aboutsummaryrefslogtreecommitdiff
path: root/fs/proc/array.c
AgeCommit message (Collapse)Author
2011-06-22ptrace: s/tracehook_tracer_task()/ptrace_parent()/Tejun Heo
tracehook.h is on the way out. Rename tracehook_tracer_task() to ptrace_parent() and move it from tracehook.h to ptrace.h. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: John Johansen <john.johansen@canonical.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Oleg Nesterov <oleg@redhat.com>
2011-05-26proc: constify status arrayMike Frysinger
No need for this local array to be writable, so mark it const. Signed-off-by: Mike Frysinger <vapier@gentoo.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23proc: protect mm start_code/end_code in /proc/pid/statKees Cook
While mm->start_stack was protected from cross-uid viewing (commit f83ce3e6b02d5 ("proc: avoid information leaks to non-privileged processes")), the start_code and end_code values were not. This would allow the text location of a PIE binary to leak, defeating ASLR. Note that the value "1" is used instead of "0" for a protected value since "ps", "killall", and likely other readers of /proc/pid/stat, take start_code of "0" to mean a kernel thread and will misbehave. Thanks to Brad Spengler for pointing this out. Addresses CVE-2011-0726 Signed-off-by: Kees Cook <kees.cook@canonical.com> Cc: <stable@kernel.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: Eugene Teo <eugeneteo@kernel.sg> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Brad Spengler <spender@grsecurity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-15s390: remove task_show_regsMartin Schwidefsky
task_show_regs used to be a debugging aid in the early bringup days of Linux on s390. /proc/<pid>/status is a world readable file, it is not a good idea to show the registers of a process. The only correct fix is to remove task_show_regs. Reported-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13proc: use seq_puts()/seq_putc() where possibleAlexey Dobriyan
For string without format specifiers, use seq_puts(). For seq_printf("\n"), use seq_putc('\n'). text data bss dec hex filename 61866 488 112 62466 f402 fs/proc/proc.o 61729 488 112 62329 f379 fs/proc/proc.o ---------------------------------------------------- -139 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13proc: use unsigned long inside /proc/*/statmAlexey Dobriyan
/proc/*/statm code needlessly truncates data from unsigned long to int. One needs only 8+ TB of RAM to make truncation visible. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-29CRED: Fix get_task_cred() and task_state() to not resurrect dead credentialsDavid Howells
It's possible for get_task_cred() as it currently stands to 'corrupt' a set of credentials by incrementing their usage count after their replacement by the task being accessed. What happens is that get_task_cred() can race with commit_creds(): TASK_1 TASK_2 RCU_CLEANER -->get_task_cred(TASK_2) rcu_read_lock() __cred = __task_cred(TASK_2) -->commit_creds() old_cred = TASK_2->real_cred TASK_2->real_cred = ... put_cred(old_cred) call_rcu(old_cred) [__cred->usage == 0] get_cred(__cred) [__cred->usage == 1] rcu_read_unlock() -->put_cred_rcu() [__cred->usage == 1] panic() However, since a tasks credentials are generally not changed very often, we can reasonably make use of a loop involving reading the creds pointer and using atomic_inc_not_zero() to attempt to increment it if it hasn't already hit zero. If successful, we can safely return the credentials in the knowledge that, even if the task we're accessing has released them, they haven't gone to the RCU cleanup code. We then change task_state() in procfs to use get_task_cred() rather than calling get_cred() on the result of __task_cred(), as that suffers from the same problem. Without this change, a BUG_ON in __put_cred() or in put_cred_rcu() can be tripped when it is noticed that the usage count is not zero as it ought to be, for example: kernel BUG at kernel/cred.c:168! invalid opcode: 0000 [#1] SMP last sysfs file: /sys/kernel/mm/ksm/run CPU 0 Pid: 2436, comm: master Not tainted 2.6.33.3-85.fc13.x86_64 #1 0HR330/OptiPlex 745 