Age | Commit message (Collapse) | Author |
|
commit 5b6e9bcdeb65634b4ad604eb4536404bbfc62cfa upstream.
Commit 4231d47e6fe69f061f96c98c30eaf9fb4c14b96d(net/usbnet: avoid
recursive locking in usbnet_stop()) fixes the recursive locking
problem by releasing the skb queue lock before unlink, but may
cause skb traversing races:
- after URB is unlinked and the queue lock is released,
the refered skb and skb->next may be moved to done queue,
even be released
- in skb_queue_walk_safe, the next skb is still obtained
by next pointer of the last skb
- so maybe trigger oops or other problems
This patch extends the usage of entry->state to describe 'start_unlink'
state, so always holding the queue(rx/tx) lock to change the state if
the referd skb is in rx or tx queue because we need to know if the
refered urb has been started unlinking in unlink_urbs.
The other part of this patch is based on Huajun's patch:
always traverse from head of the tx/rx queue to get skb which is
to be unlinked but not been started unlinking.
Signed-off-by: Huajun Li <huajun.li.lee@gmail.com>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Cc: Oliver Neukum <oneukum@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2f624278626677bfaf73fef97f86b37981621f5c upstream.
We really need to use a ACCESS_ONCE() on the sequence value read in
__read_seqcount_begin(), because otherwise the compiler might end up
reloading the value in between the test and the return of it. As a
result, it might end up returning an odd value (which means that a write
is in progress).
If the reader is then fast enough that that odd value is still the
current one when the read_seqcount_retry() is done, we might end up with
a "successful" read sequence, even despite the concurrent write being
active.
In practice this probably never really happens - there just isn't
anything else going on around the read of the sequence count, and the
common case is that we end up having a read barrier immediately
afterwards.
So the code sequence in which gcc might decide to reaload from memory is
small, and there's no reason to believe it would ever actually do the
reload. But if the compiler ever were to decide to do so, it would be
incredibly annoying to debug. Let's just make sure.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f5c2347ee20a8d6964d6a6b1ad04f200f8d4dfa7 upstream.
<asm-generic/statfs.h> is exported to userspace, so using
BITS_PER_LONG is invalid. We need to use __BITS_PER_LONG instead.
This is kernel bugzilla 43165.
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1335465916-16965-1-git-send-email-hpa@linux.intel.com
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 41b3254c93acc56adc3c4477fef7c9512d47659e upstream.
More recent versions of the UEFI spec have added new attributes for
variables. Add them.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9883035ae7edef3ec62ad215611cb8e17d6a1a5d upstream.
The actual internal pipe implementation is already really about
individual packets (called "pipe buffers"), and this simply exposes that
as a special packetized mode.
When we are in the packetized mode (marked by O_DIRECT as suggested by
Alan Cox), a write() on a pipe will not merge the new data with previous
writes, so each write will get a pipe buffer of its own. The pipe
buffer is then marked with the PIPE_BUF_FLAG_PACKET flag, which in turn
will tell the reader side to break the read at that boundary (and throw
away any partial packet contents that do not fit in the read buffer).
End result: as long as you do writes less than PIPE_BUF in size (so that
the pipe doesn't have to split them up), you can now treat the pipe as a
packet interface, where each read() system call will read one packet at
a time. You can just use a sufficiently big read buffer (PIPE_BUF is
sufficient, since bigger than that doesn't guarantee atomicity anyway),
and the return value of the read() will naturally give you the size of
the packet.
NOTE! We do not support zero-sized packets, and zero-sized reads and
writes to a pipe continue to be no-ops. Also note that big packets will
currently be split at write time, but that the size at which that
happens is not really specified (except that it's bigger than PIPE_BUF).
Currently that limit is the system page size, but we might want to
explicitly support bigger packets some day.
The main user for this is going to be the autofs packet interface,
allowing us to stop having to care so deeply about exact packet sizes
(which have had bugs with 32/64-bit compatibility modes). But user
space can create packetized pipes with "pipe2(fd, O_DIRECT)", which will
fail with an EINVAL on kernels that do not support this interface.
Tested-by: Michael Tokarev <mjt@tls.msk.ru>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: David Miller <davem@davemloft.net>
Cc: Ian Kent <raven@themaw.net>
Cc: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 151b61284776be2d6f02d48c23c3625678960b97 upstream.
This patch (as1545) fixes a problem affecting several ASUS computers:
The machine crashes or corrupts memory when going into suspend if the
ehci-hcd driver is bound to any controllers. Users have been forced
to unbind or unload ehci-hcd before putting their systems to sleep.
After extensive testing, it was determined that the machines don't
like going into suspend when any EHCI controllers are in the PCI D3
power state. Presumably this is a firmware bug, but there's nothing
we can do about it except to avoid putting the controllers in D3
during system sleep.
The patch adds a new flag to indicate whether the problem is present,
and avoids changing the controller's power state if the flag is set.
Runtime suspend is unaffected; this matters only for system suspend.
However as a side effect, the controller will not respond to remote
wakeup requests while the system is asleep. Hence USB wakeup is not
functional -- but of course, this is already true in the current state
of affairs.
This fixes Bugzilla #42728.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Andrey Rahmatullin <wrar@wrar.name>
Tested-by: Oleksij Rempel (fishor) <bug-track@fisher-privat.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 32f6daad4651a748a58a3ab6da0611862175722f upstream.
We've been adding new mappings, but not destroying old mappings.
This can lead to a page leak as pages are pinned using
get_user_pages, but only unpinned with put_page if they still
exist in the memslots list on vm shutdown. A memslot that is
destroyed while an iommu domain is enabled for the guest will
therefore result in an elevated page reference count that is
never cleared.
Additionally, without this fix, the iommu is only programmed
with the first translation for a gpa. This can result in
peer-to-peer errors if a mapping is destroyed and replaced by a
new mapping at the same gpa as the iommu will still be pointing
to the original, pinned memory address.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ This combines upstream commit
2f53384424251c06038ae612e56231b96ab610ee and the follow-on bug fix
commit 35f9c09fe9c72eb8ca2b8e89a593e1c151f28fc2 ]
vmsplice()/splice(pipe, socket) call do_tcp_sendpages() one page at a
time, adding at most 4096 bytes to an skb. (assuming PAGE_SIZE=4096)
The call to tcp_push() at the end of do_tcp_sendpages() forces an
immediate xmit when pipe is not already filled, and tso_fragment() try
to split these skb to MSS multiples.
