Age | Commit message (Collapse) | Author |
|
commit 115c9b81928360d769a76c632bae62d15206a94a upstream.
Implement a new netlink attribute type IFLA_EXT_MASK. The mask
is a 32 bit value that can be used to indicate to the kernel that
certain extended ifinfo values are requested by the user application.
At this time the only mask value defined is RTEXT_FILTER_VF to
indicate that the user wants the ifinfo dump to send information
about the VFs belonging to the interface.
This patch fixes a bug in which certain applications do not have
large enough buffers to accommodate the extra information returned
by the kernel with large numbers of SR-IOV virtual functions.
Those applications will not send the new netlink attribute with
the interface info dump request netlink messages so they will
not get unexpectedly large request buffers returned by the kernel.
Modifies the rtnl_calcit function to traverse the list of net
devices and compute the minimum buffer size that can hold the
info dumps of all matching devices based upon the filter passed
in via the new netlink attribute filter mask. If no filter
mask is sent then the buffer allocation defaults to NLMSG_GOODSIZE.
With this change it is possible to add yet to be defined netlink
attributes to the dump request which should make it fairly extensible
in the future.
Signed-off-by: Greg Rose <gregory.v.rose@intel.com>
Acked-by: Greg Rose <gregory.v.rose@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[bwh: Backported to 3.0:
- Adjust context
- Drop the change in do_setlink() that reverts commit f18da1456581
('net: RTNETLINK adjusting values of min_ifinfo_dump_size'), which
was never applied here]
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c7ac8679bec9397afe8918f788cbcef88c38da54 upstream.
The message size allocated for rtnl ifinfo dumps was limited to
a single page. This is not enough for additional interface info
available with devices that support SR-IOV and caused a bug in
which VF info would not be displayed if more than approximately
40 VFs were created per interface.
Implement a new function pointer for the rtnl_register service that will
calculate the amount of data required for the ifinfo dump and allocate
enough data to satisfy the request.
Signed-off-by: Greg Rose <gregory.v.rose@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 53a59fc67f97374758e63a9c785891ec62324c81 upstream.
Since commit e303297e6c3a ("mm: extended batches for generic
mmu_gather") we are batching pages to be freed until either
tlb_next_batch cannot allocate a new batch or we are done.
This works just fine most of the time but we can get in troubles with
non-preemptible kernel (CONFIG_PREEMPT_NONE or CONFIG_PREEMPT_VOLUNTARY)
on large machines where too aggressive batching might lead to soft
lockups during process exit path (exit_mmap) because there are no
scheduling points down the free_pages_and_swap_cache path and so the
freeing can take long enough to trigger the soft lockup.
The lockup is harmless except when the system is setup to panic on
softlockup which is not that unusual.
The simplest way to work around this issue is to limit the maximum
number of batches in a single mmu_gather. 10k of collected pages should
be safe to prevent from soft lockups (we would have 2ms for one) even if
they are all freed without an explicit scheduling point.
This patch doesn't add any new explicit scheduling points because it
relies on zap_pmd_range during page tables zapping which calls
cond_resched per PMD.
The following lockup has been reported for 3.0 kernel with a huge
process (in order of hundreds gigs but I do know any more details).
BUG: soft lockup - CPU#56 stuck for 22s! [kernel:31053]
Modules linked in: af_packet nfs lockd fscache auth_rpcgss nfs_acl sunrpc mptctl mptbase autofs4 binfmt_misc dm_round_robin dm_multipath bonding cpufreq_conservative cpufreq_userspace cpufreq_powersave pcc_cpufreq mperf microcode fuse loop osst sg sd_mod crc_t10dif st qla2xxx scsi_transport_fc scsi_tgt netxen_nic i7core_edac iTCO_wdt joydev e1000e serio_raw pcspkr edac_core iTCO_vendor_support acpi_power_meter rtc_cmos hpwdt hpilo button container usbhid hid dm_mirror dm_region_hash dm_log linear uhci_hcd ehci_hcd usbcore usb_common scsi_dh_emc scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh dm_snapshot pcnet32 mii edd dm_mod raid1 ext3 mbcache jbd fan thermal processor thermal_sys hwmon cciss scsi_mod
Supported: Yes
CPU 56
Pid: 31053, comm: kernel Not tainted 3.0.31-0.9-default #1 HP ProLiant DL580 G7
RIP: 0010: _raw_spin_unlock_irqrestore+0x8/0x10
RSP: 0018:ffff883ec1037af0 EFLAGS: 00000206
RAX: 0000000000000e00 RBX: ffffea01a0817e28 RCX: ffff88803ffd9e80
RDX: 0000000000000200 RSI: 0000000000000206 RDI: 0000000000000206
RBP: 0000000000000002 R08: 0000000000000001 R09: ffff887ec724a400
R10: 0000000000000000 R11: dead000000200200 R12: ffffffff8144c26e
R13: 0000000000000030 R14: 0000000000000297 R15: 000000000000000e
FS: 00007ed834282700(0000) GS:ffff88c03f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 000000000068b240 CR3: 0000003ec13c5000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kernel (pid: 31053, threadinfo ffff883ec1036000, task ffff883ebd5d4100)
Call Trace:
release_pages+0xc5/0x260
free_pages_and_swap_cache+0x9d/0xc0
tlb_flush_mmu+0x5c/0x80
tlb_finish_mmu+0xe/0x50
exit_mmap+0xbd/0x120
mmput+0x49/0x120
exit_mm+0x122/0x160
do_exit+0x17a/0x430
do_group_exit+0x3d/0xb0
get_signal_to_deliver+0x247/0x480
do_signal+0x71/0x1b0
do_notify_resume+0x98/0xb0
int_signal+0x12/0x17
DWARF2 unwinder stuck at int_signal+0x12/0x17
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 812089e01b9f65f90fc8fc670d8cce72a0e01fbb upstream.