RIP: 0010:[<ffffffff81069881>] [<ffffffff81069881>] __put_cred+0xc/0x45 RSP: 0018:ffff88019e7e9eb8 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff880161514480 RCX: 00000000ffffffff RDX: 00000000ffffffff RSI: ffff880140c690c0 RDI: ffff880140c690c0 RBP: ffff88019e7e9eb8 R08: 00000000000000d0 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000040 R12: ffff880140c690c0 R13: ffff88019e77aea0 R14: 00007fff336b0a5c R15: 0000000000000001 FS: 00007f12f50d97c0(0000) GS:ffff880007400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8f461bc000 CR3: 00000001b26ce000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process master (pid: 2436, threadinfo ffff88019e7e8000, task ffff88019e77aea0) Stack: ffff88019e7e9ec8 ffffffff810698cd ffff88019e7e9ef8 ffffffff81069b45 <0> ffff880161514180 ffff880161514480 ffff880161514180 0000000000000000 <0> ffff88019e7e9f28 ffffffff8106aace 0000000000000001 0000000000000246 Call Trace: [<ffffffff810698cd>] put_cred+0x13/0x15 [<ffffffff81069b45>] commit_creds+0x16b/0x175 [<ffffffff8106aace>] set_current_groups+0x47/0x4e [<ffffffff8106ac89>] sys_setgroups+0xf6/0x105 [<ffffffff81009b02>] system_call_fastpath+0x16/0x1b Code: 48 8d 71 ff e8 7e 4e 15 00 85 c0 78 0b 8b 75 ec 48 89 df e8 ef 4a 15 00 48 83 c4 18 5b c9 c3 55 8b 07 8b 07 48 89 e5 85 c0 74 04 <0f> 0b eb fe 65 48 8b 04 25 00 cc 00 00 48 3b b8 58 04 00 00 75 RIP [<ffffffff81069881>] __put_cred+0xc/0x45 RSP <ffff88019e7e9eb8> ---[ end trace df391256a100ebdd ]--- Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27proc: get_nr_threads() doesn't need ->siglock any longerOleg Nesterov
Now that task->signal can't go away get_nr_threads() doesn't need ->siglock to read signal->count. Also, make it inline, move into sched.h, and convert 2 other proc users of signal->count to use this (now trivial) helper. Henceforth get_nr_threads() is the only valid user of signal->count, we are ready to turn it into "int nr_threads" or, perhaps, kill it. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-11revert "procfs: provide stack information for threads" and its fixup commitsRobin Holt
Originally, commit d899bf7b ("procfs: provide stack information for threads") attempted to introduce a new feature for showing where the threadstack was located and how many pages are being utilized by the stack. Commit c44972f1 ("procfs: disable per-task stack usage on NOMMU") was applied to fix the NO_MMU case. Commit 89240ba0 ("x86, fs: Fix x86 procfs stack information for threads on 64-bit") was applied to fix a bug in ia32 executables being loaded. Commit 9ebd4eba7 ("procfs: fix /proc/<pid>/stat stack pointer for kernel threads") was applied to fix a bug which had kernel threads printing a userland stack address. Commit 1306d603f ('proc: partially revert "procfs: provide stack information for threads"') was then applied to revert the stack pages being used to solve a significant performance regression. This patch nearly undoes the effect of all these patches. The reason for reverting these is it provides an unusable value in field 28. For x86_64, a fork will result in the task->stack_start value being updated to the current user top of stack and not the stack start address. This unpredictability of the stack_start value makes it worthless. That includes the intended use of showing how much stack space a thread has. Other architectures will get different values. As an example, ia64 gets 0. The do_fork() and copy_process() functions appear to treat the stack_start and stack_size parameters as architecture specific. I only partially reverted c44972f1 ("procfs: disable per-task stack usage on NOMMU") . If I had completely reverted it, I would have had to change mm/Makefile only build pagewalk.o when CONFIG_PROC_PAGE_MONITOR is configured. Since I could not test the builds without significant effort, I decided to not change mm/Makefile. I only partially reverted 89240ba0 ("x86, fs: Fix x86 procfs stack information for threads on 64-bit") . I left the KSTK_ESP() change in place as that seemed worthwhile. Signed-off-by: Robin Holt <holt@sgi.com> Cc: Stefani Seibold <stefani@seibold.net> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-06fs: use rlimit helpersJiri Slaby
