cfs_rq() doesn't check to make sure that period_timer is running, and while update_curr/assign_cfs_runtime does, a concurrently running period_timer on another cpu could cancel itself between this cpu's update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running in the tg to restart the timer, this causes the cfs_rq to be stranded forever. Fix this by calling __start_cfs_bandwidth() in throttle if the timer is inactive. (Also add some sched_debug lines for cfs_bandwidth.) Tested: make a run/sleep task in a cgroup, loop switching the cgroup between 1ms/100ms quota and unlimited, checking for timer_active=0 and throttled=1 as a failure. With the throttle_cfs_rq() change commented out this fails, with the full patch it passes. Signed-off-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: pjt@google.com Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Chris J Arges <chris.j.arges@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-08sched/rt: Fix rq's cpupri leak while enqueue/dequeue child RT entitiesKirill Tkhai
commit 757dfcaa41844595964f1220f1d33182dae49976 upstream. This patch touches the RT group scheduling case. Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's priority, while rt_rq passed to them may be not the top-level rt_rq. This is wrong, because changing of priority on a child level does not guarantee that the priority is the highest all over the rq. So, this leak makes RT balancing unusable. The short example: the task having the highest priority among all rq's RT tasks (no one other task has the same priority) are waking on a throttle rt_rq. The rq's cpupri is set to the task's priority equivalent, but real rq->rt.highest_prio.curr is less. The patch below fixes the problem. Signed-off-by: Kirill Tkhai <tkhai@yandex.ru> Signed-off-by: Peter Zijlstra <peterz@infradead.org> CC: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-01sched/fair: Fix small race where child->se.parent,cfs_rq might point to ↵Daisuke Nishimura
invalid ones commit 6c9a27f5da9609fca46cb2b183724531b48f71ad upstream. There is a small race between copy_process() and cgroup_attach_task() where child->se.parent,cfs_rq points to invalid (old) ones. parent doing fork() | someone moving the parent to another cgroup -------------------------------+--------------------------------------------- copy_process() + dup_task_struct() -> parent->se is copied to child->se. se.parent,cfs_rq of them point to old ones. cgroup_attach_task() + cgroup_task_migrate() -> parent->cgroup is updated. + cpu_cgroup_attach() + sched_move_task() + task_move_group_fair() +- set_task_rq() -> se.parent,cfs_rq of parent are updated. + cgroup_fork() -> parent->cgroup is copied to child->cgroup. (*1) + sched_fork() + task_fork_fair() -> se.parent,cfs_rq of child are accessed while they point to old ones. (*2) In the worst case, this bug can lead to "use-after-free" and cause a panic, because it's new cgroup's refcount that is incremented at (*1), so the old cgroup(and related data) can be freed before (*2). In fact, a panic caused by this bug was originally caught in RHEL6.4. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff81051e3e>] sched_slice+0x6e/0xa0 [...] Call Trace: [<ffffffff81051f25>] place_entity+0x75/0xa0 [<ffffffff81056a3a>] task_fork_fair+0xaa/0x160 [<ffffffff81063c0b>] sched_fork+0x6b/0x140 [<ffffffff8106c3c2>] copy_process+0x5b2/0x1450 [<ffffffff81063b49>] ? wake_up_new_task+0xd9/0x130 [<ffffffff8106d2f4>] do_fork+0x94/0x460 [<ffffffff81072a9e>] ? sys_wait4+0xae/0x100 [<ffffffff81009598>] sys_clone+0x28/0x30 [<ffffffff8100b393>] stub_clone+0x13/0x20 [<ffffffff8100b072>] ? system_call_fastpath+0x16/0x1b Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/039601ceae06$733d3130$59b79390$@mxp.nes.nec.co.jp Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-08-11sched: Fix the broken sched_rr_get_interval()Zhu Yanhai
