Age | Commit message (Collapse) | Author |
|
commit 365da4adebb1c012febf81019ad3dc5bb52e2a13 upstream.
This fixes a regression from 247500820ebd02ad87525db5d9b199e5b66f6636
"nfsd4: fix decoding of compounds across page boundaries". The previous
code was correct: argp->pagelist is initialized in
nfs4svc_deocde_compoundargs to rqstp->rq_arg.pages, and is therefore a
pointer to the page *after* the page we are currently decoding.
The reason that patch nevertheless fixed a problem with decoding
compounds containing write was a bug in the write decoding introduced by
5a80a54d21c96590d013378d8c5f65f879451ab4 "nfsd4: reorganize write
decoding", after which write decoding no longer adhered to the rule that
argp->pagelist point to the next page.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
[bwh: Backported to 3.2: adjust context; there is only one instance to fix]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 987da4791052fa298b7cfcde4dea9f6f2bbc786b upstream.
Use a straight goto error label style in nfsd_setattr to make sure
we always do the put_write_access call after we got it earlier.
Note that the we have been failing to do that in the case
nfsd_break_lease() returns an error, a bug introduced into 2.6.38 with
6a76bebefe15d9a08864f824d7f8d5beaf37c997 "nfsd4: break lease on nfsd
setattr".
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
[bwh: Backported to 3.2: notify_change() takes only 2 arguments]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 818e5a22e907fbae75e9c1fd78233baec9fa64b6 upstream.
Split out two helpers to make the code more readable and easier to verify
for correctness.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
[bwh: Backported to 3.2: s/umode_t/int/]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b1d93356427be6f050dc55c86eb019d173700af6 upstream.
setfacl over cifs mounts can remove the default ACL when setting the
(non-default part of) the ACL and vice versa (we were leaving at 0
rather than setting to -1 the count field for the unaffected
half of the ACL. For example notice the setfacl removed
the default ACL in this sequence:
steven@steven-GA-970A-DS3:~/cifs-2.6$ getfacl /mnt/test-dir ; setfacl
-m default:user:test:rwx,user:test:rwx /mnt/test-dir
getfacl: Removing leading '/' from absolute path names
user::rwx
group::r-x
other::r-x
default:user::rwx
default:user:test:rwx
default:group::r-x
default:mask::rwx
default:other::r-x
steven@steven-GA-970A-DS3:~/cifs-2.6$ getfacl /mnt/test-dir
getfacl: Removing leading '/' from absolute path names
user::rwx
user:test:rwx
group::r-x
mask::rwx
other::r-x
Signed-off-by: Steve French <smfrench@gmail.com>
Acked-by: Jeremy Allison <jra@samba.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 66da0e1f9034140ae2f571ef96e254a25083906c upstream.
When devpts is unmounted, there may be a no-longer-used IDR tree hanging
off the superblock we are about to kill. This needs to be cleaned up
before destroying the SB.
The leak is usually not a big deal because unmounting devpts is typically
done when shutting down the whole machine. However, shutting down an LXC
container instead of a physical machine exposes the problem (the garbage
is detectable with kmemleak).
Signed-off-by: Ilija Hadzic <ihadzic@research.bell-labs.com>
Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d049f74f2dbe71354d43d393ac3a188947811348 upstream.
The get_dumpable() return value is not boolean. Most users of the
function actually want to be testing for non-SUID_DUMP_USER(1) rather than
SUID_DUMP_DISABLE(0). The SUID_DUMP_ROOT(2) is also considered a
protected state. Almost all places did this correctly, excepting the two
places fixed in this patch.
Wrong logic:
if (dumpable == SUID_DUMP_DISABLE) { /* be protective */ }
or
if (dumpable == 0) { /* be protective */ }
or
if (!dumpable) { /* be protective */ }
Correct logic:
if (dumpable != SUID_DUMP_USER) { /* be protective */ }
or
if (dumpable != 1) { /* be protective */ }
Without this patch, if the system had set the sysctl fs/suid_dumpable=2, a
user was able to ptrace attach to processes that had dropped privileges to
that user. (This may have been partially mitigated if Yama was enabled.)
The macros have been moved into the file that declares get/set_dumpable(),
which means things like the ia64 code can see them too.
CVE-2013-2929
Reported-by: Vasily Kulikov <segoon@openwall.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit dcb9917ba041866686fe152850364826c4622a36 upstream.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a6f951ddbdfb7bd87d31a44f61abe202ed6ce57f upstream.