4096 bytes are usually split in a skb with 2 MSS, and a remaining
sub-mss skb (assuming MTU=1500)
This makes slow start suboptimal because many small frames are sent to
qdisc/driver layers instead of big ones (constrained by cwnd and packets
in flight of course)
In fact, applications using sendmsg() (adding an additional memory copy)
instead of vmsplice()/splice()/sendfile() are a bit faster because of
this anomaly, especially if serving small files in environments with
large initial [c]wnd.
Call tcp_push() only if MSG_MORE is not set in the flags parameter.
This bit is automatically provided by splice() internals but for the
last page, or on all pages if user specified SPLICE_F_MORE splice()
flag.
In some workloads, this can reduce number of sent logical packets by an
order of magnitude, making zero-copy TCP actually faster than
one-copy :)
Reported-by: Tom Herbert <therbert@google.com>
Cc: Nandita Dukkipati <nanditad@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Tom Herbert <therbert@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: H.K. Jerry Chu <hkchu@google.com>
Cc: Maciej Żenczykowski <maze@google.com>
Cc: Mahesh Bandewar <maheshb@google.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 94324962066231a938564bebad0f941cd2d06bb2 upstream.
Make sure hci_dev_open returns immediately if hci_dev_unregister has
been called.
This fixes a race between hci_dev_open and hci_dev_unregister which can
lead to a NULL-pointer dereference.
Bug is 100% reproducible using hciattach and a disconnected serial port:
0. # hciattach -n /dev/ttyO1 any noflow
1. hci_dev_open called from hci_power_on grabs req lock
2. hci_init_req executes but device fails to initialise (times out
eventually)
3. hci_dev_open is called from hci_sock_ioctl and sleeps on req lock
4. hci_uart_tty_close calls hci_dev_unregister and sleeps on req lock in
hci_dev_do_close
5. hci_dev_open (1) releases req lock
6. hci_dev_do_close grabs req lock and returns as device is not up
7. hci_dev_unregister sleeps in destroy_workqueue
8. hci_dev_open (3) grabs req lock, calls hci_init_req and eventually sleeps
9. hci_dev_unregister finishes, while hci_dev_open is still running...
[ 79.627136] INFO: trying to register non-static key.
[ 79.632354] the code is fine but needs lockdep annotation.
[ 79.638122] turning off the locking correctness validator.
[ 79.643920] [<c00188bc>] (unwind_backtrace+0x0/0xf8) from [<c00729c4>] (__lock_acquire+0x1590/0x1ab0)
[ 79.653594] [<c00729c4>] (__lock_acquire+0x1590/0x1ab0) from [<c00733f8>] (lock_acquire+0x9c/0x128)
[ 79.663085] [<c00733f8>] (lock_acquire+0x9c/0x128) from [<c0040a88>] (run_timer_softirq+0x150/0x3ac)
[ 79.672668] [<c0040a88>] (run_timer_softirq+0x150/0x3ac) from [<c003a3b8>] (__do_softirq+0xd4/0x22c)
[ 79.682281] [<c003a3b8>] (__do_softirq+0xd4/0x22c) from [<c003a924>] (irq_exit+0x8c/0x94)
[ 79.690856] [<c003a924>] (irq_exit+0x8c/0x94) from [<c0013a50>] (handle_IRQ+0x34/0x84)
[ 79.699157] [<c0013a50>] (handle_IRQ+0x34/0x84) from [<c0008530>] (omap3_intc_handle_irq+0x48/0x4c)
[ 79.708648] [<c0008530>] (omap3_intc_handle_irq+0x48/0x4c) from [<c037499c>] (__irq_usr+0x3c/0x60)
[ 79.718048] Exception stack(0xcf281fb0 to 0xcf281ff8)
[ 79.723358] 1fa0: 0001e6a0 be8dab00 0001e698 00036698
[ 79.731933] 1fc0: 0002df98 0002df38 0000001f 00000000 b6f234d0 00000000 00000004 00000000
[ 79.740509] 1fe0: 0001e6f8 be8d6aa0 be8dac50 0000aab8 80000010 ffffffff
[ 79.747497] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[ 79.756011] pgd = cf3b4000
[ 79.758850] [00000000] *pgd=8f0c7831, *pte=00000000, *ppte=00000000
[ 79.765502] Internal error: Oops: 80000007 [#1]
[ 79.770294] Modules linked in:
[ 79.773529] CPU: 0 Tainted: G W (3.3.0-rc6-00002-gb5d5c87 #421)
[ 79.781066] PC is at 0x0
[ 79.783721] LR is at run_timer_softirq+0x16c/0x3ac
[ 79.788787] pc : [<00000000>] lr : [<c0040aa4>] psr: 60000113
[ 79.788787] sp : cf281ee0 ip : 00000000 fp : cf280000
[ 79.800903] r10: 00000004 r9 : 00000100 r8 : b6f234d0
[ 79.806427] r7 : c0519c28 r6 : cf093488 r5 : c0561a00 r4 : 00000000
[ 79.813323] r3 : 00000000 r2 : c054eee0 r1 : 00000001 r0 : 00000000
[ 79.820190] Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
[ 79.827728] Control: 10c5387d Table: 8f3b4019 DAC: 00000015
[ 79.833801] Process gpsd (pid: 1265, stack limit = 0xcf2802e8)
[ 79.839965] Stack: (0xcf281ee0 to 0xcf282000)
[ 79.844573] 1ee0: 00000002 00000000 c0040a24 00000000 00000002 cf281f08 00200200 00000000
[ 79.853210] 1f00: 00000000 cf281f18 cf281f08 00000000 00000000 00000000 cf281f18 cf281f18
[ 79.861816] 1f20: 00000000 00000001 c056184c 00000000 00000001 b6f234d0 c0561848 00000004
[ 79.870452] 1f40: cf280000 c003a3b8 c051e79c 00000001 00000000 00000100 3fa9e7b8 0000000a
[ 79.879089] 1f60: 00000025 cf280000 00000025 00000000 00000000 b6f234d0 00000000 00000004
[ 79.887756] 1f80: 00000000 c003a924 c053ad38 c0013a50 fa200000 cf281fb0 ffffffff c0008530
[ 79.896362] 1fa0: 0001e6a0 0000aab8 80000010 c037499c 0001e6a0 be8dab00 0001e698 00036698
[ 79.904998] 1fc0: 0002df98 0002df38 0000001f 00000000 b6f234d0 00000000 00000004 00000000
[ 79.913665] 1fe0: 0001e6f8 be8d6aa0 be8dac50 0000aab8 80000010 ffffffff 00fbf700 04ffff00
[ 79.922302] [<c0040aa4>] (run_timer_softirq+0x16c/0x3ac) from [<c003a3b8>] (__do_softirq+0xd4/0x22c)
[ 79.931945] [<c003a3b8>] (__do_softirq+0xd4/0x22c) from [<c003a924>] (irq_exit+0x8c/0x94)
[ 79.940582] [<c003a924>] (irq_exit+0x8c/0x94) from [<c0013a50>] (handle_IRQ+0x34/0x84)
[ 79.948913] [<c0013a50>] (handle_IRQ+0x34/0x84) from [<c0008530>] (omap3_intc_handle_irq+0x48/0x4c)
