Age | Commit message (Collapse) | Author |
|
wake_up_process() should never wakeup a TASK_STOPPED/TRACED task.
Change it to use TASK_NORMAL and add the WARN_ON().
TASK_ALL has no other users, probably can be killed.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace changes from Eric Biederman:
"While small this set of changes is very significant with respect to
containers in general and user namespaces in particular. The user
space interface is now complete.
This set of changes adds support for unprivileged users to create user
namespaces and as a user namespace root to create other namespaces.
The tyranny of supporting suid root preventing unprivileged users from
using cool new kernel features is broken.
This set of changes completes the work on setns, adding support for
the pid, user, mount namespaces.
This set of changes includes a bunch of basic pid namespace
cleanups/simplifications. Of particular significance is the rework of
the pid namespace cleanup so it no longer requires sending out
tendrils into all kinds of unexpected cleanup paths for operation. At
least one case of broken error handling is fixed by this cleanup.
The files under /proc/<pid>/ns/ have been converted from regular files
to magic symlinks which prevents incorrect caching by the VFS,
ensuring the files always refer to the namespace the process is
currently using and ensuring that the ptrace_mayaccess permission
checks are always applied.
The files under /proc/<pid>/ns/ have been given stable inode numbers
so it is now possible to see if different processes share the same
namespaces.
Through the David Miller's net tree are changes to relax many of the
permission checks in the networking stack to allowing the user
namespace root to usefully use the networking stack. Similar changes
for the mount namespace and the pid namespace are coming through my
tree.
Two small changes to add user namespace support were commited here adn
in David Miller's -net tree so that I could complete the work on the
/proc/<pid>/ns/ files in this tree.
Work remains to make it safe to build user namespaces and 9p, afs,
ceph, cifs, coda, gfs2, ncpfs, nfs, nfsd, ocfs2, and xfs so the
Kconfig guard remains in place preventing that user namespaces from
being built when any of those filesystems are enabled.
Future design work remains to allow root users outside of the initial
user namespace to mount more than just /proc and /sys."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (38 commits)
proc: Usable inode numbers for the namespace file descriptors.
proc: Fix the namespace inode permission checks.
proc: Generalize proc inode allocation
userns: Allow unprivilged mounts of proc and sysfs
userns: For /proc/self/{uid,gid}_map derive the lower userns from the struct file
procfs: Print task uids and gids in the userns that opened the proc file
userns: Implement unshare of the user namespace
userns: Implent proc namespace operations
userns: Kill task_user_ns
userns: Make create_new_namespaces take a user_ns parameter
userns: Allow unprivileged use of setns.
userns: Allow unprivileged users to create new namespaces
userns: Allow setting a userns mapping to your current uid.
userns: Allow chown and setgid preservation
userns: Allow unprivileged users to create user namespaces.
userns: Ignore suid and sgid on binaries if the uid or gid can not be mapped
userns: fix return value on mntns_install() failure
vfs: Allow unprivileged manipulation of the mount namespace.
vfs: Only support slave subtrees across different user namespaces
vfs: Add a user namespace reference from struct mnt_namespace
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
|
|
Pull KVM updates from Marcelo Tosatti:
"Considerable KVM/PPC work, x86 kvmclock vsyscall support,
IA32_TSC_ADJUST MSR emulation, amongst others."
Fix up trivial conflict in kernel/sched/core.c due to cross-cpu
migration notifier added next to rq migration call-back.