In nfs4_proc_getlk(), when some error causes a retry of the call to
_nfs4_proc_getlk(), we can end up with Oopses of the form
BUG: unable to handle kernel NULL pointer dereference at 0000000000000134
IP: [<ffffffff8165270e>] _raw_spin_lock+0xe/0x30
<snip>
Call Trace:
[<ffffffff812f287d>] _atomic_dec_and_lock+0x4d/0x70
[<ffffffffa053c4f2>] nfs4_put_lock_state+0x32/0xb0 [nfsv4]
[<ffffffffa053c585>] nfs4_fl_release_lock+0x15/0x20 [nfsv4]
[<ffffffffa0522c06>] _nfs4_proc_getlk.isra.40+0x146/0x170 [nfsv4]
[<ffffffffa052ad99>] nfs4_proc_lock+0x399/0x5a0 [nfsv4]
The problem is that we don't clear the request->fl_ops after the first
try and so when we retry, nfs4_set_lock_state() exits early without
setting the lock stateid.
Regression introduced by commit 70cc6487a4e08b8698c0e2ec935fb48d10490162
(locks: make ->lock release private data before returning in GETLK case)
Reported-by: Weston Andros Adamson <dros@netapp.com>
Reported-by: Jorge Mora <mora@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 3edc8376c06133e3386265a824869cad03a4efd4 upstream.
In 'decrypt_pki_encrypted_session_key' function:
Initializes 'payload' pointer and releases it on exit.
Signed-off-by: Geyslan G. Bem <geyslan@gmail.com>
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9d05746e7b16d8565dddbe3200faa1e669d23bbf upstream.
Olga reported that file descriptors opened with O_PATH do not work with
fstatfs(), found during further development of ksh93's thread support.
There is no reason to not allow O_PATH file descriptors here (fstatfs is
very much a path operation), so use "fdget_raw()". See commit
55815f70147d ("vfs: make O_PATH file descriptors usable for 'fstat()'")
for a very similar issue reported for fstat() by the same team.
Reported-and-tested-by: ольга крыжановская <olga.kryzhanovska@gmail.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: use fget_raw() not fdget_raw()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6e4ea8e33b2057b85d75175dd89b93f5e26de3bc upstream.
If we take the 2nd retry path in ext4_expand_extra_isize_ea, we
potentionally return from the function without having freed these
allocations. If we don't do the return, we over-write the previous
allocation pointers, so we leak either way.
Spotted with Coverity.
[ Fixed by tytso to set is and bs to NULL after freeing these
pointers, in case in the retry loop we later end up triggering an
error causing a jump to cleanup, at which point we could have a double
free bug. -- Ted ]
Signed-off-by: Dave Jones <davej@fedoraproject.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8660998608cfa1077e560034db81885af8e1e885 upstream.
If insert_inode_locked() fails, we shouldn't be calling
unlock_new_inode().
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Tested-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d7dab39b6e16d5eea78ed3c705d2a2d0772b4f06 upstream.
This is based on commit d1f5273e9adb40724a85272f248f210dc4ce919a
ext4: return 32/64-bit dir name hash according to usage type
by Fan Yong <yong.fan@whamcloud.com>
Traditionally ext2/3/4 has returned a 32-bit hash value from llseek()
to appease NFSv2, which can only handle a 32-bit cookie for seekdir()
and telldir(). However, this causes problems if there are 32-bit hash
collisions, since the NFSv2 server can get stuck resending the same
entries from the directory repeatedly.
Allow ext3 to return a full 64-bit hash (both major and minor) for
telldir to decrease the chance of hash collisions.
This patch does implement a new ext3_dir_llseek op, because with 64-bit
hashes, nfs will attempt to seek to a hash "offset" which is much
larger than ext3's s_maxbytes. So for dx dirs, we call
generic_file_llseek_size() with the appropriate max hash value as the
maximum seekable size. Otherwise we just pass through to
generic_file_llseek().
Patch-updated-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
Patch-updated-by: Eric Sandeen <sandeen@redhat.com>
(blame us if something is not correct)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 06effdbb49af5f6c7d20affaec74603914acc768 upstream.
Use 32-bit or 64-bit llseek() hashes for directory offsets depending on
the NFS version. NFSv2 gets 32-bit hashes only.
NOTE: This patch got rather complex as Christoph asked to set the
filp->f_mode flag in the open call or immediatly after dentry_open()
in nfsd_open() to avoid races.
Personally I still do not see a reason for that and in my opinion
FMODE_32BITHASH/FMODE_64BITHASH flags could be set nfsd_readdir(), as it
follows directly after nfsd_open() without a chance of races.