commit a59f4e079d19464eebb9b06513a1d4f55fdae5ba upstream. The caller of sched_sliced() should pass se.cfs_rq and se as the arguments, however in sched_rr_get_interval() we gave it rq.cfs_rq and se, which made the following computation obviously wrong. The change was introduced by commit: 77034937dc45 sched: fix crash in sys_sched_rr_get_interval() ... 5 years ago, while it had been the correct 'cfs_rq_of' before the commit. The change seems to be irrelevant to the commit msg, which was to return a 0 timeslice for tasks that are on an idle runqueue. So I believe that was just a plain typo. Signed-off-by: Zhu Yanhai <gaoyang.zyh@taobao.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Turner <pjt@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1357621012-15039-1-git-send-email-gaoyang.zyh@taobao.com [ Since this is an ABI and an old bug, we'll test this via a slow upstream route, to hopefully discover any app breakage. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-04-25sched: Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()sTejun Heo
commit 383efcd00053ec40023010ce5034bd702e7ab373 upstream. try_to_wake_up_local() should only be invoked to wake up another task in the same runqueue and BUG_ON()s are used to enforce the rule. Missing try_to_wake_up_local() can stall workqueue execution but such stalls are likely to be finite either by another work item being queued or the one blocked getting unblocked. There's no reason to trigger BUG while holding rq lock crashing the whole system. Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()s. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130318192234.GD3042@htj.dyndns.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-04-16sched_clock: Prevent 64bit inatomicity on 32bit systemsThomas Gleixner
commit a1cbcaa9ea87b87a96b9fc465951dcf36e459ca2 upstream. The sched_clock_remote() implementation has the following inatomicity problem on 32bit systems when accessing the remote scd->clock, which is a 64bit value. CPU0 CPU1 sched_clock_local() sched_clock_remote(CPU0) ... remote_clock = scd[CPU0]->clock read_low32bit(scd[CPU0]->clock) cmpxchg64(scd->clock,...) read_high32bit(scd[CPU0]->clock) While the update of scd->clock is using an atomic64 mechanism, the readout on the remote cpu is not, which can cause completely bogus readouts. It is a quite rare problem, because it requires the update to hit the narrow race window between the low/high readout and the update must go across the 32bit boundary. The resulting misbehaviour is, that CPU1 will see the sched_clock on CPU1 ~4 seconds ahead of it's own and update CPU1s sched_clock value to this bogus timestamp. This stays that way due to the clamping implementation for about 4 seconds until the synchronization with CLOCK_MONOTONIC undoes the problem. The issue is hard to observe, because it might only result in a less accurate SCHED_OTHER timeslicing behaviour. To create observable damage on realtime scheduling classes, it is necessary that the bogus update of CPU1 sched_clock happens in the context of an realtime thread, which then gets charged 4 seconds of RT runtime, which results in the RT throttler mechanism to trigger and prevent scheduling of RT tasks for a little less than 4 seconds. So this is quite unlikely as well. The issue was quite hard to decode as the reproduction time is between 2 days and 3 weeks and intrusive tracing makes it less likely, but the following trace recorded with trace_clock=global, which uses sched_clock_local(), gave the final hint: <idle>-0 0d..30 400269.477150: hrtimer_cancel: hrtimer=0xf7061e80 <idle>-0 0d..30 400269.477151: hrtimer_start: hrtimer=0xf7061e80 ... irq/20-S-587 1d..32 400273.772118: sched_wakeup: comm= ... target_cpu=0 <idle>-0 0dN.30 400273.772118: hrtimer_cancel: hrtimer=0xf7061e80 What happens is that CPU0 goes idle and invokes sched_clock_idle_sleep_event() which invokes sched_clock_local() and CPU1 runs a remote wakeup for CPU0 at the same time, which invokes sched_remote_clock(). The time jump gets propagated to CPU0 via sched_remote_clock() and stays stale on both cores for ~4 seconds. There are only two other possibilities, which could cause a stale sched clock: 1) ktime_get() which reads out CLOCK_MONOTONIC returns a sporadic wrong value. 