[ 79.958404] [<c0008530>] (omap3_intc_handle_irq+0x48/0x4c) from [<c037499c>] (__irq_usr+0x3c/0x60)
[ 79.967773] Exception stack(0xcf281fb0 to 0xcf281ff8)
[ 79.973083] 1fa0: 0001e6a0 be8dab00 0001e698 00036698
[ 79.981658] 1fc0: 0002df98 0002df38 0000001f 00000000 b6f234d0 00000000 00000004 00000000
[ 79.990234] 1fe0: 0001e6f8 be8d6aa0 be8dac50 0000aab8 80000010 ffffffff
[ 79.997161] Code: bad PC value
[ 80.000396] ---[ end trace 6f6739840475f9ee ]---
[ 80.005279] Kernel panic - not syncing: Fatal exception in interrupt
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9993bc635d01a6ee7f6b833b4ee65ce7c06350b1 upstream.
When a machine boots up, the TSC generally gets reset. However,
when kexec is used to boot into a kernel, the TSC value would be
carried over from the previous kernel. The computation of
cycns_offset in set_cyc2ns_scale is prone to an overflow, if the
machine has been up more than 208 days prior to the kexec. The
overflow happens when we multiply *scale, even though there is
enough room to store the final answer.
We fix this issue by decomposing tsc_now into the quotient and
remainder of division by CYC2NS_SCALE_FACTOR and then performing
the multiplication separately on the two components.
Refactor code to share the calculation with the previous
fix in __cycles_2_ns().
Signed-off-by: Salman Qazi <sqazi@google.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20120310004027.19291.88460.stgit@dungbeetle.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3751d3e85cf693e10e2c47c03c8caa65e171099b upstream.
There has long been a limitation using software breakpoints with a
kernel compiled with CONFIG_DEBUG_RODATA going back to 2.6.26. For
this particular patch, it will apply cleanly and has been tested all
the way back to 2.6.36.
The kprobes code uses the text_poke() function which accommodates
writing a breakpoint into a read-only page. The x86 kgdb code can
solve the problem similarly by overriding the default breakpoint
set/remove routines and using text_poke() directly.
The x86 kgdb code will first attempt to use the traditional
probe_kernel_write(), and next try using a the text_poke() function.
The break point install method is tracked such that the correct break
point removal routine will get called later on.
Cc: x86@kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Inspried-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98b54aa1a2241b59372468bd1e9c2d207bdba54b upstream.
There is extra state information that needs to be exposed in the
kgdb_bpt structure for tracking how a breakpoint was installed. The
debug_core only uses the the probe_kernel_write() to install
breakpoints, but this is not enough for all the archs. Some arch such
as x86 need to use text_poke() in order to install a breakpoint into a
read only page.
Passing the kgdb_bpt structure to kgdb_arch_set_breakpoint() and
kgdb_arch_remove_breakpoint() allows other archs to set the type
variable which indicates how the breakpoint was installed.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1631fcea8399da5e80a80084b3b8c5bfd99d21e7 upstream.
<asm-generic/unistd.h> was set up to use sys_sendfile() for the 32-bit
compat API instead of sys_sendfile64(), but in fact the right thing to
do is to use sys_sendfile64() in all cases. The 32-bit sendfile64() API
in glibc uses the sendfile64 syscall, so it has to be capable of doing
full 64-bit operations. But the sys_sendfile() kernel implementation
has a MAX_NON_LFS test in it which explicitly limits the offset to 2^32.
So, we need to use the sys_sendfile64() implementation in the kernel
for this case.
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ce880cb860f36694d2cdebfac9e6ae18176fe4c4 upstream.
The USB graphics card driver delays the unregistering of the framebuffer
device to a workqueue, which breaks the userspace visible remove uevent
sequence. Recent userspace tools started to support USB graphics card
hotplug out-of-the-box and rely on proper events sent by the kernel.
The framebuffer device is a direct child of the USB interface which is
removed immediately after the USB .disconnect() callback. But the fb device
in /sys stays around until its final cleanup, at a time where all the parent
devices have been removed already.
To work around that, we remove the sysfs fb device directly in the USB
.disconnect() callback and leave only the cleanup of the internal fb
data to the delayed work.
Before:
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/graphics/fb0 (graphics)
remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
remove /2-1.2:1.0/graphics/fb0 (graphics)
After:
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/graphics/fb1 (graphics)
remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/graphics/fb1 (graphics)
remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
Tested-by: Bernie Thompson <bernie@plugable.com>
Acked-by: Bernie Thompson <bernie@plugable.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a5a9906d4e8d1976b701f889d8f35d54b928f25 upstream.
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f910381a55cdaa097030291f272f6e6e4380c39a upstream.
Add a div64_long macro which is used to devide a 64bit number by a long (which
can be 4 bytes on 32bit systems and 8 bytes on 64bit systems).
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: johnstul@us.ibm.com
Link: http://lkml.kernel.org/r/1331829374-31543-1-git-send-email-levinsasha928@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 62d3c5439c534b0e6c653fc63e6d8c67be3a57b1 upstream.