Otherwise it fails like this on cards like the Transcend 16GB SDHC card:
mmc0: new SDHC card at address b368
mmcblk0: mmc0:b368 SDC 15.0 GiB
mmcblk0: error -110 sending status command, retrying
mmcblk0: error -84 transferring data, sector 0, nr 8, cmd response 0x900, card status 0xb0
Tested on my Lenovo x200 laptop.
[bhelgaas: changelog]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Chris Ball <cjb@laptop.org>
CC: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 0c24604b68fc7810d429d6c3657b6f148270e528 ]
Implement the RFC 5691 mitigation against Blind
Reset attack using SYN bit.
Section 4.2 of RFC 5961 advises to send a Challenge ACK and drop
incoming packet, instead of resetting the session.
Add a new SNMP counter to count number of challenge acks sent
in response to SYN packets.
(netstat -s | grep TCPSYNChallenge)
Remove obsolete TCPAbortOnSyn, since we no longer abort a TCP session
because of a SYN flag.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kiran Kumar Kella <kkiran@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 282f23c6ee343126156dd41218b22ece96d747e3 ]
Implement the RFC 5691 mitigation against Blind
Reset attack using RST bit.
Idea is to validate incoming RST sequence,
to match RCV.NXT value, instead of previouly accepted
window : (RCV.NXT <= SEG.SEQ < RCV.NXT+RCV.WND)
If sequence is in window but not an exact match, send
a "challenge ACK", so that the other part can resend an
RST with the appropriate sequence.
Add a new sysctl, tcp_challenge_ack_limit, to limit
number of challenge ACK sent per second.
Add a new SNMP counter to count number of challenge acks sent.
(netstat -s | grep TCPChallengeACK)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kiran Kumar Kella <kkiran@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 45959ee7aa645815a5ce303a0ea1e48a21e67c6a upstream.
When gcc inlines a function, it does not mark it with the mcount
prologue, which in turn means that inlined functions are not traced
by the function tracer. But if CONFIG_OPTIMIZE_INLINING is set, then
gcc is allowed not to inline a function that is marked inline.
Depending on the options and the compiler, a function may or may
not be traced by the function tracer, depending on whether gcc
decides to inline a function or not. This has caused several
problems in the pass becaues gcc is not always consistent with
what it decides to inline between different gcc versions.
Some places should not be traced (like paravirt native_* functions)
and these are mostly marked as inline. When gcc decides not to
inline the function, and if that function should not be traced, then
the ftrace function tracer will suddenly break when it use to work
fine. This becomes even harder to debug when different versions of
gcc will not inline that function, making the same kernel and config
work for some gcc versions and not work for others.
By making all functions marked inline to not be traced will remove
the ambiguity that gcc adds when it comes to tracing functions marked
inline. All gcc versions will be consistent with what functions are
traced and having volatile working code will be removed.
Note, only the inline macro when CONFIG_OPTIMIZE_INLINING is set needs
to have notrace added, as the attribute __always_inline will force
the function to be inlined and then not traced.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad4b3fb7ff9940bcdb1e4cd62bd189d10fa636ba upstream.
Unfortunately with !CONFIG_PAGEFLAGS_EXTENDED, (!PageHead) is false, and
(PageHead) is true, for tail pages. If this is indeed the intended
behavior, which I doubt because it breaks cache cleaning on some ARM
systems, then the nomenclature is highly problematic.
This patch makes sure PageHead is only true for head pages and PageTail
is only true for tail pages, and neither is true for non-compound pages.
[ This buglet seems ancient - seems to have been introduced back in Apr
2008 in commit 6a1e7f777f61: "pageflags: convert to the use of new
macros". And the reason nobody noticed is because the PageHead()
tests are almost all about just sanity-checking, and only used on
pages that are actual page heads. The fact that the old code returned
true for tail pages too was thus not really noticeable. - Linus ]
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Will Deacon <Will.Deacon@arm.com>
Cc: Steve Capper <Steve.Capper@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b66c5984017533316fd1951770302649baf1aa33 upstream.
If a series of scripts are executed, each triggering module loading via
unprintable bytes in the script header, kernel stack contents can leak
into the command line.
Normally execution of binfmt_script and binfmt_misc happens recursively.
However, when modules are enabled, and unprintable bytes exist in the
bprm->buf, execution will restart after attempting to load matching
binfmt modules. Unfortunately, the logic in binfmt_script and
binfmt_misc does not expect to get restarted. They leave bprm->interp
pointing to their local stack. This means on restart bprm->interp is
left pointing into unused stack memory which can then be copied into the
userspace argv areas.
After additional study, it seems that both recursion and restart remains
the desirable way to handle exec with scripts, misc, and modules. As
such, we need to protect the changes to interp.
This changes the logic to require allocation for any changes to the
bprm->interp. To avoid adding a new kmalloc to every exec, the default
value is left as-is. Only when passing through binfmt_script or
binfmt_misc does an allocation take place.