2) sched_clock() which reads the TSC returns a sporadic wrong value. #1 can be excluded because sched_clock would continue to increase for one jiffy and then go stale. #2 can be excluded because it would not make the clock jump forward. It would just result in a stale sched_clock for one jiffy. After quite some brain twisting and finding the same pattern on other traces, sched_clock_remote() remained the only place which could cause such a problem and as explained above it's indeed racy on 32bit systems. So while on 64bit systems the readout is atomic, we need to verify the remote readout on 32bit machines. We need to protect the local->clock readout in sched_clock_remote() on 32bit as well because an NMI could hit between the low and the high readout, call sched_clock_local() and modify local->clock. Thanks to Siegfried Wulsch for bearing with my debug requests and going through the tedious tasks of running a bunch of reproducer systems to generate the debug information which let me decode the issue. Reported-by: Siegfried Wulsch <Siegfried.Wulsch@rovema.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1304051544160.21884@ionos Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-02-11sched/rt: Use root_domain of rt_rq not current processorShawn Bohrer
commit aa7f67304d1a03180f463258aa6f15a8b434e77d upstream. When the system has multiple domains do_sched_rt_period_timer() can run on any CPU and may iterate over all rt_rq in cpu_online_mask. This means when balance_runtime() is run for a given rt_rq that rt_rq may be in a different rd than the current processor. Thus if we use smp_processor_id() to get rd in do_balance_runtime() we may borrow runtime from a rt_rq that is not part of our rd. This changes do_balance_runtime to get the rd from the passed in rt_rq ensuring that we borrow runtime only from the correct rd for the given rt_rq. This fixes a BUG at kernel/sched/rt.c:687! in __disable_runtime when we try reclaim runtime lent to other rt_rq but runtime has been lent to a rt_rq in another rd. Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/1358186131-29494-1-git-send-email-sbohrer@rgmadvisors.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-27wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED taskOleg Nesterov
commit 9067ac85d533651b98c2ff903182a20cbb361fcb upstream. wake_up_process() should never wakeup a TASK_STOPPED/TRACED task. Change it to use TASK_NORMAL and add the WARN_ON(). TASK_ALL has no other users, probably can be killed. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-12-10Revert "sched, autogroup: Stop going ahead if autogroup is disabled"Mike Galbraith
commit fd8ef11730f1d03d5d6555aa53126e9e34f52f12 upstream. This reverts commit 800d4d30c8f20bd728e5741a3b77c4859a613f7c. Between commits 8323f26ce342 ("sched: Fix race in task_group()") and 800d4d30c8f2 ("sched, autogroup: Stop going ahead if autogroup is disabled"), autogroup is a wreck. With both applied, all you have to do to crash a box is disable autogroup during boot up, then reboot.. boom, NULL pointer dereference due to commit 800d4d30c8f2 not allowing autogroup to move things, and commit 8323f26ce342 making that the only way to switch runqueues: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff81063ac0>] effective_load.isra.43+0x50/0x90 Pid: 7047, comm: systemd-user-se Not tainted 3.6.8-smp #7 MEDIONPC MS-7502/MS-7502 RIP: effective_load.isra.43+0x50/0x90 Process systemd-user-se (pid: 7047, threadinfo ffff880221dde000, task ffff88022618b3a0) Call Trace: select_task_rq_fair+0x255/0x780 try_to_wake_up+0x156/0x2c0 wake_up_state+0xb/0x10 signal_wake_up+0x28/0x40 complete_signal+0x1d6/0x250 __send_signal+0x170/0x310 send_signal+0x40/0x80 do_send_sig_info+0x47/0x90 group_send_sig_info+0x4a/0x70 kill_pid_info+0x3a/0x60 sys_kill+0x97/0x1a0 ? vfs_read+0x120/0x160 ? sys_read+0x45/0x90 system_call_fastpath+0x16/0x1b Code: 49 0f af 41 50 31 d2 49 f7 f0 48 83 f8 01 48 0f 46 c6 48 2b 07 48 8b bf 40 01 00 00 48 85 ff 74 3a 45 31 c0 48 8b 8f 50 01 00 00 <48> 8b 11 4c 8b 89 80 00 00 00 49 89 d2 48 01 d0 45 8b 59 58 4c RIP [<ffffffff81063ac0>] effective_load.isra.43+0x50/0x90 RSP <ffff880221ddfbd8> CR2: 0000000000000000 Signed-off-by: Mike Galbraith <efault@gmx.de> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Yong Zhang <yong.zhang0@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-13sched: Fix migration thread runtime bogosityMike Galbraith