* tag 'kvm-3.8-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (156 commits)
KVM: emulator: fix real mode segment checks in address linearization
VMX: remove unneeded enable_unrestricted_guest check
KVM: VMX: fix DPL during entry to protected mode
x86/kexec: crash_vmclear_local_vmcss needs __rcu
kvm: Fix irqfd resampler list walk
KVM: VMX: provide the vmclear function and a bitmap to support VMCLEAR in kdump
x86/kexec: VMCLEAR VMCSs loaded on all cpus if necessary
KVM: MMU: optimize for set_spte
KVM: PPC: booke: Get/set guest EPCR register using ONE_REG interface
KVM: PPC: bookehv: Add EPCR support in mtspr/mfspr emulation
KVM: PPC: bookehv: Add guest computation mode for irq delivery
KVM: PPC: Make EPCR a valid field for booke64 and bookehv
KVM: PPC: booke: Extend MAS2 EPN mask for 64-bit
KVM: PPC: e500: Mask MAS2 EPN high 32-bits in 32/64 tlbwe emulation
KVM: PPC: Mask ea's high 32-bits in 32/64 instr emulation
KVM: PPC: e500: Add emulation helper for getting instruction ea
KVM: PPC: bookehv64: Add support for interrupt handling
KVM: PPC: bookehv: Remove GET_VCPU macro from exception handler
KVM: PPC: booke: Fix get_tb() compile error on 64-bit
KVM: PPC: e500: Silence bogus GCC warning in tlb code
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup changes from Tejun Heo:
"A lot of activities on cgroup side. The big changes are focused on
making cgroup hierarchy handling saner.
- cgroup_rmdir() had peculiar semantics - it allowed cgroup
destruction to be vetoed by individual controllers and tried to
drain refcnt synchronously. The vetoing never worked properly and
caused good deal of contortions in cgroup. memcg was the last
reamining user. Michal Hocko removed the usage and cgroup_rmdir()
path has been simplified significantly. This was done in a
separate branch so that the memcg people can base further memcg
changes on top.
- The above allowed cleaning up cgroup lifecycle management and
implementation of generic cgroup iterators which are used to
improve hierarchy support.
- cgroup_freezer updated to allow migration in and out of a frozen
cgroup and handle hierarchy. If a cgroup is frozen, all descendant
cgroups are frozen.
- netcls_cgroup and netprio_cgroup updated to handle hierarchy
properly.
- Various fixes and cleanups.
- Two merge commits. One to pull in memcg and rmdir cleanups (needed
to build iterators). The other pulled in cgroup/for-3.7-fixes for
device_cgroup fixes so that further device_cgroup patches can be
stacked on top."
Fixed up a trivial conflict in mm/memcontrol.c as per Tejun (due to
commit bea8c150a7 ("memcg: fix hotplugged memory zone oops") in master
touching code close to commit 2ef37d3fe4 ("memcg: Simplify
mem_cgroup_force_empty_list error handling") in for-3.8)
* 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (65 commits)
cgroup: update Documentation/cgroups/00-INDEX
cgroup_rm_file: don't delete the uncreated files
cgroup: remove subsystem files when remounting cgroup
cgroup: use cgroup_addrm_files() in cgroup_clear_directory()
cgroup: warn about broken hierarchies only after css_online
cgroup: list_del_init() on removed events
cgroup: fix lockdep warning for event_control
cgroup: move list add after list head initilization
netprio_cgroup: allow nesting and inherit config on cgroup creation
netprio_cgroup: implement netprio[_set]_prio() helpers
netprio_cgroup: use cgroup->id instead of cgroup_netprio_state->prioidx
netprio_cgroup: reimplement priomap expansion
netprio_cgroup: shorten variable names in extend_netdev_table()
netprio_cgroup: simplify write_priomap()
netcls_cgroup: move config inheritance to ->css_online() and remove .broken_hierarchy marking
cgroup: remove obsolete guarantee from cgroup_task_migrate.
cgroup: add cgroup->id
cgroup, cpuset: remove cgroup_subsys->post_clone()
cgroup: s/CGRP_CLONE_CHILDREN/CGRP_CPUSET_CLONE_CHILDREN/
cgroup: rename ->create/post_create/pre_destroy/destroy() to ->css_alloc/online/offline/free()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The biggest change affects group scheduling: we now track the runnable
average on a per-task entity basis, allowing a smoother, exponential
decay average based load/weight estimation instead of the previous
binary on-the-runqueue/off-the-runqueue load weight method.
This will inevitably disturb workloads that were in some sort of
borderline balancing state or unstable equilibrium, so an eye has to
be kept on regressions.