Make sure compiler won't do weird things with limits. E.g. fetching them twice may return 2 different values after writable limits are implemented. I.e. either use rlimit helpers added in commit 3e10e716abf3 ("resource: add helpers for fetching rlimits") or ACCESS_ONCE if not applicable. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-02-25vfs: Apply lockdep-based checking to rcu_dereference() usesPaul E. McKenney
Add lockdep-ified RCU primitives to alloc_fd(), files_fdtable() and fcheck_files(). Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com Cc: Alexander Viro <viro@zeniv.linux.org.uk> LKML-Reference: <1266887105-1528-8-git-send-email-paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-01-11proc: partially revert "procfs: provide stack information for threads"KOSAKI Motohiro
Commit d899bf7b (procfs: provide stack information for threads) introduced to show stack information in /proc/{pid}/status. But it cause large performance regression. Unfortunately /proc/{pid}/status is used ps command too and ps is one of most important component. Because both to take mmap_sem and page table walk are heavily operation. If many process run, the ps performance is, [before d899bf7b] % perf stat ps >/dev/null Performance counter stats for 'ps': 4090.435806 task-clock-msecs # 0.032 CPUs 229 context-switches # 0.000 M/sec 0 CPU-migrations # 0.000 M/sec 234 page-faults # 0.000 M/sec 8587565207 cycles # 2099.425 M/sec 9866662403 instructions # 1.149 IPC 3789415411 cache-references # 926.409 M/sec 30419509 cache-misses # 7.437 M/sec 128.859521955 seconds time elapsed [after d899bf7b] % perf stat ps > /dev/null Performance counter stats for 'ps': 4305.081146 task-clock-msecs # 0.028 CPUs 480 context-switches # 0.000 M/sec 2 CPU-migrations # 0.000 M/sec 237 page-faults # 0.000 M/sec 9021211334 cycles # 2095.480 M/sec 10605887536 instructions # 1.176 IPC 3612650999 cache-references # 839.160 M/sec 23917502 cache-misses # 5.556 M/sec 152.277819582 seconds time elapsed Thus, this patch revert it. Fortunately /proc/{pid}/task/{tid}/smaps provide almost same information. we can use it. Commit d899bf7b introduced two features: 1) Add the annotattion of [thread stack: xxxx] mark to /proc/{pid}/task/{tid}/maps. 2) Add StackUsage field to /proc/{pid}/status. I only revert (2), because I haven't seen (1) cause regression. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Stefani Seibold <stefani@seibold.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-17sched: Assert task state bits at build timePeter Zijlstra
Since everybody is lazy and prone to forgetting things, make the compiler help us a bit. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20091217121830.060186433@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-17sched: Update task_state_arraypwith new statesPeter Zijlstra
Neglected because its hidden... (who reads comments anyway) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20091217121829.970166036@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-05Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (35 commits) sched, cputime: Introduce thread_group_times() sched, cputime: Cleanups related to task_times() Revert "sched, x86: Optimize branch hint in __switch_to()" sched: Fix isolcpus boot option sched: Revert 498657a478c60be092208422fefa9c7b248729c2 sched, time: Define nsecs_to_jiffies() sched: Remove task_{u,s,g}time() sched: Introduce task_times() to replace task_{u,s}time() pair sched: Limit the number of scheduler debug messages sched.c: Call debug_show_all_locks() when dumping all tasks sched, x86: Optimize branch hint in __switch_to() sched: Optimize branch hint in context_switch() sched: Optimize branch hint in pick_next_task_fair() sched_feat_write(): Update ppos instead of file->f_pos sched: Sched_rt_periodic_timer vs cpu hotplug sched, kvm: Fix race condition involving sched_in_preempt_notifers sched: More generic WAKE_AFFINE vs select_idle_sibling() sched: Cleanup select_task_rq_fair() sched: Fix granularity of task_u/stime() sched: Fix/add missing update_rq_clock() calls ...