For a proof of concept, see DoTest.sh from:
http://www.halfdog.net/Security/2012/LinuxKernelBinfmtScriptStackDataDisclosure/
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: halfdog <me@halfdog.net>
Cc: P J P <ppandit@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 18a2f371f5edf41810f6469cb9be39931ef9deb9 upstream.
This fixes a regression in 3.7-rc, which has since gone into stable.
Commit 00442ad04a5e ("mempolicy: fix a memory corruption by refcount
imbalance in alloc_pages_vma()") changed get_vma_policy() to raise the
refcount on a shmem shared mempolicy; whereas shmem_alloc_page() went
on expecting alloc_page_vma() to drop the refcount it had acquired.
This deserves a rework: but for now fix the leak in shmem_alloc_page().
Hugh: shmem_swapin() did not need a fix, but surely it's clearer to use
the same refcounting there as in shmem_alloc_page(), delete its onstack
mempolicy, and the strange mpol_cond_copy() and __mpol_cond_copy() -
those were invented to let swapin_readahead() make an unknown number of
calls to alloc_pages_vma() with one mempolicy; but since 00442ad04a5e,
alloc_pages_vma() has kept refcount in balance, so now no problem.
Reported-and-tested-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2bbc6942273b5b3097bd265d82227bdd84b351b2 upstream.
Currently pci-bridges are allocated enough resources to satisfy their immediate
requirements. Any additional resource-requests fail if additional free space,
contiguous to the one already allocated, is not available. This behavior is not
reasonable since sufficient contiguous resources, that can satisfy the request,
are available at a different location.
This patch provides the ability to expand and relocate a allocated resource.
v2: Changelog: Fixed size calculation in pci_reassign_resource()
v3: Changelog : Split this patch. The resource.c changes are already
upstream. All the pci driver changes are in here.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Andrew Worsley <amworsley@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a0830dbd4e42b38aefdf3fb61ba5019a1a99ea85 upstream.
For more strict protection for wild disconnections, a refcount is
introduced to the card instance, and let it up/down when an object is
referred via snd_lookup_*() in the open ops.
The free-after-last-close check is also changed to check this refcount
instead of the empty list, too.
Reported-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a007c4c3e943ecc054a806c259d95420a188754b upstream.
I don't think there's a practical difference for the range of values
these interfaces should see, but it would be safer to be unambiguous.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9e33ce453f8ac8452649802bee1f410319408f4b upstream.
IPVS should not reset skb->nf_bridge in FORWARD hook
by calling nf_reset for NAT replies. It triggers oops in
br_nf_forward_finish.
[ 579.781508] BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
[ 579.781669] IP: [<ffffffff817b1ca5>] br_nf_forward_finish+0x58/0x112
[ 579.781792] PGD 218f9067 PUD 0
[ 579.781865] Oops: 0000 [#1] SMP
[ 579.781945] CPU 0
[ 579.781983] Modules linked in:
[ 579.782047]
[ 579.782080]
[ 579.782114] Pid: 4644, comm: qemu Tainted: G W 3.5.0-rc5-00006-g95e69f9 #282 Hewlett-Packard /30E8
[ 579.782300] RIP: 0010:[<ffffffff817b1ca5>] [<ffffffff817b1ca5>] br_nf_forward_finish+0x58/0x112
[ 579.782455] RSP: 0018:ffff88007b003a98 EFLAGS: 00010287
[ 579.782541] RAX: 0000000000000008 RBX: ffff8800762ead00 RCX: 000000000001670a
[ 579.782653] RDX: 0000000000000000 RSI: 000000000000000a RDI: ffff8800762ead00
[ 579.782845] RBP: ffff88007b003ac8 R08: 0000000000016630 R09: ffff88007b003a90
[ 579.782957] R10: ffff88007b0038e8 R11: ffff88002da37540 R12: ffff88002da01a02
[ 579.783066] R13: ffff88002da01a80 R14: ffff88002d83c000 R15: ffff88002d82a000
[ 579.783177] FS: 0000000000000000(0000) GS:ffff88007b000000(0063) knlGS:00000000f62d1b70
[ 579.783306] CS: 0010 DS: 002b ES: 002b CR0: 000000008005003b
[ 579.783395] CR2: 0000000000000004 CR3: 00000000218fe000 CR4: 00000000000027f0
[ 579.783505] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 579.783684] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 579.783795] Process qemu (pid: 4644, threadinfo ffff880021b20000, task ffff880021aba760)
[ 579.783919] Stack:
[ 579.783959] ffff88007693cedc ffff8800762ead00 ffff88002da01a02 ffff8800762ead00
[ 579.784110] ffff88002da01a02 ffff88002da01a80 ffff88007b003b18 ffffffff817b26c7
[ 579.784260] ffff880080000000 ffffffff81ef59f0 ffff8800762ead00 ffffffff81ef58b0
[ 579.784477] Call Trace:
[ 579.784523] <IRQ>
[ 579.784562]
[ 579.784603] [<ffffffff817b26c7>] br_nf_forward_ip+0x275/0x2c8
[ 579.784707] [<ffffffff81704b58>] nf_iterate+0x47/0x7d
[ 579.784797] [<ffffffff817ac32e>] ? br_dev_queue_push_xmit+0xae/0xae
[ 579.784906] [<ffffffff81704bfb>] nf_hook_slow+0x6d/0x102