This patch (as1519) fixes a bug in the block layer's disk-events
polling. The polling is done by a work routine queued on the
system_nrt_wq workqueue. Since that workqueue isn't freezable, the
polling continues even in the middle of a system sleep transition.
Obviously, polling a suspended drive for media changes and such isn't
a good thing to do; in the case of USB mass-storage devices it can
lead to real problems requiring device resets and even re-enumeration.
The patch fixes things by creating a new system-wide, non-reentrant,
freezable workqueue and using it for disk-events polling.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fe316bf2d5847bc5dd975668671a7b1067603bc7 upstream.
Since 2.6.39 (1196f8b), when a driver returns -ENOMEDIUM for open(),
__blkdev_get() calls rescan_partitions() to remove
in-kernel partition structures and raise KOBJ_CHANGE uevent.
However it ends up calling driver's revalidate_disk without open
and could cause oops.
In the case of SCSI:
process A process B
----------------------------------------------
sys_open
__blkdev_get
sd_open
returns -ENOMEDIUM
scsi_remove_device
<scsi_device torn down>
rescan_partitions
sd_revalidate_disk
<oops>
Oopses are reported here:
http://marc.info/?l=linux-scsi&m=132388619710052
This patch separates the partition invalidation from rescan_partitions()
and use it for -ENOMEDIUM case.
Reported-by: Huajun Li <huajun.li.lee@gmail.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 03606895cd98c0a628b17324fd7b5ff15db7e3cd ]
Niccolo Belli reported ipsec crashes in case we handle a frame without
mac header (atm in his case)
Before copying mac header, better make sure it is present.
Bugzilla reference: https://bugzilla.kernel.org/show_bug.cgi?id=42809
Reported-by: Niccolò Belli <darkbasic@linuxsystems.it>
Tested-by: Niccolò Belli <darkbasic@linuxsystems.it>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c49d005b6cc8491fad5b24f82805be2d6bcbd3dd upstream.
A hardware bug in the OMAP4 HDMI PHY causes physical damage to the board
if the HDMI PHY is kept powered on when the cable is not connected.
This patch solves the problem by adding hot-plug-detection into the HDMI
IP driver. This is not a real HPD support in the sense that nobody else
than the IP driver gets to know about the HPD events, but is only meant
to fix the HW bug.
The strategy is simple: If the display device is turned off by the user,
the PHY power is set to OFF. When the display device is turned on by the
user, the PHY power is set either to LDOON or TXON, depending on whether
the HDMI cable is connected.
The reason to avoid PHY OFF when the display device is on, but the cable
is disconnected, is that when the PHY is turned OFF, the HDMI IP is not
"ticking" and thus the DISPC does not receive pixel clock from the HDMI
IP. This would, for example, prevent any VSYNCs from happening, and
would thus affect the users of omapdss. By using LDOON when the cable is
disconnected we'll avoid the HW bug, but keep the HDMI working as usual
from the user's point of view.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5189fa19a4b2b4c3bec37c3a019d446148827717 upstream.
There is only one error code to return for a bad user-space buffer
pointer passed to a system call in the same address space as the
system call is executed, and that is EFAULT. Furthermore, the
low-level access routines, which catch most of the faults, return
EFAULT already.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Roland McGrath <roland@hack.frob.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8e252586f8d5de906385d8cf6385fee289a825e upstream.
The regset common infrastructure assumed that regsets would always
have .get and .set methods, but not necessarily .active methods.
Unfortunately people have since written regsets without .set methods.
Rather than putting in stub functions everywhere, handle regsets with
null .get or .set methods explicitly.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Roland McGrath <roland@hack.frob.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c761ea05a8900a907f32b628611873f6bef24b2 upstream.
The autofs compat handling fix caused a compile failure when
CONFIG_COMPAT isn't defined.
Instead of adding random #ifdef'fery in autofs, let's just make the
compat helpers earlier to use: without CONFIG_COMPAT, is_compat_task()
just hardcodes to zero.
We could probably do something similar for a number of other cases where
we have #ifdef's in code, but this is the low-hanging fruit.
Reported-and-tested-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 28d82dc1c4edbc352129f97f4ca22624d1fe61de upstream.
The current epoll code can be tickled to run basically indefinitely in
both loop detection path check (on ep_insert()), and in the wakeup paths.
The programs that tickle this behavior set up deeply linked networks of
epoll file descriptors that cause the epoll algorithms to traverse them
indefinitely. A couple of these sample programs have been previously
posted in this thread: https://lkml.org/lkml/2011/2/25/297.
To fix the loop detection path check algorithms, I simply keep track of
the epoll nodes that have been already visited. Thus, the loop detection
becomes proportional to the number of epoll file descriptor and links.
This dramatically decreases the run-time of the loop check algorithm. In
one diabolical case I tried it reduced the run-time from 15 mintues (all
in kernel time) to .3 seconds.
Fixing the wakeup paths could be done at wakeup time in a similar manner
by keeping track of nodes that have already been visited, but the
complexity is harder, since there can be multiple wakeups on different
cpus...Thus, I've opted to limit the number of possible wakeup paths when
the paths are created.
This is accomplished, by noting that the end file descriptor points that
are found during the loop detection pass (from the newly added link), are
actually the sources for wakeup events. I keep a list of these file
descriptors and limit the number and length of these paths that emanate
from these 'source file descriptors'. In the current implemetation I
allow 1000 paths of length 1, 500 of length 2, 100 of length 3, 50 of
length 4 and 10 of length 5. Note that it is sufficient to check the
'source file descriptors' reachable from the newly added link, since no
other 'source file descriptors' will have newly added links. This allows
us to check only the wakeup paths that may have gotten too long, and not
re-check all possible wakeup paths on the system.
In terms of the path limit selection, I think its first worth noting that
the most common case for epoll, is probably the model where you have 1
epoll file descriptor that is monitoring n number of 'source file
descriptors'. In this case, each 'source file descriptor' has a 1 path of
length 1. Thus, I believe that the limits I'm proposing are quite
reasonable and in fact may be too generous. Thus, I'm hoping that the
proposed limits will not prevent any workloads that currently work to
fail.