Signed-off-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 999448a8c0202d8c41711c92385323520644527b upstream.
Just rename this variable, as the next patch will add a flag and
'access' as variable name would not be correct any more.
Signed-off-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d1f5273e9adb40724a85272f248f210dc4ce919a upstream.
Traditionally ext2/3/4 has returned a 32-bit hash value from llseek()
to appease NFSv2, which can only handle a 32-bit cookie for seekdir()
and telldir(). However, this causes problems if there are 32-bit hash
collisions, since the NFSv2 server can get stuck resending the same
entries from the directory repeatedly.
Allow ext4 to return a full 64-bit hash (both major and minor) for
telldir to decrease the chance of hash collisions. This still needs
integration on the NFS side.
Patch-updated-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
(blame me if something is not correct)
Signed-off-by: Fan Yong <yong.fan@whamcloud.com>
Signed-off-by: Andreas Dilger <adilger@whamcloud.com>
Signed-off-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 0e9a9a1ad619e7e987815d20262d36a2f95717ca upstream.
When trying to mount a file system which does not contain a journal,
but which does have a orphan list containing an inode which needs to
be truncated, the mount call with hang forever in
ext4_orphan_cleanup() because ext4_orphan_del() will return
immediately without removing the inode from the orphan list, leading
to an uninterruptible loop in kernel code which will busy out one of
the CPU's on the system.
This can be trivially reproduced by trying to mount the file system
found in tests/f_orphan_extents_inode/image.gz from the e2fsprogs
source tree. If a malicious user were to put this on a USB stick, and
mount it on a Linux desktop which has automatic mounts enabled, this
could be considered a potential denial of service attack. (Not a big
deal in practice, but professional paranoids worry about such things,
and have even been known to allocate CVE numbers for such problems.)
-js: This is a fix for CVE-2013-2015.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Zheng Liu <wenqing.lz@taobao.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 17b7f7cf58926844e1dd40f5eb5348d481deca6a upstream.
Refuse RW mount of isofs filesystem. So far we just silently changed it
to RO mount but when the media is writeable, block layer won't notice
this change and thus will think device is used RW and will block eject
button of the drive. That is unexpected by users because for
non-writeable media eject button works just fine.
Userspace mount(8) command handles this just fine and retries mounting
with MS_RDONLY set so userspace shouldn't see any regression. Plus any
tool mounting isofs is likely confronted with the case of read-only
media where block layer already refuses to mount the filesystem without
MS_RDONLY set so our behavior shouldn't be anything new for it.
Reported-by: Hui Wang <hui.wang@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 03a1cec1f17ac1a6041996b3e40f96b5a2f90e1b upstream.
Boyd Yang reported a problem for the case that multiple threads of the same
thread group are waiting for a reponse for a permission event.
In this case it is possible that some of the threads are never woken up, even
if the response for the event has been received
(see http://marc.info/?l=linux-kernel&m=131822913806350&w=2).
The reason is that we are currently merging permission events if they belong to
the same thread group. But we are not prepared to wake up more than one waiter
for each event. We do
wait_event(group->fanotify_data.access_waitq, event->response ||
atomic_read(&group->fanotify_data.bypass_perm));
and after that
event->response = 0;
which is the reason that even if we woke up all waiters for the same event
some of them may see event->response being already set 0 again, then go back to
sleep and block forever.
With this patch we avoid that more than one thread is waiting for a response
by not merging permission events for the same thread group any more.
Reported-by: Boyd Yang <boyd.yang@gmail.com>
Signed-off-by: Lino Sanfilippo <LinoSanfilipp@gmx.de>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 776164c1faac4966ab14418bb0922e1820da1d19 upstream.
debugfs_remove_recursive() is wrong,
1. it wrongly assumes that !list_empty(d_subdirs) means that this
dir should be removed.
This is not that bad by itself, but:
2. if d_subdirs does not becomes empty after __debugfs_remove()
it gives up and silently fails, it doesn't even try to remove
other entries.
However ->d_subdirs can be non-empty because it still has the
already deleted !debugfs_positive() entries.
3. simple_release_fs() is called even if __debugfs_remove() fails.
Suppose we have
dir1/
dir2/
file2
file1
and someone opens dir1/dir2/file2.
Now, debugfs_remove_recursive(dir1/dir2) succeeds, and dir1/dir2 goes
away.
But debugfs_remove_recursive(dir1) silently fails and doesn't remove
this directory. Because it tries to delete (the already deleted)
dir1/dir2/file2 again and then fails due to "Avoid infinite loop"
logic.