[ 579.784995] [<ffffffff817ac32e>] ? br_dev_queue_push_xmit+0xae/0xae
[ 579.785175] [<ffffffff8187fa95>] ? _raw_write_unlock_bh+0x19/0x1b
[ 579.785179] [<ffffffff817ac417>] __br_forward+0x97/0xa2
[ 579.785179] [<ffffffff817ad366>] br_handle_frame_finish+0x1a6/0x257
[ 579.785179] [<ffffffff817b2386>] br_nf_pre_routing_finish+0x26d/0x2cb
[ 579.785179] [<ffffffff817b2cf0>] br_nf_pre_routing+0x55d/0x5c1
[ 579.785179] [<ffffffff81704b58>] nf_iterate+0x47/0x7d
[ 579.785179] [<ffffffff817ad1c0>] ? br_handle_local_finish+0x44/0x44
[ 579.785179] [<ffffffff81704bfb>] nf_hook_slow+0x6d/0x102
[ 579.785179] [<ffffffff817ad1c0>] ? br_handle_local_finish+0x44/0x44
[ 579.785179] [<ffffffff81551525>] ? sky2_poll+0xb35/0xb54
[ 579.785179] [<ffffffff817ad62a>] br_handle_frame+0x213/0x229
[ 579.785179] [<ffffffff817ad417>] ? br_handle_frame_finish+0x257/0x257
[ 579.785179] [<ffffffff816e3b47>] __netif_receive_skb+0x2b4/0x3f1
[ 579.785179] [<ffffffff816e69fc>] process_backlog+0x99/0x1e2
[ 579.785179] [<ffffffff816e6800>] net_rx_action+0xdf/0x242
[ 579.785179] [<ffffffff8107e8a8>] __do_softirq+0xc1/0x1e0
[ 579.785179] [<ffffffff8135a5ba>] ? trace_hardirqs_off_thunk+0x3a/0x6c
[ 579.785179] [<ffffffff8188812c>] call_softirq+0x1c/0x30
The steps to reproduce as follow,
1. On Host1, setup brige br0(192.168.1.106)
2. Boot a kvm guest(192.168.1.105) on Host1 and start httpd
3. Start IPVS service on Host1
ipvsadm -A -t 192.168.1.106:80 -s rr
ipvsadm -a -t 192.168.1.106:80 -r 192.168.1.105:80 -m
4. Run apache benchmark on Host2(192.168.1.101)
ab -n 1000 http://192.168.1.106/
ip_vs_reply4
ip_vs_out
handle_response
ip_vs_notrack
nf_reset()
{
skb->nf_bridge = NULL;
}
Actually, IPVS wants in this case just to replace nfct
with untracked version. So replace the nf_reset(skb) call
in ip_vs_notrack() with a nf_conntrack_put(skb->nfct) call.
Signed-off-by: Lin Ming <mlin@ss.pku.edu.cn>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: David Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b423f6a40a0327f9d40bc8b97ce9be266f74368 upstream.
Existing code assumes that del_timer returns true for alive conntrack
entries. However, this is not true if reliable events are enabled.
In that case, del_timer may return true for entries that were
just inserted in the dying list. Note that packets / ctnetlink may
hold references to conntrack entries that were just inserted to such
list.
This patch fixes the issue by adding an independent timer for
event delivery. This increases the size of the ecache extension.
Still we can revisit this later and use variable size extensions
to allocate this area on demand.
Tested-by: Oliver Smith <olipro@8.c.9.b.0.7.4.0.1.0.0.2.ip6.arpa>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: David Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b22d127a39ddd10d93deee3d96e643657ad53a49 upstream.
shared_policy_replace() use of sp_alloc() is unsafe. 1) sp_node cannot
be dereferenced if sp->lock is not held and 2) another thread can modify
sp_node between spin_unlock for allocating a new sp node and next
spin_lock. The bug was introduced before 2.6.12-rc2.
Kosaki's original patch for this problem was to allocate an sp node and
policy within shared_policy_replace and initialise it when the lock is
reacquired. I was not keen on this approach because it partially
duplicates sp_alloc(). As the paths were sp->lock is taken are not that
performance critical this patch converts sp->lock to sp->mutex so it can
sleep when calling sp_alloc().
[kosaki.motohiro@jp.fujitsu.com: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ecd7918745234e423dd87fcc0c077da557909720 ]
The current code fails to ensure that the netlink message actually
contains as many bytes as the header indicates. If a user creates a new
state or updates an existing one but does not supply the bytes for the
whole ESN replay window, the kernel copies random heap bytes into the
replay bitmap, the ones happen to follow the XFRMA_REPLAY_ESN_VAL
netlink attribute. This leads to following issues:
1. The replay window has random bits set confusing the replay handling
code later on.
2. A malicious user could use this flaw to leak up to ~3.5kB of heap
memory when she has access to the XFRM netlink interface (requires
CAP_NET_ADMIN).
Known users of the ESN replay window are strongSwan and Steffen's
iproute2 patch (<http://patchwork.ozlabs.org/patch/85962/>). The latter
uses the interface with a bitmap supplied while the former does not.
strongSwan is therefore prone to run into issue 1.
To fix both issues without breaking existing userland allow using the
XFRMA_REPLAY_ESN_VAL netlink attribute with either an empty bitmap or a
fully specified one. For the former case we initialize the in-kernel
bitmap with zero, for the latter we copy the user supplied bitmap. For
state updates the full bitmap must be supplied.