commit 8f6189684eb4e85e6c593cd710693f09c944450a upstream. Make stop scheduler class do the same accounting as other classes, Migration threads can be caught in the act while doing exec balancing, leading to the below due to use of unmaintained ->se.exec_start. The load that triggered this particular instance was an apparently out of control heavily threaded application that does system monitoring in what equated to an exec bomb, with one of the VERY frequently migrated tasks being ps. %CPU PID USER CMD 99.3 45 root [migration/10] 97.7 53 root [migration/12] 97.0 57 root [migration/13] 90.1 49 root [migration/11] 89.6 65 root [migration/15] 88.7 17 root [migration/3] 80.4 37 root [migration/8] 78.1 41 root [migration/9] 44.2 13 root [migration/2] Signed-off-by: Mike Galbraith <mgalbraith@suse.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1344051854.6739.19.camel@marge.simpson.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-13CPU hotplug, cpusets, suspend: Don't modify cpusets during suspend/resumeSrivatsa S. Bhat
commit d35be8bab9b0ce44bed4b9453f86ebf64062721e upstream. In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed masks as and when necessary to ensure that the tasks belonging to the cpusets have some place (online CPUs) to run on. And regular CPU hotplug is destructive in the sense that the kernel doesn't remember the original cpuset configurations set by the user, across hotplug operations. However, suspend/resume (which uses CPU hotplug) is a special case in which the kernel has the responsibility to restore the system (during resume), to exactly the same state it was in before suspend. In order to achieve that, do the following: 1. Don't modify cpusets during suspend/resume. At all. In particular, don't move the tasks from one cpuset to another, and don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets during the CPU hotplug operations that are carried out in the suspend/resume path. 2. However, cpusets and sched domains are related. We just want to avoid altering cpusets alone. So, to keep the sched domains updated, build a single sched domain (containing all active cpus) during each of the CPU hotplug operations carried out in s/r path, effectively ignoring the cpusets' cpus_allowed masks. (Since userspace is frozen while doing all this, it will go unnoticed.) 3. During the last CPU online operation during resume, build the sched domains by looking up the (unaltered) cpusets' cpus_allowed masks. That will bring back the system to the same original state as it was in before suspend. Ultimately, this will not only solve the cpuset problem related to suspend resume (ie., restores the cpusets to exactly what it was before suspend, by not touching it at all) but also speeds up suspend/resume because we avoid running cpuset update code for every CPU being offlined/onlined. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-02sched: Fix race in task_group()Peter Zijlstra
commit 8323f26ce3425460769605a6aece7a174edaa7d1 upstream. Stefan reported a crash on a kernel before a3e5d1091c1 ("sched: Don't call task_group() too many times in set_task_rq()"), he found the reason to be that the multiple task_group() invocations in set_task_rq() returned different values. Looking at all that I found a lack of serialization and plain wrong comments. The below tries to fix it using an extra pointer which is updated under the appropriate scheduler locks. Its not pretty, but I can't really see another way given how all the cgroup stuff works. Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-09-14sched: fix divide by zero at {thread_group,task}_timesStanislaw Gruszka
commit bea6832cc8c4a0a9a65dd17da6aaa657fe27bc3e upstream. On architectures where cputime_t is 64 bit type, is possible to trigger divide by zero on do_div(temp, (__force u32) total) line, if total is a non zero number but has lower 32 bit's zeroed. Removing casting is not a good solution since some do_div() implementations do cast to u32 internally. This problem can be triggered in practice on very long lived processes: PID: 2331 TASK: ffff880472814b00 CPU: 2 COMMAND: "oraagent.bin" #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b #1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2 #2 [ffff880472a51ca0] oops_end at ffffffff814f0b00 #3 [ffff880472a51cd0] die at ffffffff8100f26b #4 [ffff880472a51d00] do_trap at ffffffff814f03f4 #5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff #6 [ffff880472a51e00] divide_error at ffffffff8100be7b [exception RIP: thread_group_times+0x56] RIP: ffffffff81056a16 RSP: ffff880472a51eb8 RFLAGS: 00010046 RAX: bc3572c9fe12d194 RBX: ffff880874150800 RCX: 0000000110266fad RDX: 0000000000000000 RSI: ffff880472a51eb8 RDI: 001038ae7d9633dc RBP: ffff880472a51ef8 R8: 