Test-case:
#!/bin/sh
cd /sys/kernel/debug/tracing
echo 'p:probe/sigprocmask sigprocmask' >> kprobe_events
sleep 1000 < events/probe/sigprocmask/id &
echo -n >| kprobe_events
[ -d events/probe ] && echo "ERR!! failed to rm probe"
And after that it is not possible to create another probe entry.
With this patch debugfs_remove_recursive() skips !debugfs_positive()
files although this is not strictly needed. The most important change
is that it does not try to make ->d_subdirs empty, it simply scans
the whole list(s) recursively and removes as much as possible.
Link: http://lkml.kernel.org/r/20130726151256.GC19472@redhat.com
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
dirty blocks
commit 7f42ec3941560f0902fe3671e36f2c20ffd3af0a upstream.
Many NILFS2 users were reported about strange file system corruption
(for example):
NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768
NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540)
But such error messages are consequence of file system's issue that takes
place more earlier. Fortunately, Jerome Poulin <jeromepoulin@gmail.com>
and Anton Eliasson <devel@antoneliasson.se> were reported about another
issue not so recently. These reports describe the issue with segctor
thread's crash:
BUG: unable to handle kernel paging request at 0000000000004c83
IP: nilfs_end_page_io+0x12/0xd0 [nilfs2]
Call Trace:
nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2]
nilfs_segctor_construct+0x17b/0x290 [nilfs2]
nilfs_segctor_thread+0x122/0x3b0 [nilfs2]
kthread+0xc0/0xd0
ret_from_fork+0x7c/0xb0
These two issues have one reason. This reason can raise third issue
too. Third issue results in hanging of segctor thread with eating of
100% CPU.
REPRODUCING PATH:
One of the possible way or the issue reproducing was described by
Jermoe me Poulin <jeromepoulin@gmail.com>:
1. init S to get to single user mode.
2. sysrq+E to make sure only my shell is running
3. start network-manager to get my wifi connection up
4. login as root and launch "screen"
5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies.
6. lscp | xz -9e > lscp.txt.xz
7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs
8. start a screen to dump /proc/kmsg to text file since rsyslog is killed
9. start a screen and launch strace -f -o find-cat.log -t find
/mnt/nilfs -type f -exec cat {} > /dev/null \;
10. start a screen and launch strace -f -o apt-get.log -t apt-get update
11. launch the last command again as it did not crash the first time
12. apt-get crashes
13. ps aux > ps-aux-crashed.log
13. sysrq+W
14. sysrq+E wait for everything to terminate
15. sysrq+SUSB
Simplified way of the issue reproducing is starting kernel compilation
task and "apt-get update" in parallel.
REPRODUCIBILITY:
The issue is reproduced not stable [60% - 80%]. It is very important to
have proper environment for the issue reproducing. The critical
conditions for successful reproducing:
(1) It should have big modified file by mmap() way.
(2) This file should have the count of dirty blocks are greater that
several segments in size (for example, two or three) from time to time
during processing.
(3) It should be intensive background activity of files modification
in another thread.
INVESTIGATION:
First of all, it is possible to see that the reason of crash is not valid
page address:
NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82
NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783
Moreover, value of b_page (0x1a82) is 6786. This value looks like segment
number. And b_blocknr with b_size values look like block numbers. So,
buffer_head's pointer points on not proper address value.
Detailed investigation of the issue is discovered such picture:
[-----------------------------SEGMENT 6783-------------------------------]
NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign
NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783
[-----------------------------SEGMENT 6784-------------------------------]
NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8
NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign
NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784
NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50
NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0
[----------] ditto
NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15
[-----------------------------SEGMENT 6785-------------------------------]
NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88
NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785
NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8
NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0
[----------] ditto
NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12
NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait
NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783
NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784
NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785
NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82
BUG: unable to handle kernel paging request at 0000000000001a82
IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2]
Usually, for every segment we collect dirty files in list. Then, dirty
blocks are gathered for every dirty file, prepared for write and
submitted by means of nilfs_segbuf_submit_bh() call. Finally, it takes
place complete write phase after calling nilfs_end_bio_write() on the
block layer. Buffers/pages are marked as not dirty on final phase and
processed files removed from the list of dirty files.
It is possible to see that we had three prepare_write and submit_bio
phases before segbuf_wait and complete_write phase. Moreover, segments
compete between each other for dirty blocks because on every iteration
of segments processing dirty buffer_heads are added in several lists of
payload_buffers:
[SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50
[SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8
The next pointer is the same but prev pointer has changed. It means
that buffer_head has next pointer from one list but prev pointer from
another. Such modification can be made several times. And, finally, it
can be resulted in various issues: (1) segctor hanging, (2) segctor
crashing, (3) file system metadata corruption.