For that reason the new load average is only limited to group
scheduling (shares distribution) at the moment (which was also hurting
the most from the prior, crude weight calculation and whose scheduling
quality wins most from this change) - but we plan to extend this to
regular SMP balancing as well in the future, which will simplify and
speed up things a bit.
Other changes involve ongoing preparatory work to extend NOHZ to the
scheduler as well, eventually allowing completely irq-free user-space
execution."
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
Revert "sched/autogroup: Fix crash on reboot when autogroup is disabled"
cputime: Comment cputime's adjusting code
cputime: Consolidate cputime adjustment code
cputime: Rename thread_group_times to thread_group_cputime_adjusted
cputime: Move thread_group_cputime() to sched code
vtime: Warn if irqs aren't disabled on system time accounting APIs
vtime: No need to disable irqs on vtime_account()
vtime: Consolidate a bit the ctx switch code
vtime: Explicitly account pending user time on process tick
vtime: Remove the underscore prefix invasion
sched/autogroup: Fix crash on reboot when autogroup is disabled
cputime: Separate irqtime accounting from generic vtime
cputime: Specialize irq vtime hooks
kvm: Directly account vtime to system on guest switch
vtime: Make vtime_account_system() irqsafe
vtime: Gather vtime declarations to their own header file
sched: Describe CFS load-balancer
sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking
sched: Make __update_entity_runnable_avg() fast
sched: Update_cfs_shares at period edge
...
|
|
!SCHED_DEBUG
The "mm: sched: numa: Control enabling and disabling of NUMA balancing"
depends on scheduling debug being enabled but it's perfectly legimate to
disable automatic NUMA balancing even without this option. This should
take care of it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
|
|
This patch adds Kconfig options and kernel parameters to allow the
enabling and disabling of automatic NUMA balancing. The existance
of such a switch was and is very important when debugging problems
related to transparent hugepages and we should have the same for
automatic NUMA placement.
Signed-off-by: Mel Gorman <mgorman@suse.de>
|
|
The PTE scanning rate and fault rates are two of the biggest sources of
system CPU overhead with automatic NUMA placement. Ideally a proper policy
would detect if a workload was properly placed, schedule and adjust the
PTE scanning rate accordingly. We do not track the necessary information
to do that but we at least know if we migrated or not.
This patch scans slower if a page was not migrated as the result of a
NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is
now higher than the previous default. Once every minute it will reset
the scanner in case of phase changes.
This is hilariously crude and the numbers are arbitrary. Workloads will
converge quite slowly in comparison to what a proper policy should be able
to do. On the plus side, we will chew up less CPU for workloads that have
no need for automatic balancing.
Signed-off-by: Mel Gorman <mgorman@suse.de>
|
|
Add a 1 second delay before starting to scan the working set of
a task and starting to balance it amongst nodes.
[ note that before the constant per task WSS sampling rate patch
the initial scan would happen much later still, in effect that
patch caused this regression. ]
The theory is that short-run tasks benefit very little from NUMA
placement: they come and go, and they better stick to the node
they were started on. As tasks mature and rebalance to other CPUs
and nodes, so does their NUMA placement have to change and so
does it start to matter more and more.
In practice this change fixes an observable kbuild regression:
# [ a perf stat --null --repeat 10 test of ten bzImage builds to /dev/shm ]
!NUMA:
45.291088843 seconds time elapsed ( +- 0.40% )
45.154231752 seconds time elapsed ( +- 0.36% )
+NUMA, no slow start:
46.172308123 seconds time elapsed ( +- 0.30% )
46.343168745 seconds time elapsed ( +- 0.25% )
+NUMA, 1 sec slow start:
45.224189155 seconds time elapsed ( +- 0.25% )
45.160866532 seconds time elapsed ( +- 0.17% )
and it also fixes an observable perf bench (hackbench) regression:
# perf stat --null --repeat 10 perf bench sched messaging
-NUMA:
-NUMA: 0.246225691 seconds time elapsed ( +- 1.31% )
+NUMA no slow start: 0.252620063 seconds time elapsed ( +- 1.13% )
+NUMA 1sec delay: 0.248076230 seconds time elapsed ( +- 1.35% )
The implementation is simple and straightforward, most of the patch
deals with adding the /proc/sys/kernel/numa_balancing_scan_delay_ms tunable
knob.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
[ Wrote the changelog, ran measurements, tuned the default. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
|
|
NOTE: This patch is based on "sched, numa, mm: Add fault driven
placement and migration policy" but as it throws away all the policy
to just leave a basic foundation I had to drop the signed-offs-by.