00000000b10a3a64 R9: ffff880874150800 R10: 00007fcba27ab680 R11: 0000000000000202 R12: ffff880472a51f08 R13: ffff880472a51f10 R14: 0000000000000000 R15: 0000000000000007 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff880472a51f00] do_sys_times at ffffffff8108845d #8 [ffff880472a51f40] sys_times at ffffffff81088524 #9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2 RIP: 0000003808caac3a RSP: 00007fcba27ab6d8 RFLAGS: 00000202 RAX: 0000000000000064 RBX: ffffffff8100b0f2 RCX: 0000000000000000 RDX: 00007fcba27ab6e0 RSI: 000000000076d58e RDI: 00007fcba27ab6e0 RBP: 00007fcba27ab700 R8: 0000000000000020 R9: 000000000000091b R10: 00007fcba27ab680 R11: 0000000000000202 R12: 00007fff9ca41940 R13: 0000000000000000 R14: 00007fcba27ac9c0 R15: 00007fff9ca41940 ORIG_RAX: 0000000000000064 CS: 0033 SS: 002b Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-09-14sched,cgroup: Fix up task_groups listMike Galbraith
commit 35cf4e50b16331def6cfcbee11e49270b6db07f5 upstream. With multiple instances of task_groups, for_each_rt_rq() is a noop, no task groups having been added to the rt.c list instance. This renders __enable/disable_runtime() and print_rt_stats() noop, the user (non) visible effect being that rt task groups are missing in /proc/sched_debug. Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1344308413.6846.7.camel@marge.simpson.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19sched/nohz: Rewrite and fix load-avg computation -- againPeter Zijlstra
commit 5167e8d5417bf5c322a703d2927daec727ea40dd upstream. Thanks to Charles Wang for spotting the defects in the current code: - If we go idle during the sample window -- after sampling, we get a negative bias because we can negate our own sample. - If we wake up during the sample window we get a positive bias because we push the sample to a known active period. So rewrite the entire nohz load-avg muck once again, now adding copious documentation to the code. Reported-and-tested-by: Doug Smythies <dsmythies@telus.net> Reported-and-tested-by: Charles Wang <muming.wq@gmail.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins [ minor edits ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-06-17sched: Fix the relax_domain_level boot parameterDimitri Sivanich
commit a841f8cef4bb124f0f5563314d0beaf2e1249d72 upstream. It does not get processed because sched_domain_level_max is 0 at the time that setup_relax_domain_level() is run. Simply accept the value as it is, as we don't know the value of sched_domain_level_max until sched domain construction is completed. Fix sched_relax_domain_level in cpuset. The build_sched_domain() routine calls the set_domain_attribute() routine prior to setting the sd->level, however, the set_domain_attribute() routine relies on the sd->level to decide whether idle load balancing will be off/on. Signed-off-by: Dimitri Sivanich <sivanich@sgi.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120605184436.GA15668@sgi.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-05-09sched: Fix KVM and ia64 boot crash due to sched_groups circular linked list ↵Igor Mammedov
assumption If we have one cpu that failed to boot and boot cpu gave up on waiting for it and then another cpu is being booted, kernel might crash with following OOPS: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: [<ffffffff812c3630>] __bitmap_weight+0x30/0x80 Call Trace: [<ffffffff8108b9b6>] build_sched_domains+0x7b6/0xa50 The crash happens in init_sched_groups_power() that expects sched_groups to be circular linked list. However it is not always true, since sched_groups preallocated in __sdt_alloc are initialized in build_sched_groups and it may exit early if (cpu != cpumask_first(sched_domain_span(sd))) return 0; without initializing sd->groups->next field. Fix bug by initializing next field right after sched_group was allocated. Also-Reported-by: Jiang Liu <liuj97@gmail.com> Signed-off-by: Igor Mammedov <imammedo@redhat.com> Cc: a.p.zijlstra@chello.nl Cc: pjt@google.com Cc: seto.hidetoshi@jp.fujitsu.com Link: http://lkml.kernel.org/r/1336559908-32533-1-git-send-email-imammedo@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-04-26sched: Fix OOPS when build_sched_domains() percpu allocation failshe, bo