To prevent overflows in the bitmap length calculation the maximum size
of bmp_len is limited to 128 by this patch -- resulting in a maximum
replay window of 4096 packets. This should be sufficient for all real
life scenarios (RFC 4303 recommends a default replay window size of 64).
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Martin Willi <martin@revosec.ch>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3b59df46a449ec9975146d71318c4777ad086744 ]
ESN for esp is defined in RFC 4303. This RFC assumes that the
sequence number counters are always up to date. However,
this is not true if an async crypto algorithm is employed.
If the sequence number counters are not up to date on sequence
number check, we may incorrectly update the upper 32 bit of
the sequence number. This leads to a DOS.
We workaround this by comparing the upper sequence number,
(used for authentication) with the upper sequence number
computed after the async processing. We drop the packet
if these numbers are different.
To do this, we introduce a recheck function that does this
check in the ESN case.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 26e8220adb0aec43b7acafa0f1431760eee28522 upstream.
Apparently the same card model has two IDs, so this patch
complements the commit 39aced68d664291db3324d0fcf0985ab5626aac2
adding the missing one.
Signed-off-by: Flavio Leitner <fbl@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cee58483cf56e0ba355fdd97ff5e8925329aa936 upstream
Andreas Bombe reported that the added ktime_t overflow checking added to
timespec_valid in commit 4e8b14526ca7 ("time: Improve sanity checking of
timekeeping inputs") was causing problems with X.org because it caused
timeouts larger then KTIME_T to be invalid.
Previously, these large timeouts would be clamped to KTIME_MAX and would
never expire, which is valid.
This patch splits the ktime_t overflow checking into a new
timespec_valid_strict function, and converts the timekeeping codes
internal checking to use this more strict function.
Reported-and-tested-by: Andreas Bombe <aeb@debian.org>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4e8b14526ca7fb046a81c94002c1c43b6fdf0e9b upstream
Unexpected behavior could occur if the time is set to a value large
enough to overflow a 64bit ktime_t (which is something larger then the
year 2262).
Also unexpected behavior could occur if large negative offsets are
injected via adjtimex.
So this patch improves the sanity check timekeeping inputs by
improving the timespec_valid() check, and then makes better use of
timespec_valid() to make sure we don't set the time to an invalid
negative value or one that overflows ktime_t.
Note: This does not protect from setting the time close to overflowing
ktime_t and then letting natural accumulation cause the overflow.
Reported-by: CAI Qian <caiqian@redhat.com>
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8323f26ce3425460769605a6aece7a174edaa7d1 upstream.
Stefan reported a crash on a kernel before a3e5d1091c1 ("sched:
Don't call task_group() too many times in set_task_rq()"), he
found the reason to be that the multiple task_group()
invocations in set_task_rq() returned different values.
Looking at all that I found a lack of serialization and plain
wrong comments.
The below tries to fix it using an extra pointer which is
updated under the appropriate scheduler locks. Its not pretty,
but I can't really see another way given how all the cgroup
stuff works.
Reported-and-tested-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1340364965.18025.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0bce9c46bf3b15f485d82d7e81dabed6ebcc24b1 upstream.
ARM recently moved to asm-generic/mutex-xchg.h for its mutex
implementation after the previous implementation was found to be missing
some crucial memory barriers. However, this has revealed some problems
running hackbench on SMP platforms due to the way in which the
MUTEX_SPIN_ON_OWNER code operates.
The symptoms are that a bunch of hackbench tasks are left waiting on an
unlocked mutex and therefore never get woken up to claim it. This boils
down to the following sequence of events:
Task A Task B Task C Lock value
0 1
1 lock() 0
2 lock() 0
3 spin(A) 0
4 unlock() 1
5 lock() 0
6 cmpxchg(1,0) 0
7 contended() -1
8 lock() 0
9 spin(C) 0
10 unlock() 1
11 cmpxchg(1,0) 0
12 unlock() 1
At this point, the lock is unlocked, but Task B is in an uninterruptible
sleep with nobody to wake it up.
This patch fixes the problem by ensuring we put the lock into the
contended state if we fail to acquire it on the fastpath, ensuring that
any blocked waiters are woken up when the mutex is released.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-6e9lrw2avczr0617fzl5vqb8@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c3f52af3e03013db5237e339c817beaae5ec9e3a upstream.
When the NFS_COOKIEVERF helper macro was converted into a static
inline function in commit 99fadcd764 (nfs: convert NFS_*(inode)
helpers to static inline), we broke the initialisation of the
readdir cookies, since that depended on doing a memset with an
argument of 'sizeof(NFS_COOKIEVERF(inode))' which therefore
changed from sizeof(be32 cookieverf[2]) to sizeof(be32 *).
At this point, NFS_COOKIEVERF seems to be more of an obfuscation
than a helper, so the best thing would be to just get rid of it.
Also see: https://bugzilla.kernel.org/show_bug.cgi?id=46881
Reported-by: Andi Kleen <andi@firstfloor.org>
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85f2a2ef1d0ab99523e0b947a2b723f5650ed6aa upstream.
When allocating memory fails, page is NULL. page_to_pfn() will
cause the kernel panicked if we don't use sparsemem vmemmap.