FIX:
This patch adds:
(1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write()
for every proccessed dirty block;
(2) checking of BH_Async_Write flag in
nilfs_lookup_dirty_data_buffers() and
nilfs_lookup_dirty_node_buffers();
(3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(),
nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page().
Reported-by: Jerome Poulin <jeromepoulin@gmail.com>
Reported-by: Anton Eliasson <devel@antoneliasson.se>
Cc: Paul Fertser <fercerpav@gmail.com>
Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp>
Cc: Piotr Szymaniak <szarpaj@grubelek.pl>
Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net>
Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com>
Cc: Elmer Zhang <freeboy6716@gmail.com>
Cc: Kenneth Langga <klangga@gmail.com>
Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: nilfs_clear_dirty_page() has not been separated
from nilfs_clear_dirty_pages()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 28e8be31803b19d0d8f76216cb11b480b8a98bec upstream.
Call fiemap ioctl(2) with given start offset as well as an desired mapping
range should show extents if possible. However, we somehow figure out the
end offset of mapping via 'mapping_end -= cpos' before iterating the
extent records which would cause problems if the given fiemap length is
too small to a cluster size, e.g,
Cluster size 4096:
debugfs.ocfs2 1.6.3
Block Size Bits: 12 Cluster Size Bits: 12
The extended fiemap test utility From David:
https://gist.github.com/anonymous/6172331
# dd if=/dev/urandom of=/ocfs2/test_file bs=1M count=1000
# ./fiemap /ocfs2/test_file 4096 10
start: 4096, length: 10
File /ocfs2/test_file has 0 extents:
# Logical Physical Length Flags
^^^^^ <-- No extent is shown
In this case, at ocfs2_fiemap(): cpos == mapping_end == 1. Hence the
loop of searching extent records was not executed at all.
This patch remove the in question 'mapping_end -= cpos', and loops
until the cpos is larger than the mapping_end as usual.
# ./fiemap /ocfs2/test_file 4096 10
start: 4096, length: 10
File /ocfs2/test_file has 1 extents:
# Logical Physical Length Flags
0: 0000000000000000 0000000056a01000 0000000006a00000 0000
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reported-by: David Weber <wb@munzinger.de>
Tested-by: David Weber <wb@munzinger.de>
Cc: Sunil Mushran <sunil.mushran@gmail.com>
Cc: Mark Fashen <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit efeb9e60d48f7778fdcad4a0f3ad9ea9b19e5dfd upstream.
Userspace can add names containing a slash character to the directory
listing. Don't allow this as it could cause all sorts of trouble.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
[bwh: Backported to 3.2: drop changes to parse_dirplusfile() which we
don't have]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 06a7c3c2781409af95000c60a5df743fd4e2f8b4 upstream.
The way how fuse calls truncate_pagecache() from fuse_change_attributes()
is completely wrong. Because, w/o i_mutex held, we never sure whether
'oldsize' and 'attr->size' are valid by the time of execution of
truncate_pagecache(inode, oldsize, attr->size). In fact, as soon as we
released fc->lock in the middle of fuse_change_attributes(), we completely
loose control of actions which may happen with given inode until we reach
truncate_pagecache. The list of potentially dangerous actions includes
mmap-ed reads and writes, ftruncate(2) and write(2) extending file size.
The typical outcome of doing truncate_pagecache() with outdated arguments
is data corruption from user point of view. This is (in some sense)
acceptable in cases when the issue is triggered by a change of the file on
the server (i.e. externally wrt fuse operation), but it is absolutely
intolerable in scenarios when a single fuse client modifies a file without
any external intervention. A real life case I discovered by fsx-linux
looked like this:
1. Shrinking ftruncate(2) comes to fuse_do_setattr(). The latter sends
FUSE_SETATTR to the server synchronously, but before getting fc->lock ...
2. fuse_dentry_revalidate() is asynchronously called. It sends FUSE_LOOKUP
to the server synchronously, then calls fuse_change_attributes(). The
latter updates i_size, releases fc->lock, but before comparing oldsize vs
attr->size..
3. fuse_do_setattr() from the first step proceeds by acquiring fc->lock and
updating attributes and i_size, but now oldsize is equal to
outarg.attr.size because i_size has just been updated (step 2). Hence,
fuse_do_setattr() returns w/o calling truncate_pagecache().