In terms of locking, I have extended the use of the 'epmutex' to all
epoll_ctl add and remove operations. Currently its only used in a subset
of the add paths. I need to hold the epmutex, so that we can correctly
traverse a coherent graph, to check the number of paths. I believe that
this additional locking is probably ok, since its in the setup/teardown
paths, and doesn't affect the running paths, but it certainly is going to
add some extra overhead. Also, worth noting is that the epmuex was
recently added to the ep_ctl add operations in the initial path loop
detection code using the argument that it was not on a critical path.
Another thing to note here, is the length of epoll chains that is allowed.
Currently, eventpoll.c defines:
/* Maximum number of nesting allowed inside epoll sets */
#define EP_MAX_NESTS 4
This basically means that I am limited to a graph depth of 5 (EP_MAX_NESTS
+ 1). However, this limit is currently only enforced during the loop
check detection code, and only when the epoll file descriptors are added
in a certain order. Thus, this limit is currently easily bypassed. The
newly added check for wakeup paths, stricly limits the wakeup paths to a
length of 5, regardless of the order in which ep's are linked together.
Thus, a side-effect of the new code is a more consistent enforcement of
the graph depth.
Thus far, I've tested this, using the sample programs previously
mentioned, which now either return quickly or return -EINVAL. I've also
testing using the piptest.c epoll tester, which showed no difference in
performance. I've also created a number of different epoll networks and
tested that they behave as expectded.
I believe this solves the original diabolical test cases, while still
preserving the sane epoll nesting.
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Nelson Elhage <nelhage@ksplice.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d80e731ecab420ddcb79ee9d0ac427acbc187b4b upstream.
This patch is intentionally incomplete to simplify the review.
It ignores ep_unregister_pollwait() which plays with the same wqh.
See the next change.
epoll assumes that the EPOLL_CTL_ADD'ed file controls everything
f_op->poll() needs. In particular it assumes that the wait queue
can't go away until eventpoll_release(). This is not true in case
of signalfd, the task which does EPOLL_CTL_ADD uses its ->sighand
which is not connected to the file.
This patch adds the special event, POLLFREE, currently only for
epoll. It expects that init_poll_funcptr()'ed hook should do the
necessary cleanup. Perhaps it should be defined as EPOLLFREE in
eventpoll.
__cleanup_sighand() is changed to do wake_up_poll(POLLFREE) if
->signalfd_wqh is not empty, we add the new signalfd_cleanup()
helper.
ep_poll_callback(POLLFREE) simply does list_del_init(task_list).
This make this poll entry inconsistent, but we don't care. If you
share epoll fd which contains our sigfd with another process you
should blame yourself. signalfd is "really special". I simply do
not know how we can define the "right" semantics if it used with
epoll.
The main problem is, epoll calls signalfd_poll() once to establish
the connection with the wait queue, after that signalfd_poll(NULL)
returns the different/inconsistent results depending on who does
EPOLL_CTL_MOD/signalfd_read/etc. IOW: apart from sigmask, signalfd
has nothing to do with the file, it works with the current thread.
In short: this patch is the hack which tries to fix the symptoms.
It also assumes that nobody can take tasklist_lock under epoll
locks, this seems to be true.
Note:
- we do not have wake_up_all_poll() but wake_up_poll()
is fine, poll/epoll doesn't use WQ_FLAG_EXCLUSIVE.
- signalfd_cleanup() uses POLLHUP along with POLLFREE,
we need a couple of simple changes in eventpoll.c to
make sure it can't be "lost".
Reported-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d9f5343e35d9138432657202afa8e3ddb2ade360 upstream.
Somehow we ended up with duplicate hub feature #defines in ch11.h.
Tatyana Brokhman first created the USB 3.0 hub feature macros in 2.6.38
with commit 0eadcc09203349b11ca477ec367079b23d32ab91 "usb: USB3.0 ch11
definitions". In 2.6.39, I modified a patch from John Youn that added
similar macros in a different place in the same file, and committed
dbe79bbe9dcb22cb3651c46f18943477141ca452 "USB 3.0 Hub Changes".
Some of the #defines used different names for the same values. Others
used exactly the same names with the same values, like these gems:
#define USB_PORT_FEAT_BH_PORT_RESET 28
...
#define USB_PORT_FEAT_BH_PORT_RESET 28
According to my very geeky husband (who looked it up in the C99 spec),
it is allowed to have object-like macros with duplicate names as long as
the replacement list is exactly the same. However, he recalled that
some compilers will give warnings when they find duplicate macros. It's
probably best to remove the duplicates in the stable tree, so that the
code compiles for everyone.
The macros are now fixed to move the feature requests that are specific
to USB 3.0 hubs into a new section (out of the USB 2.0 hub feature
section), and use the most common macro name.
This patch should be backported to 2.6.39.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Tatyana Brokhman <tlinder@codeaurora.org>
Cc: John Youn <johnyoun@synopsys.com>
Cc: Jamey Sharp <jamey@minilop.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e6b45241c57a83197e5de9166b3b0d32ac562609 ]
Eric Dumazet found that commit 813b3b5db83
(ipv4: Use caller's on-stack flowi as-is in output
route lookups.) that comes in 3.0 added a regression.
The problem appears to be that resulting flowi4_oif is
used incorrectly as input parameter to some routing lookups.
The result is that when connecting to local port without
listener if the IP address that is used is not on a loopback
interface we incorrectly assign RTN_UNICAST to the output
route because no route is matched by oif=lo. The RST packet
can not be sent immediately by tcp_v4_send_reset because
it expects RTN_LOCAL.
So, change ip_route_connect and ip_route_newports to
update the flowi4 fields that are input parameters because
we do not want unnecessary binding to oif.
To make it clear what are the input parameters that
can be modified during lookup and to show which fields of
floiw4 are reused add a new function to update the flowi4
structure: flowi4_update_output.
Thanks to Yurij M. Plotnikov for providing a bug report including a
program to reproduce the problem.
Thanks to Eric Dumazet for tracking the problem down to
tcp_v4_send_reset and providing initial fix.
Reported-by: Yurij M. Plotnikov <Yurij.Plotnikov@oktetlabs.ru>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ac8a48106be49c422575ddc7531b776f8eb49610 ]
We can not update iph->daddr in ip_options_rcv_srr(), It is too early.
When some exception ocurred later (eg. in ip_forward() when goto
sr_failed) we need the ip header be identical to the original one as
ICMP need it.