Under extreme memory used up situations, percpu allocation might fail. We hit it when system goes to suspend-to-ram, causing a kworker panic: EIP: [<c124411a>] build_sched_domains+0x23a/0xad0 Kernel panic - not syncing: Fatal exception Pid: 3026, comm: kworker/u:3 3.0.8-137473-gf42fbef #1 Call Trace: [<c18cc4f2>] panic+0x66/0x16c [...] [<c1244c37>] partition_sched_domains+0x287/0x4b0 [<c12a77be>] cpuset_update_active_cpus+0x1fe/0x210 [<c123712d>] cpuset_cpu_inactive+0x1d/0x30 [...] With this fix applied build_sched_domains() will return -ENOMEM and the suspend attempt fails. Signed-off-by: he, bo <bo.he@intel.com> Reviewed-by: Zhang, Yanmin <yanmin.zhang@intel.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <stable@kernel.org> Link: http://lkml.kernel.org/r/1335355161.5892.17.camel@hebo [ So, we fail to deallocate a CPU because we cannot allocate RAM :-/ I don't like that kind of sad behavior but nevertheless it should not crash under high memory load. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-04-26sched: Fix more load-balancing falloutPeter Zijlstra
Commits 367456c756a6 ("sched: Ditch per cgroup task lists for load-balancing") and 5d6523ebd ("sched: Fix load-balance wreckage") left some more wreckage. By setting loop_max unconditionally to ->nr_running load-balancing could take a lot of time on very long runqueues (hackbench!). So keep the sysctl as max limit of the amount of tasks we'll iterate. Furthermore, the min load filter for migration completely fails with cgroups since inequality in per-cpu state can easily lead to such small loads :/ Furthermore the change to add new tasks to the tail of the queue instead of the head seems to have some effect.. not quite sure I understand why. Combined these fixes solve the huge hackbench regression reported by Tim when hackbench is ran in a cgroup. Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1335365763.28150.267.camel@twins [ got rid of the CONFIG_PREEMPT tuning and made small readability edits ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-31Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar. * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Fix incorrect usage of for_each_cpu_mask() in select_fallback_rq() sched: Fix __schedule_bug() output when called from an interrupt sched/arch: Introduce the finish_arch_post_lock_switch() scheduler callback
2012-03-31sched: Fix incorrect usage of for_each_cpu_mask() in select_fallback_rq()Srivatsa S. Bhat
The function for_each_cpu_mask() expects a *pointer* to struct cpumask as its second argument, whereas select_fallback_rq() passes the value itself. And moreover, for_each_cpu_mask() has been marked as obselete in include/linux/cpumask.h. So move to the more appropriate for_each_cpu() variant. Reported-by: Sasha Levin <levinsasha928@gmail.com> Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Dave Jones <davej@redhat.com> Cc: Liu Chuansheng <chuansheng.liu@intel.com> Cc: vapier@gentoo.org Cc: rusty@rustcorp.com.au Link: http://lkml.kernel.org/r/4F75BED4.9050005@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-29Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar. * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: cpusets: Remove an unused variable sched/rt: Improve pick_next_highest_task_rt() sched: Fix select_fallback_rq() vs cpu_active/cpu_online sched/x86/smp: Do not enable IRQs over calibrate_delay() sched: Fix compiler warning about declared inline after use MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
2012-03-29Merge branch 'sched/arch' into sched/urgentIngo Molnar
Merge reason: It has not gone upstream via the ARM tree, merge it via the scheduler tree. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-29sched: Fix __schedule_bug() output when called from an interruptStephen Boyd