4. As soon as ftruncate(2) completes, the user extends file size by
write(2) making a hole in the middle of file, then reads data from the hole
either by read(2) or mmap-ed read. The user expects to get zero data from
the hole, but gets stale data because truncate_pagecache() is not executed
yet.
The scenario above illustrates one side of the problem: not truncating the
page cache even though we should. Another side corresponds to truncating
page cache too late, when the state of inode changed significantly.
Theoretically, the following is possible:
1. As in the previous scenario fuse_dentry_revalidate() discovered that
i_size changed (due to our own fuse_do_setattr()) and is going to call
truncate_pagecache() for some 'new_size' it believes valid right now. But
by the time that particular truncate_pagecache() is called ...
2. fuse_do_setattr() returns (either having called truncate_pagecache() or
not -- it doesn't matter).
3. The file is extended either by write(2) or ftruncate(2) or fallocate(2).
4. mmap-ed write makes a page in the extended region dirty.
The result will be the lost of data user wrote on the fourth step.
The patch is a hotfix resolving the issue in a simplistic way: let's skip
dangerous i_size update and truncate_pagecache if an operation changing
file size is in progress. This simplistic approach looks correct for the
cases w/o external changes. And to handle them properly, more sophisticated
and intrusive techniques (e.g. NFS-like one) would be required. I'd like to
postpone it until the issue is well discussed on the mailing list(s).
Changed in v2:
- improved patch description to cover both sides of the issue.
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
[bwh: Backported to 3.2: add the fuse_inode::state field which we didn't have]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d331a415aef98717393dda0be69b7947da08eba3 upstream.
Calls like setxattr and removexattr result in updation of ctime.
Therefore invalidate inode attributes to force a refresh.
Signed-off-by: Anand Avati <avati@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4a4ac4eba1010ef9a804569058ab29e3450c0315 upstream.
The patch fixes a race between ftruncate(2), mmap-ed write and write(2):
1) An user makes a page dirty via mmap-ed write.
2) The user performs shrinking truncate(2) intended to purge the page.
3) Before fuse_do_setattr calls truncate_pagecache, the page goes to
writeback. fuse_writepage_locked fills FUSE_WRITE request and releases
the original page by end_page_writeback.
4) fuse_do_setattr() completes and successfully returns. Since now, i_mutex
is free.
5) Ordinary write(2) extends i_size back to cover the page. Note that
fuse_send_write_pages do wait for fuse writeback, but for another
page->index.
6) fuse_writepage_locked proceeds by queueing FUSE_WRITE request.
fuse_send_writepage is supposed to crop inarg->size of the request,
but it doesn't because i_size has already been extended back.
Moving end_page_writeback to the end of fuse_writepage_locked fixes the
race because now the fact that truncate_pagecache is successfully returned
infers that fuse_writepage_locked has already called end_page_writeback.
And this, in turn, infers that fuse_flush_writepages has already called
fuse_send_writepage, and the latter used valid (shrunk) i_size. write(2)
could not extend it because of i_mutex held by ftruncate(2).
Signed-off-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
error detection
commit 4bf93b50fd04118ac7f33a3c2b8a0a1f9fa80bc9 upstream.
Fix the issue with improper counting number of flying bio requests for
BIO_EOPNOTSUPP error detection case.
The sb_nbio must be incremented exactly the same number of times as
complete() function was called (or will be called) because
nilfs_segbuf_wait() will call wail_for_completion() for the number of
times set to sb_nbio:
do {
wait_for_completion(&segbuf->sb_bio_event);
} while (--segbuf->sb_nbio > 0);
Two functions complete() and wait_for_completion() must be called the
same number of times for the same sb_bio_event. Otherwise,
wait_for_completion() will hang or leak.
Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
error
commit 2df37a19c686c2d7c4e9b4ce1505b5141e3e5552 upstream.
Remove double call of bio_put() in nilfs_end_bio_write() for the case of
BIO_EOPNOTSUPP error detection. The issue was found by Dan Carpenter
and he suggests first version of the fix too.
Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 35dc248383bbab0a7203fca4d722875bc81ef091 upstream.
There is a nasty bug in the SCSI SG_IO ioctl that in some circumstances
leads to one process writing data into the address space of some other
random unrelated process if the ioctl is interrupted by a signal.