This patch creates a bare-bones method for setting PTEs pte_numa in the
context of the scheduler that when faulted later will be faulted onto the
node the CPU is running on. In itself this does nothing useful but any
placement policy will fundamentally depend on receiving hints on placement
from fault context and doing something intelligent about it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
|
|
Create a new subsystem that probes on kernel boundaries
to keep track of the transitions between level contexts
with two basic initial contexts: user or kernel.
This is an abstraction of some RCU code that use such tracking
to implement its userspace extended quiescent state.
We need to pull this up from RCU into this new level of indirection
because this tracking is also going to be used to implement an "on
demand" generic virtual cputime accounting. A necessary step to
shutdown the tick while still accounting the cputime.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
[ paulmck: fix whitespace error and email address. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
Originally from Jeremy Fitzhardinge.
Acked-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
The task_user_ns function hides the fact that it is getting the user
namespace from struct cred on the task. struct cred may go away as
soon as the rcu lock is released. This leads to a race where we
can dereference a stale user namespace pointer.
To make it obvious a struct cred is involved kill task_user_ns.
To kill the race modify the users of task_user_ns to only
reference the user namespace while the rcu lock is held.
Cc: Kees Cook <keescook@chromium.org>
Cc: James Morris <james.l.morris@oracle.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
->css_alloc/online/offline/free()
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are. Also, update documentation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
|
|
When sched_show_task() is invoked from try_to_freeze_tasks(), there is
no RCU read-side critical section, resulting in the following splat:
[ 125.780730] ===============================
[ 125.780766] [ INFO: suspicious RCU usage. ]
[ 125.780804] 3.7.0-rc3+ #988 Not tainted
[ 125.780838] -------------------------------
[ 125.780875] /home/rafael/src/linux/kernel/sched/core.c:4497 suspicious rcu_dereference_check() usage!
[ 125.780946]
[ 125.780946] other info that might help us debug this:
[ 125.780946]
[ 125.781031]
[ 125.781031] rcu_scheduler_active = 1, debug_locks = 0
[ 125.781087] 4 locks held by s2ram/4211:
[ 125.781120] #0: (&buffer->mutex){+.+.+.}, at: [<ffffffff811e2acf>] sysfs_write_file+0x3f/0x160
[ 125.781233] #1: (s_active#94){.+.+.+}, at: [<ffffffff811e2b58>] sysfs_write_file+0xc8/0x160
[ 125.781339] #2: (pm_mutex){+.+.+.}, at: [<ffffffff81090a81>] pm_suspend+0x81/0x230
[ 125.781439] #3: (tasklist_lock){.?.?..}, at: [<ffffffff8108feed>] try_to_freeze_tasks+0x2cd/0x3f0
[ 125.781543]
[ 125.781543] stack backtrace:
[ 125.781584] Pid: 4211, comm: s2ram Not tainted 3.7.0-rc3+ #988
[ 125.781632] Call Trace:
[ 125.781662] [<ffffffff810a3c73>] lockdep_rcu_suspicious+0x103/0x140
[ 125.781719] [<ffffffff8107cf21>] sched_show_task+0x121/0x180
[ 125.781770] [<ffffffff8108ffb4>] try_to_freeze_tasks+0x394/0x3f0
[ 125.781823] [<ffffffff810903b5>] freeze_kernel_threads+0x25/0x80
[ 125.781876] [<ffffffff81090b65>] pm_suspend+0x165/0x230
[ 125.781924] [<ffffffff8108fa29>] state_store+0x99/0x100
[ 125.781975] [<ffffffff812f5867>] kobj_attr_store+0x17/0x20
[ 125.782038] [<ffffffff811e2b71>] sysfs_write_file+0xe1/0x160
[ 125.782091] [<ffffffff811667a6>] vfs_write+0xc6/0x180
[ 125.782138] [<ffffffff81166ada>] sys_write+0x5a/0xa0
[ 125.782185] [<ffffffff812ff6ae>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 125.782242] [<ffffffff81669dd2>] system_call_fastpath+0x16/0x1b
This commit therefore adds the needed RCU read-side critical section.