2009-12-02sched, cputime: Introduce thread_group_times()Hidetoshi Seto
This is a real fix for problem of utime/stime values decreasing described in the thread: http://lkml.org/lkml/2009/11/3/522 Now cputime is accounted in the following way: - {u,s}time in task_struct are increased every time when the thread is interrupted by a tick (timer interrupt). - When a thread exits, its {u,s}time are added to signal->{u,s}time, after adjusted by task_times(). - When all threads in a thread_group exits, accumulated {u,s}time (and also c{u,s}time) in signal struct are added to c{u,s}time in signal struct of the group's parent. So {u,s}time in task struct are "raw" tick count, while {u,s}time and c{u,s}time in signal struct are "adjusted" values. And accounted values are used by: - task_times(), to get cputime of a thread: This function returns adjusted values that originates from raw {u,s}time and scaled by sum_exec_runtime that accounted by CFS. - thread_group_cputime(), to get cputime of a thread group: This function returns sum of all {u,s}time of living threads in the group, plus {u,s}time in the signal struct that is sum of adjusted cputimes of all exited threads belonged to the group. The problem is the return value of thread_group_cputime(), because it is mixed sum of "raw" value and "adjusted" value: group's {u,s}time = foreach(thread){{u,s}time} + exited({u,s}time) This misbehavior can break {u,s}time monotonicity. Assume that if there is a thread that have raw values greater than adjusted values (e.g. interrupted by 1000Hz ticks 50 times but only runs 45ms) and if it exits, cputime will decrease (e.g. -5ms). To fix this, we could do: group's {u,s}time = foreach(t){task_times(t)} + exited({u,s}time) But task_times() contains hard divisions, so applying it for every thread should be avoided. This patch fixes the above problem in the following way: - Modify thread's exit (= __exit_signal()) not to use task_times(). It means {u,s}time in signal struct accumulates raw values instead of adjusted values. As the result it makes thread_group_cputime() to return pure sum of "raw" values. - Introduce a new function thread_group_times(*task, *utime, *stime) that converts "raw" values of thread_group_cputime() to "adjusted" values, in same calculation procedure as task_times(). - Modify group's exit (= wait_task_zombie()) to use this introduced thread_group_times(). It make c{u,s}time in signal struct to have adjusted values like before this patch. - Replace some thread_group_cputime() by thread_group_times(). This replacements are only applied where conveys the "adjusted" cputime to users, and where already uses task_times() near by it. (i.e. sys_times(), getrusage(), and /proc/<PID>/stat.) This patch have a positive side effect: - Before this patch, if a group contains many short-life threads (e.g. runs 0.9ms and not interrupted by ticks), the group's cputime could be invisible since thread's cputime was accumulated after adjusted: imagine adjustment function as adj(ticks, runtime), {adj(0, 0.9) + adj(0, 0.9) + ....} = {0 + 0 + ....} = 0. After this patch it will not happen because the adjustment is applied after accumulated. v2: - remove if()s, put new variables into signal_struct. Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Spencer Candland <spencer@bluehost.com> Cc: Americo Wang <xiyou.wangcong@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> LKML-Reference: <4B162517.8040909@jp.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-26sched: Remove task_{u,s,g}time()Hidetoshi Seto
Now all task_{u,s}time() pairs are replaced by task_times(). And task_gtime() is too simple to be an inline function. Cleanup them all. Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Spencer Candland <spencer@bluehost.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Americo Wang <xiyou.wangcong@gmail.com> LKML-Reference: <4B0E16D1.70902@jp.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-26sched: Introduce task_times() to replace task_{u,s}time() pairHidetoshi Seto
Functions task_{u,s}time() are called in pair in almost all cases. However task_stime() is implemented to call task_utime() from its inside, so such paired calls run task_utime() twice. It means we do heavy divisions (div_u64 + do_div) twice to get utime and stime which can be obtained at same time by one set of divisions. This patch introduces a function task_times(*tsk, *utime, *stime) to retrieve utime and stime at once in better, optimized way. Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Spencer Candland <spencer@bluehost.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Americo Wang <xiyou.wangcong@gmail.com> LKML-Reference: <4B0E16AE.906@jp.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-17procfs: fix /proc/<pid>/stat stack pointer for kernel threadsStefani Seibold