What happens is the following:
- A process issues an SG_IO ioctl with direction DXFER_FROM_DEV (ie the
underlying SCSI command will transfer data from the SCSI device to
the buffer provided in the ioctl)
- Before the command finishes, a signal is sent to the process waiting
in the ioctl. This will end up waking up the sg_ioctl() code:
result = wait_event_interruptible(sfp->read_wait,
(srp_done(sfp, srp) || sdp->detached));
but neither srp_done() nor sdp->detached is true, so we end up just
setting srp->orphan and returning to userspace:
srp->orphan = 1;
write_unlock_irq(&sfp->rq_list_lock);
return result; /* -ERESTARTSYS because signal hit process */
At this point the original process is done with the ioctl and
blithely goes ahead handling the signal, reissuing the ioctl, etc.
- Eventually, the SCSI command issued by the first ioctl finishes and
ends up in sg_rq_end_io(). At the end of that function, we run through:
write_lock_irqsave(&sfp->rq_list_lock, iflags);
if (unlikely(srp->orphan)) {
if (sfp->keep_orphan)
srp->sg_io_owned = 0;
else
done = 0;
}
srp->done = done;
write_unlock_irqrestore(&sfp->rq_list_lock, iflags);
if (likely(done)) {
/* Now wake up any sg_read() that is waiting for this
* packet.
*/
wake_up_interruptible(&sfp->read_wait);
kill_fasync(&sfp->async_qp, SIGPOLL, POLL_IN);
kref_put(&sfp->f_ref, sg_remove_sfp);
} else {
INIT_WORK(&srp->ew.work, sg_rq_end_io_usercontext);
schedule_work(&srp->ew.work);
}
Since srp->orphan *is* set, we set done to 0 (assuming the
userspace app has not set keep_orphan via an SG_SET_KEEP_ORPHAN
ioctl), and therefore we end up scheduling sg_rq_end_io_usercontext()
to run in a workqueue.
- In workqueue context we go through sg_rq_end_io_usercontext() ->
sg_finish_rem_req() -> blk_rq_unmap_user() -> ... ->
bio_uncopy_user() -> __bio_copy_iov() -> copy_to_user().
The key point here is that we are doing copy_to_user() on a
workqueue -- that is, we're on a kernel thread with current->mm
equal to whatever random previous user process was scheduled before
this kernel thread. So we end up copying whatever data the SCSI
command returned to the virtual address of the buffer passed into
the original ioctl, but it's quite likely we do this copying into a
different address space!
As suggested by James Bottomley <James.Bottomley@hansenpartnership.com>,
add a check for current->mm (which is NULL if we're on a kernel thread
without a real userspace address space) in bio_uncopy_user(), and skip
the copy if we're on a kernel thread.
There's no reason that I can think of for any caller of bio_uncopy_user()
to want to do copying on a kernel thread with a random active userspace
address space.
Huge thanks to Costa Sapuntzakis <costa@purestorage.com> for the
original pointer to this bug in the sg code.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Tested-by: David Milburn <dmilburn@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d74c6d514fe314b8bdab58b487b25992291577ec upstream.
__bio_for_each_segment() iterates bvecs from the specified index
instead of bio->bv_idx. Currently, the only usage is to walk all the
bvecs after the bio has been advanced by specifying 0 index.
For immutable bvecs, we need to split these apart;
bio_for_each_segment() is going to have a different implementation.
This will also help document the intent of code that's using it -
bio_for_each_segment_all() is only legal to use for code that owns the
bio.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
CC: Jens Axboe <axboe@kernel.dk>
CC: Neil Brown <neilb@suse.de>
CC: Boaz Harrosh <bharrosh@panasas.com>
[bwh: Backported to 3.2: drop inapplicable change to drivers/block/rbd.c.
This is a prerequisite for commit 35dc248383bb 'sg: Fix user memory
corruption when SG_IO is interrupted by a signal']
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8c8296223f3abb142be8fc31711b18a704c0e7d8 upstream.
Recently we met quite a lot of random kernel panic issues after enabling
CONFIG_PROC_PAGE_MONITOR. After debuggind we found this has something
to do with following bug in pagemap:
In struct pagemapread:
struct pagemapread {
int pos, len;
pagemap_entry_t *buffer;
bool v2;
};
pos is number of PM_ENTRY_BYTES in buffer, but len is the size of
buffer, it is a mistake to compare pos and len in add_page_map() for
checking buffer is full or not, and this can lead to buffer overflow and
random kernel panic issue.
Correct len to be total number of PM_ENTRY_BYTES in buffer.
[akpm@linux-foundation.org: document pagemapread.pos and .len units, fix PM_ENTRY_BYTES definition]
Signed-off-by: Yonghua Zheng <younghua.zheng@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2:
- Adjust context
- There is no pagemap_entry_t definition; keep using u64]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 91aa11fae1cf8c2fd67be0609692ea9741cdcc43 upstream.