Reported-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
'srcu.2012.10.27a', 'stall.2012.11.13a', 'tracing.2012.11.08a' and 'idle.2012.10.24a' into HEAD
urgent.2012.10.27a: Fix for RCU user-mode transition (already in -tip).
doc.2012.11.08a: Documentation updates, most notably codifying the
memory-barrier guarantees inherent to grace periods.
fixes.2012.11.13a: Miscellaneous fixes.
srcu.2012.10.27a: Allow statically allocated and initialized srcu_struct
structures (courtesy of Lai Jiangshan).
stall.2012.11.13a: Add more diagnostic information to RCU CPU stall
warnings, also decrease from 60 seconds to 21 seconds.
hotplug.2012.11.08a: Minor updates to CPU hotplug handling.
tracing.2012.11.08a: Improved debugfs tracing, courtesy of Michael Wang.
idle.2012.10.24a: Updates to RCU idle/adaptive-idle handling, including
a boot parameter that maps normal grace periods to expedited.
Resolved conflict in kernel/rcutree.c due to side-by-side change.
|
|
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.
These facilities are not yet consumers of this data. This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Since we are now doing bottom up load accumulation we need explicit
notification when a task has been re-parented so that the old hierarchy can be
updated.
Adds: migrate_task_rq(struct task_struct *p, int next_cpu)
(The alternative is to do this out of __set_task_cpu, but it was suggested that
this would be a cleaner encapsulation.)
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.660023400@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We are currently maintaining:
runnable_load(cfs_rq) = \Sum task_load(t)
For all running children t of cfs_rq. While this can be naturally updated for
tasks in a runnable state (as they are scheduled); this does not account for
the load contributed by blocked task entities.
This can be solved by introducing a separate accounting for blocked load:
blocked_load(cfs_rq) = \Sum runnable(b) * weight(b)
Obviously we do not want to iterate over all blocked entities to account for
their decay, we instead observe that:
runnable_load(t) = \Sum p_i*y^i
and that to account for an additional idle period we only need to compute:
y*runnable_load(t).
This means that we can compute all blocked entities at once by evaluating:
blocked_load(cfs_rq)` = y * blocked_load(cfs_rq)
Finally we maintain a decay counter so that when a sleeping entity re-awakens
we can determine how much of its load should be removed from the blocked sum.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.585389902@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Instead of tracking averaging the load parented by a cfs_rq, we can track
entity load directly. With the load for a given cfs_rq then being the sum
of its children.
To do this we represent the historical contribution to runnable average
within each trailing 1024us of execution as the coefficients of a
geometric series.
We can express this for a given task t as:
runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i
load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t)
Where: u_i is the usage in the last i`th 1024us period (approximately 1ms)
~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which
roughly translates to about a sched period.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.372695337@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The RCU CPU stall warnings rely on trigger_all_cpu_backtrace() to
do NMI-based dump of the stack traces of all CPUs. Unfortunately, a
number of architectures do not implement trigger_all_cpu_backtrace(), in
which case RCU falls back to just dumping the stack of the running CPU.
This is unhelpful in the case where the running CPU has detected that
some other CPU has stalled.
This commit therefore makes the running CPU dump the stacks of the
tasks running on the stalled CPUs.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
It's only there to call rcu_user_hooks_switch(). Let's
just call rcu_user_hooks_switch() directly, we don't need this
function in the middle.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"A CPU hotplug related crash fix and a nohz accounting fixlet."