Add a field 'nexthop' in struct ip_options to save nexthop of LSRR
or SSRR option.
Signed-off-by: Li Wei <lw@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 16bda13d90c8d5da243e2cfa1677e62ecce26860 ]
Just like skb->cb[], so that qdisc_skb_cb can be encapsulated inside
of other data structures.
This is intended to be used by IPoIB so that it can remember
addressing information stored at hard_header_ops->create() time that
it can fetch when the packet gets to the transmit routine.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f2ea0f5f04c97b48c88edccba52b0682fbe45087 upstream.
Use standard ror64() instead of hand-written.
There is no standard ror64, so create it.
The difference is shift value being "unsigned int" instead of uint64_t
(for which there is no reason). gcc starts to emit native ROR instructions
which it doesn't do for some reason currently. This should make the code
faster.
Patch survives in-tree crypto test and ping flood with hmac(sha512) on.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 977b7e3a52a7421ad33a393a38ece59f3d41c2fa upstream.
When a SD card is hot removed without umount, del_gendisk() will call
bdi_unregister() without destroying/freeing it. This leaves the bdi in
the bdi->dev = NULL, bdi->wb.task = NULL, bdi->bdi_list removed state.
When sync(2) gets the bdi before bdi_unregister() and calls
bdi_queue_work() after the unregister, trace_writeback_queue will be
dereferencing the NULL bdi->dev. Fix it with a simple test for NULL.
LKML-reference: http://lkml.org/lkml/2012/1/18/346
Reported-by: Rabin Vincent <rabin@rab.in>
Tested-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3310225dfc71a35a2cc9340c15c0e08b14b3c754 upstream.
PROP_MAX_SHIFT should be set to <=32 on 64-bit box. This fixes two bugs
in the below lines of bdi_dirty_limit():
bdi_dirty *= numerator;
do_div(bdi_dirty, denominator);
1) divide error: do_div() only uses the lower 32 bit of the denominator,
which may trimmed to be 0 when PROP_MAX_SHIFT > 32.
2) overflow: (bdi_dirty * numerator) could easily overflow if numerator
used up to 48 bits, leaving only 16 bits to bdi_dirty
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Ilya Tumaykin <librarian_rus@yahoo.com>
Tested-by: Ilya Tumaykin <librarian_rus@yahoo.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d3aaeb38c40e5a6c08dd31a1b64da65c4352be36, along
with dependent backports of commits:
69cce1d1404968f78b177a0314f5822d5afdbbfb
9de79c127cccecb11ae6a21ab1499e87aa222880
218fa90f072e4aeff9003d57e390857f4f35513e
580da35a31f91a594f3090b7a2c39b85cb051a12
f7e57044eeb1841847c24aa06766c8290c202583
e049f28883126c689cf95859480d9ee4ab23b7fa ]
Gergely Kalman reported crashes in check_peer_redir().
It appears commit f39925dbde778 (ipv4: Cache learned redirect
information in inetpeer.) added a race, leading to possible NULL ptr
dereference.
Since we can now change dst neighbour, we should make sure a reader can
safely use a neighbour.
Add RCU protection to dst neighbour, and make sure check_peer_redir()
can be called safely by different cpus in parallel.
As neighbours are already freed after one RCU grace period, this patch
should not add typical RCU penalty (cache cold effects)
Many thanks to Gergely for providing a pretty report pointing to the
bug.
Reported-by: Gergely Kalman <synapse@hippy.csoma.elte.hu>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c076351c4027a56d5005a39a0b518a4ba393ce2 upstream.
Right now we forcibly clear ASPM state on all devices if the BIOS indicates
that the feature isn't supported. Based on the Microsoft presentation
"PCI Express In Depth for Windows Vista and Beyond", I'm starting to think
that this may be an error. The implication is that unless the platform
grants full control via _OSC, Windows will not touch any PCIe features -
including ASPM. In that case clearing ASPM state would be an error unless
the platform has granted us that control.
This patch reworks the ASPM disabling code such that the actual clearing
of state is triggered by a successful handoff of PCIe control to the OS.
The general ASPM code undergoes some changes in order to ensure that the
ability to clear the bits isn't overridden by ASPM having already been
disabled. Further, this theoretically now allows for situations where
only a subset of PCIe roots hand over control, leaving the others in the
BIOS state.
It's difficult to know for sure that this is the right thing to do -
there's zero public documentation on the interaction between all of these
components. But enough vendors enable ASPM on platforms and then set this
bit that it seems likely that they're expecting the OS to leave them alone.
Measured to save around 5W on an idle Thinkpad X220.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5ee4433efe99b9f39f6eff5052a177bbcfe72cea ]
By definition net_generic should never be called when it can return
NULL. Fail conspicously with a BUG_ON to make it clear when people mess
up that a NULL return should never happen.
Recently there was a bug in the CAIF subsystem where it was registered
with register_pernet_device instead of register_pernet_subsys. It was
erroneously concluded that net_generic could validly return NULL and
that net_assign_generic was buggy (when it was just inefficient).
Hopefully this BUG_ON will prevent people to coming to similar erroneous
conclusions in the futrue.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 598781d71119827b454fd75d46f84755bca6f0c6 upstream.
If the master tries to authenticate a client using drm_authmagic and
that client has already closed its drm file descriptor,
either wilfully or because it was terminated, the
call to drm_authmagic will dereference a stale pointer into kmalloc'ed memory
and corrupt it.
Typically this results in a hard system hang.
This patch fixes that problem by removing any authentication tokens
(struct drm_magic_entry) open for a file descriptor when that file
descriptor is closed.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 895f3022523361e9b383cf48f51feb1f7d5e7e53 upstream.
The target code was not setting the additional sense length field in the
sense data it returned, which meant that at least the Linux stack
ignored the ASC/ASCQ fields. For example, without this patch, on a
tcm_loop device:
# sg_raw -v /dev/sda 2 0 0 0 0 0
gives
cdb to send: 02 00 00 00 00 00
SCSI Status: Check Condition
Sense Information:
Fixed format, current; Sense key: Illegal Request
Raw sense data (in hex):
70 00 05 00 00 00 00 00
while after the patch we correctly get the following (which matches what
a regular disk returns):
cdb to send: 02 00 00 00 00 00
SCSI Status: Check Condition
Sense Information:
Fixed format, current; Sense key: Illegal Request
Additional sense: Invalid command operation code
Raw sense data (in hex):
70 00 05 00 00 00 00 0a 00 00 00 00 20 00 00 00
00 00
Signed-off-by: Roland Dreier <roland@purestorage.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 8df0eb7c9d96f9e82f233ee8b74e0f0c8471f868 upstream.