Link: http://lkml.kernel.org/r/505AB1FF.8020104@cn.fujitsu.com
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 05cf96398e1b6502f9e191291b715c7463c9d5dd upstream.
I found following definition in include/linux/memory.h, in my IA64
platform, SECTION_SIZE_BITS is equal to 32, and MIN_MEMORY_BLOCK_SIZE
will be 0.
#define MIN_MEMORY_BLOCK_SIZE (1 << SECTION_SIZE_BITS)
Because MIN_MEMORY_BLOCK_SIZE is int type and length of 32bits,
so MIN_MEMORY_BLOCK_SIZE(1 << 32) will will equal to 0.
Actually when SECTION_SIZE_BITS >= 31, MIN_MEMORY_BLOCK_SIZE will be wrong.
This will cause wrong system memory infomation in sysfs.
I think it should be:
#define MIN_MEMORY_BLOCK_SIZE (1UL << SECTION_SIZE_BITS)
And "echo offline > memory0/state" will cause following call trace:
kernel BUG at mm/memory_hotplug.c:885!
sh[6455]: bugcheck! 0 [1]
Pid: 6455, CPU 0, comm: sh
psr : 0000101008526030 ifs : 8000000000000fa4 ip : [<a0000001008c40f0>] Not tainted (3.6.0-rc1)
ip is at offline_pages+0x210/0xee0
Call Trace:
show_stack+0x80/0xa0
show_regs+0x640/0x920
die+0x190/0x2c0
die_if_kernel+0x50/0x80
ia64_bad_break+0x3d0/0x6e0
ia64_native_leave_kernel+0x0/0x270
offline_pages+0x210/0xee0
alloc_pages_current+0x180/0x2a0
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 60e233a56609fd963c59e99bd75c663d63fa91b6 upstream.
Fengguang Wu <fengguang.wu@intel.com> writes:
> After the __devinit* removal series, I can still get kernel panic in
> show_uevent(). So there are more sources of bug..
>
> Debug patch:
>
> @@ -343,8 +343,11 @@ static ssize_t show_uevent(struct device
> goto out;
>
> /* copy keys to file */
> - for (i = 0; i < env->envp_idx; i++)
> + dev_err(dev, "uevent %d env[%d]: %s/.../%s\n", env->buflen, env->envp_idx, top_kobj->name, dev->kobj.name);
> + for (i = 0; i < env->envp_idx; i++) {
> + printk(KERN_ERR "uevent %d env[%d]: %s\n", (int)count, i, env->envp[i]);
> count += sprintf(&buf[count], "%s\n", env->envp[i]);
> + }
>
> Oops message, the env[] is again not properly initilized:
>
> [ 44.068623] input input0: uevent 61 env[805306368]: input0/.../input0
> [ 44.069552] uevent 0 env[0]: (null)
This is a completely different CONFIG_HOTPLUG problem, only
demonstrating another reason why CONFIG_HOTPLUG should go away. I had a
hard time trying to disable it anyway ;-)
The problem this time is lots of code assuming that a call to
add_uevent_var() will guarantee that env->buflen > 0. This is not true
if CONFIG_HOTPLUG is unset. So things like this end up overwriting
env->envp_idx because the array index is -1:
if (add_uevent_var(env, "MODALIAS="))
return -ENOMEM;
len = input_print_modalias(&env->buf[env->buflen - 1],
sizeof(env->buf) - env->buflen,
dev, 0);
Don't know what the best action is, given that there seem to be a *lot*
of this around the kernel. This patch "fixes" the problem for me, but I
don't know if it can be considered an appropriate fix.
[ It is the correct fix for now, for 3.7 forcing CONFIG_HOTPLUG to
always be on is the longterm fix, but it's too late for 3.6 and older
kernels to resolve this that way - gregkh ]
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a6fa941d94b411bbd2b6421ffbde6db3c93e65ab upstream.
Don't mess with file refcounts (or keep a reference to file, for
that matter) in perf_event. Use explicit refcount of its own
instead. Deal with the race between the final reference to event
going away and new children getting created for it by use of
atomic_long_inc_not_zero() in inherit_event(); just have the
latter free what it had allocated and return NULL, that works
out just fine (children of siblings of something doomed are
created as singletons, same as if the child of leader had been
created and immediately killed).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120820135925.GG23464@ZenIV.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b161dfa6937ae46d50adce8a7c6b12233e96e7bd upstream.
IBM reported a soft lockup after applying the fix for the rename_lock
deadlock. Commit c83ce989cb5f ("VFS: Fix the nfs sillyrename regression
in kernel 2.6.38") was found to be the culprit.
The nfs sillyrename fix used DCACHE_DISCONNECTED to indicate that the
dentry was killed. This flag can be set on non-killed dentries too,
which results in infinite retries when trying to traverse the dentry
tree.
This patch introduces a separate flag: DCACHE_DENTRY_KILLED, which is
only set in d_kill() and makes try_to_ascend() test only this flag.
IBM reported successful test results with this patch.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1485348d2424e1131ea42efc033cbd9366462b01 ]
Cache the device gso_max_segs in sock::sk_gso_max_segs and use it to
limit the size of TSO skbs. This avoids the need to fall back to
software GSO for local TCP senders.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 30b678d844af3305cda5953467005cebb5d7b687 ]
A peer (or local user) may cause TCP to use a nominal MSS of as little
as 88 (actual MSS of 76 with timestamps). Given that we have a
sufficiently prodigious local sender and the peer ACKs quickly enough,
it is nevertheless possible to grow the window for such a connection
to the point that we will try to send just under 64K at once. This
results in a single skb that expands to 861 segments.