When jbd2_journal_dirty_metadata() returns error,
__ext4_handle_dirty_metadata() stops the handle. However callers of this
function do not count with that fact and still happily used now freed
handle. This use after free can result in various issues but very likely
we oops soon.
The motivation of adding __ext4_journal_stop() into
__ext4_handle_dirty_metadata() in commit 9ea7a0df seems to be only to
improve error reporting. So replace __ext4_journal_stop() with
ext4_journal_abort_handle() which was there before that commit and add
WARN_ON_ONCE() to dump stack to provide useful information.
Reported-by: Sage Weil <sage@inktank.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6ae6514b33f941d3386da0dfbe2942766eab1577 upstream.
Commit 5688978 ("ext4: improve handling of conflicting mount options")
introduced incorrect messages shown while choosing wrong mount options.
First of all, both cases of incorrect mount options,
"data=journal,delalloc" and "data=journal,dioread_nolock" result in
the same error message.
Secondly, the problem above isn't solved for remount option: the
mismatched parameter is simply ignored. Moreover, ext4_msg states
that remount with options "data=journal,delalloc" succeeded, which is
not true.
To fix it up, I added a simple check after parse_options() call to
ensure that data=journal and delalloc/dioread_nolock parameters are
not present at the same time.
Signed-off-by: Piotr Sarna <p.sarna@partner.samsung.com>
Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
revalidated immediately
commit 757c4f6260febff982276818bb946df89c1105aa upstream.
David reported that commit c2b93e06 (cifs: only set ops for inodes in
I_NEW state) caused a regression with mfsymlinks. Prior to that patch,
if a mfsymlink dentry was instantiated at readdir time, the inode would
get a new set of ops when it was revalidated. After that patch, this
did not occur.
This patch addresses this by simply skipping instantiating dentries in
the readdir codepath when we know that they will need to be immediately
revalidated. The next attempt to use that dentry will cause a new lookup
to occur (which is basically what we want to happen anyway).
Cc: "Stefan (metze) Metzmacher" <metze@samba.org>
Cc: Sachin Prabhu <sprabhu@redhat.com>
Reported-and-Tested-by: David McBride <dwm37@cam.ac.uk>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
[bwh: Backported to 3.2: need to return NULL]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 057d6332b24a4497c55a761c83c823eed9e3f23b upstream.
For cifs_set_cifscreds() in "fs/cifs/connect.c", 'desc' buffer length
is 'CIFSCREDS_DESC_SIZE' (56 is less than 256), and 'ses->domainName'
length may be "255 + '\0'".
The related sprintf() may cause memory overflow, so need extend related
buffer enough to hold all things.
It is also necessary to be sure of 'ses->domainName' must be less than
256, and define the related macro instead of hard code number '256'.
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Reviewed-by: Scott Lovenberg <scott.lovenberg@gmail.com>
Signed-off-by: Steve French <smfrench@gmail.com>
[bwh: Backported to 3.2:
- Adjust context in sess.c
- Drop inapplicable changes to connect.c]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 44512449c0ab368889dd13ae0031fba74ee7e1d2 upstream.
NFSv4 reserves readdir cookie values 0-2 for special entries (. and ..),
but jfs allows a value of 2 for a non-special entry. This incompatibility
can result in the nfs client reporting a readdir loop.
This patch doesn't change the value stored internally, but adds one to
the value exposed to the iterate method.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Tested-by: Christian Kujau <lists@nerdbynature.de>
[bwh: Backported to 3.2:
- Adjust context
- s/ctx->pos/filp->f_pos/]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 0439f31c35d1da0b28988b308ea455e38e6a350d upstream.
This seems like it could overflow on 32 bits. Use kmalloc_array() which
has overflow protection built in.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
struct file
commit e4daf1ffbe6cc3b12aab4d604e627829e93e9914 upstream.
The following call chain:
------------------------------------------------------------
nfs4_get_vfs_file
- nfsd_open
- dentry_open
- do_dentry_open
- __get_file_write_access
- get_write_access
- return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
------------------------------------------------------------
can result in the following state:
------------------------------------------------------------
struct nfs4_file {
...
fi_fds = {0xffff880c1fa65c80, 0xffffffffffffffe6, 0x0},
fi_access = {{
counter = 0x1
}, {
counter = 0x0
}},
...
------------------------------------------------------------
1) First time around, in nfs4_get_vfs_file( |