If schedule is called from an interrupt handler __schedule_bug() will call show_regs() with the registers saved during the interrupt handling done in do_IRQ(). This means we'll see the registers and the backtrace for the process that was interrupted and not the full backtrace explaining who called schedule(). This is due to 838225b ("sched: use show_regs() to improve __schedule_bug() output", 2007-10-24) which improperly assumed that get_irq_regs() would return the registers for the current stack because it is being called from within an interrupt handler. Simply remove the show_reg() code so that we dump a backtrace for the interrupt handler that called schedule(). [ I ran across this when I was presented with a scheduling while atomic log with a stacktrace pointing at spin_unlock_irqrestore(). It made no sense and I had to guess what interrupt handler could be called and poke around for someone calling schedule() in an interrupt handler. A simple test of putting an msleep() in an interrupt handler works better with this patch because you can actually see the msleep() call in the backtrace. ] Also-reported-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Satyam Sharma <satyam@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1332979847-27102-1-git-send-email-sboyd@codeaurora.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-28Add #includes needed to permit the removal of asm/system.hDavid Howells
asm/system.h is a cause of circular dependency problems because it contains commonly used primitive stuff like barrier definitions and uncommonly used stuff like switch_to() that might require MMU definitions. asm/system.h has been disintegrated by this point on all arches into the following common segments: (1) asm/barrier.h Moved memory barrier definitions here. (2) asm/cmpxchg.h Moved xchg() and cmpxchg() here. #included in asm/atomic.h. (3) asm/bug.h Moved die() and similar here. (4) asm/exec.h Moved arch_align_stack() here. (5) asm/elf.h Moved AT_VECTOR_SIZE_ARCH here. (6) asm/switch_to.h Moved switch_to() here. Signed-off-by: David Howells <dhowells@redhat.com>
2012-03-27sched/rt: Improve pick_next_highest_task_rt()Michael J Wang
Avoid extra work by continuing on to the next rt_rq if the highest prio task in current rt_rq is the same priority as our candidate task. More detailed explanation: if next is not NULL, then we have found a candidate task, and its priority is next->prio. Now we are looking for an even higher priority task in the other rt_rq's. idx is the highest priority in the current candidate rt_rq. In the current 3.3 code, if idx is equal to next->prio, we would start scanning the tasks in that rt_rq and replace the current candidate task with a task from that rt_rq. But the new task would only have a priority that is equal to our previous candidate task, so we have not advanced our goal of finding a higher prio task. So we should avoid the extra work by continuing on to the next rt_rq if idx is equal to next->prio. Signed-off-by: Michael J Wang <mjwang@broadcom.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Yong Zhang <yong.zhang0@gmail.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/2EF88150C0EF2C43A218742ED384C1BC0FC83D6B@IRVEXCHMB08.corp.ad.broadcom.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-27sched: Fix select_fallback_rq() vs cpu_active/cpu_onlinePeter Zijlstra
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was supposed to finally sort the cpu_active mess, instead uncovered more. Since CPU_STARTING is ran before setting the cpu online, there's a (small) window where the cpu has active,!online. If during this time there's a wakeup of a task that used to reside on that cpu select_task_rq() will use select_fallback_rq() to compute an alternative cpu to run on since we find !online. select_fallback_rq() however will compute the new cpu against cpu_active, this means that it can return the same cpu it started out with, the !online one, since that cpu is in fact marked active. This results in us trying to scheduling a task on an offline cpu and triggering a WARN in the IPI code. The solution proposed by Chuansheng Liu of setting cpu_active in set_cpu_online() is buggy, firstly not all archs actually use set_cpu_online(), secondly, not all archs call set_cpu_online() with IRQs disabled, this means we would introduce either the same race or the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on wrong CPU") -- albeit much narrower. [ By setting online first and active later we have a window of online,!active, fresh and bound kthreads have task_cpu() of 0 and since cpu0 isn't in tsk_cpus_allowed() we end up in select_fallback_rq() which excludes !active, resulting in a reset of ->cpus_allowed and the thread running all over the place. ] The solution is to re-work select_fallback_rq() to require active _and_ online. This makes the active,!online case work as expected, OTOH archs running CPU_STARTING after setting online are now vulnerable