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Update sched_domains_numa_masks[][] when new cpus are onlined
sched: Ensure 'sched_domains_numa_levels' is safe to use in other functions
nohz: Fix one jiffy count too far in idle cputime
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull pile 2 of execve and kernel_thread unification work from Al Viro:
"Stuff in there: kernel_thread/kernel_execve/sys_execve conversions for
several more architectures plus assorted signal fixes and cleanups.
There'll be more (in particular, real fixes for the alpha
do_notify_resume() irq mess)..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (43 commits)
alpha: don't open-code trace_report_syscall_{enter,exit}
Uninclude linux/freezer.h
m32r: trim masks
avr32: trim masks
tile: don't bother with SIGTRAP in setup_frame
microblaze: don't bother with SIGTRAP in setup_rt_frame()
mn10300: don't bother with SIGTRAP in setup_frame()
frv: no need to raise SIGTRAP in setup_frame()
x86: get rid of duplicate code in case of CONFIG_VM86
unicore32: remove pointless test
h8300: trim _TIF_WORK_MASK
parisc: decide whether to go to slow path (tracesys) based on thread flags
parisc: don't bother looping in do_signal()
parisc: fix double restarts
bury the rest of TIF_IRET
sanitize tsk_is_polling()
bury _TIF_RESTORE_SIGMASK
unicore32: unobfuscate _TIF_WORK_MASK
mips: NOTIFY_RESUME is not needed in TIF masks
mips: merge the identical "return from syscall" per-ABI code
...
Conflicts:
arch/arm/include/asm/thread_info.h
|
|
Once array sched_domains_numa_masks[] []is defined, it is never updated.
When a new cpu on a new node is onlined, the coincident member in
sched_domains_numa_masks[][] is not initialized, and all the masks are 0.
As a result, the build_overlap_sched_groups() will initialize a NULL
sched_group for the new cpu on the new node, which will lead to kernel panic:
[ 3189.403280] Call Trace:
[ 3189.403286] [<ffffffff8106c36f>] warn_slowpath_common+0x7f/0xc0
[ 3189.403289] [<ffffffff8106c3ca>] warn_slowpath_null+0x1a/0x20
[ 3189.403292] [<ffffffff810b1d57>] build_sched_domains+0x467/0x470
[ 3189.403296] [<ffffffff810b2067>] partition_sched_domains+0x307/0x510
[ 3189.403299] [<ffffffff810b1ea2>] ? partition_sched_domains+0x142/0x510
[ 3189.403305] [<ffffffff810fcc93>] cpuset_update_active_cpus+0x83/0x90
[ 3189.403308] [<ffffffff810b22a8>] cpuset_cpu_active+0x38/0x70
[ 3189.403316] [<ffffffff81674b87>] notifier_call_chain+0x67/0x150
[ 3189.403320] [<ffffffff81664647>] ? native_cpu_up+0x18a/0x1b5
[ 3189.403328] [<ffffffff810a044e>] __raw_notifier_call_chain+0xe/0x10
[ 3189.403333] [<ffffffff81070470>] __cpu_notify+0x20/0x40
[ 3189.403337] [<ffffffff8166663e>] _cpu_up+0xe9/0x131
[ 3189.403340] [<ffffffff81666761>] cpu_up+0xdb/0xee
[ 3189.403348] [<ffffffff8165667c>] store_online+0x9c/0xd0
[ 3189.403355] [<ffffffff81437640>] dev_attr_store+0x20/0x30
[ 3189.403361] [<ffffffff8124aa63>] sysfs_write_file+0xa3/0x100
[ 3189.403368] [<ffffffff811ccbe0>] vfs_write+0xd0/0x1a0
[ 3189.403371] [<ffffffff811ccdb4>] sys_write+0x54/0xa0
[ 3189.403375] [<ffffffff81679c69>] system_call_fastpath+0x16/0x1b
[ 3189.403377] ---[ end trace 1e6cf85d0859c941 ]---
[ 3189.403398] BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
This patch registers a new notifier for cpu hotplug notify chain, and
updates sched_domains_numa_masks every time a new cpu is onlined or offlined.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
[ fixed compile warning ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1348578751-16904-3-git-send-email-tangchen@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We should temporarily reset 'sched_domains_numa_levels' to 0 after
it is reset to 'level' in sched_init_numa(). If it fails to allocate
memory for array sched_domains_numa_masks[][], the array will contain
less then 'level' members. This could be dangerous when we use it to
iterate array sched_domains_numa_masks[][] in other functions.