In some drivers with TSO support, such an skb will require hundreds of
DMA descriptors; a substantial fraction of a TX ring or even more than
a full ring. The TX queue selected for the skb may stall and trigger
the TX watchdog repeatedly (since the problem skb will be retried
after the TX reset). This particularly affects sfc, for which the
issue is designated as CVE-2012-3412.
Therefore:
1. Add the field net_device::gso_max_segs holding the device-specific
limit.
2. In netif_skb_features(), if the number of segments is too high then
mask out GSO features to force fall back to software GSO.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d81a5d1956731c453b85c141458d4ff5d6cc5366 upstream.
A lot of Broadcom Bluetooth devices provides vendor specific interface
class and we are getting flooded by patches adding new device support.
This change will help us enable support for any other Broadcom with vendor
specific device that arrives in the future.
Only the product id changes for those devices, so this macro would be
perfect for us:
{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01) }
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Acked-by: Henrik Rydberg <rydberg@bitmath.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 59ee93a528b94ef4e81a08db252b0326feff171f upstream.
The irq_to_gpio function was removed from the pxa platform
in linux-3.2, and this driver has been broken since.
There is actually no in-tree user of this driver that adds
this platform device, but the driver can and does get enabled
on some platforms.
Without this patch, building ezx_defconfig results in:
drivers/mfd/ezx-pcap.c: In function 'pcap_isr_work':
drivers/mfd/ezx-pcap.c:205:2: error: implicit declaration of function 'irq_to_gpio' [-Werror=implicit-function-declaration]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com>
Cc: Samuel Ortiz <sameo@linux.intel.com>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c5857ccf293968348e5eb4ebedc68074de3dcda6 upstream.
With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.
[ Merged in fixes from Sedat to find some last missing references to
rand_initialize_irq() ]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 00ce1db1a634746040ace24c09a4e3a7949a3145 upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c2557a303ab6712bb6e09447df828c557c710ac9 upstream.
Create a new function, get_random_bytes_arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get_random_bytes() to not use the HW RNG, even if it
is avaiable.
The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)
It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.
Since users of get_random_bytes() in the Linux kernel need to be able
to support hardware systems where the HW RNG is not present, most
time-sensitive users of this interface have already created their own
cryptographic RNG interface which uses get_random_bytes() as a seed.
So it's much better to use the HW RNG to improve the existing random
number generator, by mixing in any entropy returned by the HW RNG into
/dev/random's entropy pool, but to always _use_ /dev/random's entropy
pool.
This way we get almost of the benefits of the HW RNG without any
potential liabilities. The only benefits we forgo is the
speed/performance enhancements --- and generic kernel code can't
depend on depend on get_random_bytes() having the speed of a HW RNG
anyway.
For those places that really want access to the arch-specific HW RNG,
if it is available, we provide get_random_bytes_arch().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a2080a67abe9e314f9e9c2cc3a4a176e8a8f8793 upstream.
Add a new interface, add_device_randomness() for adding data to the
random pool that is likely to differ between two devices (or possibly
even per boot). This would be things like MAC addresses or serial
numbers, or the read-out of the RTC. This does *not* add any actual
entropy to the pool, but it initializes the pool to different values
for devices that might otherwise be identical and have very little
entropy available to them (particularly common in the embedded world).
[ Modified by tytso to mix in a timestamp, since there may be some
variability caused by the time needed to detect/configure the hardware
in question. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 775f4b297b780601e61787b766f306ed3e1d23eb upstream.
We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.
This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool. Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool. This
assures that /dev/urandom is returning unpredictable data as soon as
possible.
(Based on an original patch by Linus, but significantly modified by
tytso.)
Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63d77173266c1791f1553e9e8ccea65dc87c4485 upstream.
Add support for architecture-specific hooks into the kernel-directed
random number generator interfaces. This patchset does not use the
architecture random number generator interfaces for the
userspace-directed interfaces (/dev/random and /dev/urandom), thus
eliminating the need to distinguish between them based on a pool
pointer.
Changes in version 3:
- Moved the hooks from extract_entropy() to get_random_bytes().
- Changes the hooks to inlines.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6575820221f7a4dd6eadecf7bf83cdd154335eda upstream.
Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers. This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.
Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers. This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.
However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress. Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.
While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.
Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.
Workqueue cpu hotplug operations will soon go through further cleanup.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cc9a6c8776615f9c194ccf0b63a0aa5628235545 upstream.
Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely
expensive and severely impacted page allocator performance. This
is part of a series of patches that reduce page allocator overhead.
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a6bc32b899223a877f595ef9ddc1e89ead5072b8 upstream.
Stable note: Not tracked in Buzilla. This was part of a series that
reduced interactivity stalls experienced when THP was enabled.
These stalls were particularly noticable when copying data
to a USB stick but the experiences for users varied a lot.
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT
mode that avoids writing back pages to backing storage. Async compaction
maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT.
For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is
used.
This avoids sync compaction stalling for an excessive length of time,
particularly when copying files to a USB stick where there might be a
large number of dirty pages backed by a filesystem that does not support
->writepages.