Fix a small issue for the stack pointer in /proc/<pid>/stat. In case of a kernel thread the value of the printed stack pointer should be 0. Signed-off-by: Stefani Seibold <stefani@seibold.net> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-10-25Merge branch 'linus' into sched/coreIngo Molnar
Conflicts: fs/proc/array.c Merge reason: resolve conflict and queue up dependent patch. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-24procfs: disable per-task stack usage on NOMMUAndrew Morton
It needs walk_page_range(). Reported-by: Michal Simek <monstr@monstr.eu> Tested-by: Michal Simek <monstr@monstr.eu> Cc: Stefani Seibold <stefani@seibold.net> Cc: David Howells <dhowells@redhat.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greg Ungerer <gerg@snapgear.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-23procfs: provide stack information for threadsStefani Seibold
A patch to give a better overview of the userland application stack usage, especially for embedded linux. Currently you are only able to dump the main process/thread stack usage which is showed in /proc/pid/status by the "VmStk" Value. But you get no information about the consumed stack memory of the the threads. There is an enhancement in the /proc/<pid>/{task/*,}/*maps and which marks the vm mapping where the thread stack pointer reside with "[thread stack xxxxxxxx]". xxxxxxxx is the maximum size of stack. This is a value information, because libpthread doesn't set the start of the stack to the top of the mapped area, depending of the pthread usage. A sample output of /proc/<pid>/task/<tid>/maps looks like: 08048000-08049000 r-xp 00000000 03:00 8312 /opt/z 08049000-0804a000 rw-p 00001000 03:00 8312 /opt/z 0804a000-0806b000 rw-p 00000000 00:00 0 [heap] a7d12000-a7d13000 ---p 00000000 00:00 0 a7d13000-a7f13000 rw-p 00000000 00:00 0 [thread stack: 001ff4b4] a7f13000-a7f14000 ---p 00000000 00:00 0 a7f14000-a7f36000 rw-p 00000000 00:00 0 a7f36000-a8069000 r-xp 00000000 03:00 4222 /lib/libc.so.6 a8069000-a806b000 r--p 00133000 03:00 4222 /lib/libc.so.6 a806b000-a806c000 rw-p 00135000 03:00 4222 /lib/libc.so.6 a806c000-a806f000 rw-p 00000000 00:00 0 a806f000-a8083000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0 a8083000-a8084000 r--p 00013000 03:00 14462 /lib/libpthread.so.0 a8084000-a8085000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0 a8085000-a8088000 rw-p 00000000 00:00 0 a8088000-a80a4000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2 a80a4000-a80a5000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2 a80a5000-a80a6000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2 afaf5000-afb0a000 rw-p 00000000 00:00 0 [stack] ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] Also there is a new entry "stack usage" in /proc/<pid>/{task/*,}/status which will you give the current stack usage in kb. A sample output of /proc/self/status looks like: Name: cat State: R (running) Tgid: 507 Pid: 507 . . . CapBnd: fffffffffffffeff voluntary_ctxt_switches: 0 nonvoluntary_ctxt_switches: 0 Stack usage: 12 kB I also fixed stack base address in /proc/<pid>/{task/*,}/stat to the base address of the associated thread stack and not the one of the main process. This makes more sense. [akpm@linux-foundation.org: fs/proc/array.c now needs walk_page_range()] Signed-off-by: Stefani Seibold <stefani@seibold.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-21sched: Always show Cpus_allowed field in /proc/<pid>/statusHeiko Carstens
The Cpus_allowed fields in /proc/<pid>/status is currently only shown in case of CONFIG_CPUSETS. However their contents are also useful for the !CONFIG_CPUSETS case. So change the current behaviour and always show these fields. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20090921090627.GD4649@osiris.boeblingen.de.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-04proc: avoid information leaks to non-privileged processesJake Edge
By using the same test as is used for /proc/pid/maps and /proc/pid/smaps, only allow processes that can ptrace() a given process to see information that might be used to bypass address space layout randomization (ASLR). These include eip, esp, wchan, and start_stack in /proc/pid/stat as well as the non-symbolic output from /proc/pid/wchan. ASLR can be bypassed by sampling eip as shown by the proof-of-concept code at http://code.google.com/p/fuzzyaslr/ As part of a presentation (http://www.cr0.org/paper/to-jt-linux-alsr-leak.pdf) esp and wchan were also noted as possibly usable information leaks as well. The start_stack address also leaks potentially useful information. Cc: Stable Team <stable@kernel.org> Signed-off-by: Jake Edge <jake@lwn.net> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-14CRED: Use RCU to access another task's creds and to release a task's own credsDavid Howells