This patch set sched_domains_numa_levels to 0 before initializing
array sched_domains_numa_masks[][], and reset it to 'level' when
sched_domains_numa_masks[][] is fully initialized.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1348578751-16904-2-git-send-email-tangchen@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
"Continued quest to clean up and enhance the cputime code by Frederic
Weisbecker, in preparation for future tickless kernel features.
Other than that, smallish changes."
Fix up trivial conflicts due to additions next to each other in arch/{x86/}Kconfig
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
cputime: Make finegrained irqtime accounting generally available
cputime: Gather time/stats accounting config options into a single menu
ia64: Reuse system and user vtime accounting functions on task switch
ia64: Consolidate user vtime accounting
vtime: Consolidate system/idle context detection
cputime: Use a proper subsystem naming for vtime related APIs
sched: cpu_power: enable ARCH_POWER
sched/nohz: Clean up select_nohz_load_balancer()
sched: Fix load avg vs. cpu-hotplug
sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
sched: Fix nohz_idle_balance()
sched: Remove useless code in yield_to()
sched: Add time unit suffix to sched sysctl knobs
sched/debug: Limit sd->*_idx range on sysctl
sched: Remove AFFINE_WAKEUPS feature flag
s390: Remove leftover account_tick_vtime() header
cputime: Consolidate vtime handling on context switch
sched: Move cputime code to its own file
cputime: Generalize CONFIG_VIRT_CPU_ACCOUNTING
tile: Remove SD_PREFER_LOCAL leftover
...
|
|
Make default just return 0. The current default (checking
TIF_POLLING_NRFLAG) is taken to architectures that need it;
ones that don't do polling in their idle threads don't need
to defined TIF_POLLING_NRFLAG at all.
ia64 defined both TS_POLLING (used by its tsk_is_polling())
and TIF_POLLING_NRFLAG (not used at all). Killed the latter...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When exceptions or irq are about to resume userspace, if
the task needs to be rescheduled, the arch low level code
calls schedule() directly.
If we call it, it is because we have the TIF_RESCHED flag:
- It can be set after random local calls to set_need_resched()
(RCU, drm, ...)
- A wake up happened and the CPU needs preemption. This can
happen in several ways:
* Remotely: the remote waking CPU has set TIF_RESCHED and send the
wakee an IPI to schedule the new task.
* Remotely enqueued: the remote waking CPU sends an IPI to the target
and the wake up is made by the target.
* Locally: waking CPU == wakee CPU and the wakeup is done locally.
set_need_resched() is called without IPI.
In the case of local and remotely enqueued wake ups, the tick can
be restarted when we enqueue the new task and RCU can exit the
extended quiescent state at the same time. Then by the time we reach
irq exit path and we call schedule, we are not in RCU user mode.
But if we call schedule() only because something called set_need_resched(),
RCU may still be in user mode when we reach schedule.
Also if a wake up is done remotely, the CPU might see the TIF_RESCHED
flag and call schedule while the IPI has not yet happen to restart the
tick and exit RCU user mode.
We need to manually protect against these corner cases.
Create a new API schedule_user() that calls schedule() inside
rcu_user_exit()-rcu_user_enter() in order to protect it. Archs
will need to rely on it now to implement user preemption safely.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
|
|
When an exception or an irq exits, and we are going to resume into
interrupted kernel code, the low level architecture code calls
preempt_schedule_irq() if there is a need to reschedule.