In SRAT v1, we had 8bit proximity domain (PXM) fields; SRAT v2 provides
32bits for these. The new fields were reserved before.
According to the ACPI spec, the OS must disregrard reserved fields.
In order to know whether or not, we must know what version the SRAT
table has.
This patch stores the SRAT table revision for later consumption
by arch specific __init functions.
Signed-off-by: Kurt Garloff <kurt@garloff.de>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 0bfc96cb77224736dfa35c3c555d37b3646ef35e upstream.
[ Changes with respect to 3.3: return -ENOTTY from scsi_verify_blk_ioctl
and -ENOIOCTLCMD from sd_compat_ioctl. ]
Linux allows executing the SG_IO ioctl on a partition or LVM volume, and
will pass the command to the underlying block device. This is
well-known, but it is also a large security problem when (via Unix
permissions, ACLs, SELinux or a combination thereof) a program or user
needs to be granted access only to part of the disk.
This patch lets partitions forward a small set of harmless ioctls;
others are logged with printk so that we can see which ioctls are
actually sent. In my tests only CDROM_GET_CAPABILITY actually occurred.
Of course it was being sent to a (partition on a) hard disk, so it would
have failed with ENOTTY and the patch isn't changing anything in
practice. Still, I'm treating it specially to avoid spamming the logs.
In principle, this restriction should include programs running with
CAP_SYS_RAWIO. If for example I let a program access /dev/sda2 and
/dev/sdb, it still should not be able to read/write outside the
boundaries of /dev/sda2 independent of the capabilities. However, for
now programs with CAP_SYS_RAWIO will still be allowed to send the
ioctls. Their actions will still be logged.
This patch does not affect the non-libata IDE driver. That driver
however already tests for bd != bd->bd_contains before issuing some
ioctl; it could be restricted further to forbid these ioctls even for
programs running with CAP_SYS_ADMIN/CAP_SYS_RAWIO.
Cc: linux-scsi@vger.kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: James Bottomley <JBottomley@parallels.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[ Make it also print the command name when warning - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 577ebb374c78314ac4617242f509e2f5e7156649 upstream.
Introduce a wrapper around scsi_cmd_ioctl that takes a block device.
The function will then be enhanced to detect partition block devices
and, in that case, subject the ioctls to whitelisting.
Cc: linux-scsi@vger.kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: James Bottomley <JBottomley@parallels.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit eaf5f9073533cde21c7121c136f1c3f072d9cf59 upstream.
Two (or more) concurrent calls of shrink_dcache_parent() on the same dentry may
cause shrink_dcache_parent() to loop forever.
Here's what appears to happen:
1 - CPU0: select_parent(P) finds C and puts it on dispose list, returns 1
2 - CPU1: select_parent(P) locks P->d_lock
3 - CPU0: shrink_dentry_list() locks C->d_lock
dentry_kill(C) tries to lock P->d_lock but fails, unlocks C->d_lock
4 - CPU1: select_parent(P) locks C->d_lock,
moves C from dispose list being processed on CPU0 to the new
dispose list, returns 1
5 - CPU0: shrink_dentry_list() finds dispose list empty, returns
6 - Goto 2 with CPU0 and CPU1 switched
Basically select_parent() steals the dentry from shrink_dentry_list() and thinks
it found a new one, causing shrink_dentry_list() to think it's making progress
and loop over and over.
One way to trigger this is to make udev calls stat() on the sysfs file while it
is going away.
Having a file in /lib/udev/rules.d/ with only this one rule seems to the trick:
ATTR{vendor}=="0x8086", ATTR{device}=="0x10ca", ENV{PCI_SLOT_NAME}="%k", ENV{MATCHADDR}="$attr{address}", RUN+="/bin/true"
Then execute the following loop:
while true; do
echo -bond0 > /sys/class/net/bonding_masters
echo +bond0 > /sys/class/net/bonding_masters
echo -bond1 > /sys/class/net/bonding_masters
echo +bond1 > /sys/class/net/bonding_masters
done
One fix would be to check all callers and prevent concurrent calls to
shrink_dcache_parent(). But I think a better solution is to stop the
stealing behavior.
This patch adds a new dentry flag that is set when the dentry is added to the
dispose list. The flag is cleared in dentry_lru_del() in case the dentry gets a
new reference just before being pruned.
If the dentry has this flag, select_parent() will skip it and let
shrink_dentry_list() retry pruning it. With select_parent() skipping those
dentries there will not be the appearance of progress (new dentries found) when
there is none, hence shrink_dcache_parent() will not loop forever.
Set the flag is also set in prune_dcache_sb() for consistency as suggested by
Linus.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 2fefb8a09e7ed251ae8996e0c69066e74c5aa560 upstream.
There's no reason I can see that we need to call sv_shutdown between
closing the two lists of sockets.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 6c06108be53ca5e94d8b0e93883d534dd9079646 upstream.
If ctrls->count is too high the multiplication could overflow and
array_size would be lower than expected. Mauro and Hans Verkuil
suggested that we cap it at 1024. That comes from the maximum
number of controls with lots of room for expantion.
$ grep V4L2_CID include/linux/videodev2.h | wc -l
211
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit ab936cbcd02072a34b60d268f94440fd5cf1970b upstream.
Commit ef6a3c6311 ("mm: add replace_page_cache_page() function") added a
function replace_page_cache_page(). This function replaces a page in the
radix-tree with a new page. WHen doing this, memory cgroup needs to fix
up the accounting information. memcg need to check PCG_USED bit etc.
In some(many?) cases, 'newpage' is on LRU before calling
replace_page_cache(). So, memcg's LRU accounting information should be
fixed, too.
This patch adds mem_cgroup_replace_page_cache() and removes the old hooks.
In that function, old pages will be unaccounted without touching
res_counter and new page will be accounted to the memcg (of old page).