[aarcange@redhat.com: This patch is heavily based on Andrea's work]
[akpm@linux-foundation.org: fix fs/nfs/write.c build]
[akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c82449352854ff09e43062246af86bdeb628f0c3 upstream.
Stable note: Not tracked in Bugzilla. A fix aimed at preserving page aging
information by reducing LRU list churning had the side-effect of
reducing THP allocation success rates. This was part of a series
to restore the success rates while preserving the reclaim fix.
Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware")
noted that compaction does not migrate dirty or writeback pages and that
is was meaningless to pick the page and re-add it to the LRU list. This
had to be partially reverted because some dirty pages can be migrated by
compaction without blocking.
This patch updates "mm: compaction: make isolate_lru_page" by skipping
over pages that migration has no possibility of migrating to minimise LRU
disruption.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel<riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
within ->migratepage
commit b969c4ab9f182a6e1b2a0848be349f99714947b0 upstream.
Stable note: Not tracked in Bugzilla. A fix aimed at preserving page
aging information by reducing LRU list churning had the side-effect
of reducing THP allocation success rates. This was part of a series
to restore the success rates while preserving the reclaim fix.
Asynchronous compaction is used when allocating transparent hugepages to
avoid blocking for long periods of time. Due to reports of stalling,
there was a debate on disabling synchronous compaction but this severely
impacted allocation success rates. Part of the reason was that many dirty
pages are skipped in asynchronous compaction by the following check;
if (PageDirty(page) && !sync &&
mapping->a_ops->migratepage != migrate_page)
rc = -EBUSY;
This skips over all mapping aops using buffer_migrate_page() even though
it is possible to migrate some of these pages without blocking. This
patch updates the ->migratepage callback with a "sync" parameter. It is
the responsibility of the callback to fail gracefully if migration would
block.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f80c0673610e36ae29d63e3297175e22f70dde5f upstream.
Stable note: Not tracked in Bugzilla. THP and compaction disrupt the LRU list
leading to poor reclaim decisions which has a variable
performance impact.
In __zone_reclaim case, we don't want to shrink mapped page. Nonetheless,
we have isolated mapped page and re-add it into LRU's head. It's
unnecessary CPU overhead and makes LRU churning.
Of course, when we isolate the page, the page might be mapped but when we
try to migrate the page, the page would be not mapped. So it could be
migrated. But race is rare and although it happens, it's no big deal.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 39deaf8585152f1a35c1676d3d7dc6ae0fb65967 upstream.
Stable note: Not tracked in Bugzilla. THP and compaction disrupt the LRU
list leading to poor reclaim decisions which has a variable
performance impact.
In async mode, compaction doesn't migrate dirty or writeback pages. So,
it's meaningless to pick the page and re-add it to lru list.
Of course, when we isolate the page in compaction, the page might be dirty
or writeback but when we try to migrate the page, the page would be not
dirty, writeback. So it could be migrated. But it's very unlikely as
isolate and migration cycle is much faster than writeout.
So, this patch helps cpu overhead and prevent unnecessary LRU churning.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4356f21d09283dc6d39a6f7287a65ddab61e2808 upstream.
Stable note: Not tracked in Bugzilla. This patch makes later patches
easier to apply but has no other impact.
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally,
macro isn't recommended as it's type-unsafe and making debugging harder as
symbol cannot be passed throught to the debugger.
Quote from Johannes
" Hmm, it would probably be cleaner to fully convert the isolation mode
into independent flags. INACTIVE, ACTIVE, BOTH is currently a
tri-state among flags, which is a bit ugly."
This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 095760730c1047c69159ce88021a7fa3833502c8 upstream.
Stable note: This patch makes later patches easier to apply but otherwise
has little to justify it. It is a diagnostic patch that was part
of a series addressing excessive slab shrinking after GFP_NOFS
failures. There is detailed information on the series' motivation
at https://lkml.org/lkml/2011/6/2/42 .
It is impossible to understand what the shrinkers are actually doing
without instrumenting the code, so add a some tracepoints to allow
insight to be gained.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Mel Gorman <mgorman@suse.de>
|
|
This is a backport of f6c06abfb3972ad4914cef57d8348fcb2932bc3b
To finally fix the infamous leap second issue and other race windows
caused by functions which change the offsets between the various time
bases (CLOCK_MONOTONIC, CLOCK_REALTIME and CLOCK_BOOTTIME) we need a
function which atomically gets the current monotonic time and updates
the offsets of CLOCK_REALTIME and CLOCK_BOOTTIME with minimalistic
overhead. The previous patch which provides ktime_t offsets allows us
to make this function almost as cheap as ktime_get() which is going to
be replaced in hrtimer_interrupt().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-7-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a backport of f55a6faa384304c89cfef162768e88374d3312cb
clock_was_set() cannot be called from hard interrupt context because
it calls on_each_cpu().
For fixing the widely reported leap seconds issue it is necessary to
call it from hard interrupt context, i.e. the timer tick code, which
does the timekeeping updates.
Provide a new function which denotes it in the hrtimer cpu base
structure of the cpu on which it is called and raise the hrtimer
softirq. We then execute the clock_was_set() notificiation from
softirq context in run_hrtimer_softirq(). The hrtimer softirq is
rarely used, so polling the flag there is not a performance issue.
[ tglx: Made it depend on CONFIG_HIGH_RES_TIMERS. We really should get
rid of all this ifdeffery ASAP ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-2-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|