If the interrupt/exception occured between a call to rcu_user_enter()
(from syscall exit, exception exit, do_notify_resume exit, ...) and
a real resume to userspace (iret,...), preempt_schedule_irq() can be
called whereas RCU thinks we are in userspace. But preempt_schedule_irq()
is going to run kernel code and may be some RCU read side critical
section. We must exit the userspace extended quiescent state before
we call it.
To solve this, just call rcu_user_exit() in the beginning of
preempt_schedule_irq().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
|
|
Clear the syscalls hook of a task when it's scheduled out so that if
the task migrates, it doesn't run the syscall slow path on a CPU
that might not need it.
Also set the syscalls hook on the next task if needed.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
|
|
Resolved conflict in kernel/sched/core.c using Peter Zijlstra's
approach from https://lkml.org/lkml/2012/9/5/585.
|
|
Use a naming based on vtime as a prefix for virtual based
cputime accounting APIs:
- account_system_vtime() -> vtime_account()
- account_switch_vtime() -> vtime_task_switch()
It makes it easier to allow for further declension such
as vtime_account_system(), vtime_account_idle(), ... if we
want to find out the context we account to from generic code.
This also make it better to know on which subsystem these APIs
refer to.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
|
|
Rabik and Paul reported two different issues related to the same few
lines of code.
Rabik's issue is that the nr_uninterruptible migration code is wrong in
that he sees artifacts due to this (Rabik please do expand in more
detail).
Paul's issue is that this code as it stands relies on us using
stop_machine() for unplug, we all would like to remove this assumption
so that eventually we can remove this stop_machine() usage altogether.
The only reason we'd have to migrate nr_uninterruptible is so that we
could use for_each_online_cpu() loops in favour of
for_each_possible_cpu() loops, however since nr_uninterruptible() is the
only such loop and its using possible lets not bother at all.
The problem Rabik sees is (probably) caused by the fact that by
migrating nr_uninterruptible we screw rq->calc_load_active for both rqs
involved.
So don't bother with fancy migration schemes (meaning we now have to
keep using for_each_possible_cpu()) and instead fold any nr_active delta
after we migrate all tasks away to make sure we don't have any skewed
nr_active accounting.
[ paulmck: Move call to calc_load_migration to CPU_DEAD to avoid
miscounting noted by Rakib. ]
Reported-by: Rakib Mullick <rakib.mullick@gmail.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
|
|
perturbations"
This reverts commit 970e178985cadbca660feb02f4d2ee3a09f7fdda.
Nikolay Ulyanitsky reported thatthe 3.6-rc5 kernel has a 15-20%
performance drop on PostgreSQL 9.2 on his machine (running "pgbench").
Borislav Petkov was able to reproduce this, and bisected it to this
commit 970e178985ca ("sched: Improve scalability via 'CPU buddies' ...")
apparently because the new single-idle-buddy model simply doesn't find
idle CPU's to reschedule on aggressively enough.
Mike Galbraith suspects that it is likely due to the user-mode spinlocks
in PostgreSQL not reacting well to preemption, but we don't really know
the details - I'll just revert the commit for now.
There are hopefully other approaches to improve scheduler scalability
without it causing these kinds of downsides.
Reported-by: Nikolay Ulyanitsky <lystor@gmail.com>
Bisected-by: Borislav Petkov <bp@alien8.de>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit f319da0c68 ("sched: Fix load avg vs cpu-hotplug") was an
incomplete fix:
In particular, the problem is that at the point it calls
calc_load_migrate() nr_running := 1 (the stopper thread), so move the
call to CPU_DEAD where we're sure that nr_running := 0.
Also note that we can call calc_load_migrate() without serialization, we
know the state of rq is stable since its cpu is dead, and we modify the
global state using appropriate atomic ops.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1346882630.2600.59.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Now that the last architecture to use this has stopped doing so (ARM,
thanks Catalin!) we can remove this complexity from the scheduler
core.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
It's impossible to enter the else branch if we have set
skip_clock_update in task_yield_fair(), as yield_to_task_fair()
will directly return true after invoke task_yield_fair().
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FF2925A.9060005@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|