WHen overwriting pc->mem_cgroup of newpage, take zone->lru_lock and avoid
races with LRU handling.
Background:
replace_page_cache_page() is called by FUSE code in its splice() handling.
Here, 'newpage' is replacing oldpage but this newpage is not a newly allocated
page and may be on LRU. LRU mis-accounting will be critical for memory cgroup
because rmdir() checks the whole LRU is empty and there is no account leak.
If a page is on the other LRU than it should be, rmdir() will fail.
This bug was added in March 2011, but no bug report yet. I guess there
are not many people who use memcg and FUSE at the same time with upstream
kernels.
The result of this bug is that admin cannot destroy a memcg because of
account leak. So, no panic, no deadlock. And, even if an active cgroup
exist, umount can succseed. So no problem at shutdown.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Miklos Szeredi <mszeredi@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 9e7860cee18241633eddb36a4c34c7b61d8cecbc upstream.
Haogang Chen found out that:
There is a potential integer overflow in process_msg() that could result
in cross-domain attack.
body = kmalloc(msg->hdr.len + 1, GFP_NOIO | __GFP_HIGH);
When a malicious guest passes 0xffffffff in msg->hdr.len, the subsequent
call to xb_read() would write to a zero-length buffer.
The other end of this connection is always the xenstore backend daemon
so there is no guest (malicious or otherwise) which can do this. The
xenstore daemon is a trusted component in the system.
However this seem like a reasonable robustness improvement so we should
have it.
And Ian when read the API docs found that:
The payload length (len field of the header) is limited to 4096
(XENSTORE_PAYLOAD_MAX) in both directions. If a client exceeds the
limit, its xenstored connection will be immediately killed by
xenstored, which is usually catastrophic from the client's point of
view. Clients (particularly domains, which cannot just reconnect)
should avoid this.
so this patch checks against that instead.
This also avoids a potential integer overflow pointed out by Haogang Chen.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Haogang Chen <haogangchen@gmail.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 1830ea91c20b06608f7cdb2455ce05ba834b3214 upstream.
Spec shows this as 1010b = 0xa
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 18b7ede5f7ee2092aedcb578d3ac30bd5d4fc23c upstream.
[ removed the dwc3 portion of the patch as it didn't apply to
older kernels - gregkh]
According to USB 3.0 Specification Table 9-22, if
bmAttributes [4:0] are set to zero, it means "no
streams supported", but the way this helper was
defined on Linux, we will *always* have one stream
which might cause several problems.
For example on DWC3, we would tell the controller
endpoint has streams enabled and yet start transfers
with Stream ID set to 0, which would goof up the host
side.
While doing that, convert the macro to an inline
function due to the different checks we now need.
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit bc677d5b64644c399cd3db6a905453e611f402ab upstream.
Add a new field num_mapped_sgs to struct urb so that we have a place to
store the number of mapped entries and can also retain the original
value of entries in num_sgs. Previously, usb_hcd_map_urb_for_dma()
would overwrite this with the number of mapped entries, which would
break dma_unmap_sg() because it requires the original number of entries.
This fixes warnings like the following when using USB storage devices:
------------[ cut here ]------------
WARNING: at lib/dma-debug.c:902 check_unmap+0x4e4/0x695()
ehci_hcd 0000:00:12.2: DMA-API: device driver frees DMA sg list with different entry count [map count=4] [unmap count=1]
Modules linked in: ohci_hcd ehci_hcd
Pid: 0, comm: kworker/0:1 Not tainted 3.2.0-rc2+ #319
Call Trace:
<IRQ> [<ffffffff81036d3b>] warn_slowpath_common+0x80/0x98
[<ffffffff81036de7>] warn_slowpath_fmt+0x41/0x43
[<ffffffff811fa5ae>] check_unmap+0x4e4/0x695
[<ffffffff8105e92c>] ? trace_hardirqs_off+0xd/0xf
[<ffffffff8147208b>] ? _raw_spin_unlock_irqrestore+0x33/0x50
[<ffffffff811fa84a>] debug_dma_unmap_sg+0xeb/0x117
[<ffffffff8137b02f>] usb_hcd_unmap_urb_for_dma+0x71/0x188
[<ffffffff8137b166>] unmap_urb_for_dma+0x20/0x22
[<ffffffff8137b1c5>] usb_hcd_giveback_urb+0x5d/0xc0
[<ffffffffa0000d02>] ehci_urb_done+0xf7/0x10c [ehci_hcd]
[<ffffffffa0001140>] qh_completions+0x429/0x4bd [ehci_hcd]
[<ffffffffa000340a>] ehci_work+0x95/0x9c0 [ehci_hcd]
...
---[ end trace f29ac88a5a48c580 ]---
Mapped at:
[<ffffffff811faac4>] debug_dma_map_sg+0x45/0x139
[<ffffffff8137bc0b>] usb_hcd_map_urb_for_dma+0x22e/0x478
[<ffffffff8137c494>] usb_hcd_submit_urb+0x63f/0x6fa
[<ffffffff8137d01c>] usb_submit_urb+0x2c7/0x2de
[<ffffffff8137dcd4>] usb_sg_wait+0x55/0x161
Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 3d6271f92e98094584fd1e609a9969cd33e61122 upstream.
Without turning the MADC clock on, no MADC conversions occur.
$ cat /sys/class/hwmon/hwmon0/device/in8_input
[ 53.428436] twl4030_madc twl4030_madc: conversion timeout!
cat: read error: Resource temporarily unavailable
Signed-off-by: Kyle Manna <kyle@kylemanna.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
[ Upstream commit 2692ba61a82203404abd7dd2a027bda962861f74 ]
Commit 8ffd3208 voids the previous patches f6778aab and 810c0719 for
limiting the autoclose value. If userspace passes in -1 on 32-bit
platform, the overflow check didn't work and autoclose would be set
to 0xffffffff.
This patch defines a max_autoclose (in seconds) for limiting the value
and exposes it through sysctl, with the following intentions.
1) Avoid overflowing autoclose * HZ.
2) Keep the default autoclose bound consistent across 32- and 64-bit
platforms (INT_MAX / HZ in this patch).
3) Keep the autoclose value consistent between setsockopt() and
getsockopt() calls.
Suggested-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: Xi Wang <xi.wang@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|