Use RCU to access another task's creds and to release a task's own creds. This means that it will be possible for the credentials of a task to be replaced without another task (a) requiring a full lock to read them, and (b) seeing deallocated memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Separate task security context from task_structDavid Howells
Separate the task security context from task_struct. At this point, the security data is temporarily embedded in the task_struct with two pointers pointing to it. Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in entry.S via asm-offsets. With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-10-27Switch to a valid email address...Alan Cox
Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', ↵Thomas Gleixner
'timers/ntp', 'timers/posixtimers' and 'timers/debug' into v28-timers-for-linus
2008-10-10proc: remove now unneeded ADDBUF macroAlexey Dobriyan
After local seq_file conversion it was forgotten. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
2008-10-10[PATCH] signal, procfs: some lock_task_sighand() users do not need ↵Lai Jiangshan
rcu_read_lock() lock_task_sighand() make sure task->sighand is being protected, so we do not need rcu_read_lock(). [ exec() will get task->sighand->siglock before change task->sighand! ] But code using rcu_read_lock() _just_ to protect lock_task_sighand() only appear in procfs. (and some code in procfs use lock_task_sighand() without such redundant protection.) Other subsystem may put lock_task_sighand() into rcu_read_lock() critical region, but these rcu_read_lock() are used for protecting "for_each_process()", "find_task_by_vpid()" etc. , not for protecting lock_task_sighand(). Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> [ok from Oleg] Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
2008-09-14timers: fix itimer/many thread hangFrank Mayhar
Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-09-05sched: fix process time monotonicityBalbir Singh
Spencer reported a problem where utime and stime were going negative despite the fixes in commit b27f03d4bdc145a09fb7b0c0e004b29f1ee555fa. The suspected reason for the problem is that signal_struct maintains it's own utime and stime (of exited tasks), these are not updated using the new task_utime() routine, hence sig->utime can go backwards and cause the same problem to occur (sig->utime, adds tsk->utime and not task_utime()). This patch fixes the problem TODO: using max(task->prev_utime, derived utime) works for now, but a more generic solution is to implement cputime_max() and use the cputime_gt() function for comparison. Reported-by: spencer@bluehost.com Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-26tracehook: tracehook_tracer_taskRoland McGrath
This adds the tracehook_tracer_task() hook to consolidate all forms of "Who is using ptrace on me?" logic. This is used for "TracerPid:" in /proc and for permission checks. We also clean up the selinux code the called an identical accessor. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-31capabilities: remain source compatible with 32-bit raw legacy capability ↵Andrew G. Morgan
support. Source code out there hard-codes a notion of what the _LINUX_CAPABILITY_VERSION #define means in terms of the semantics of the raw capability system calls capget() and capset(). Its unfortunate, but true. Since the confusing header file has been in a released kernel, there is software that is erroneously using 64-bit capabilities with the semantics of 32-bit compatibilities. These recently compiled programs may suffer corruption of their memory when sys_getcap() overwrites more memory than they are coded to expect, and the raising of added capabilities when using sys_capset(). As such, this patch does a number of things to clean up the situation for all. It 1. forces the _LINUX_CAPABILITY_VERSION define to always retain its legacy value. 2. adopts a new #define strategy for the kernel's internal implementation of the preferred magic. 3. deprecates v2 capability magic in favor of a new (v3) magic number. The functionality of v3 is entirely equivalent to v2, the only difference being that the v2 magic causes the kernel to log a "deprecated" warning so the admin can find applications that may be using v2 inappropriately. [User space code continues to be encouraged to use the libcap API which protects the application from details like this. libcap-2.10 is the first to support v3 capabilities.] Fixes issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=447518. Thanks to Bojan Smojver for the report. [akpm@linux-foundation.org: s/depreciate/deprecate/g] [akpm@linux-foundation.org: be robust about put_user size] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Bojan Smojver <bojan@rexursive.com> Cc: stable@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Chris Wright <chrisw@sous-sol.org>
2008-05-13capabilities: add bounding set to /proc/self/statusSerge E. Hallyn
There is currently no way to query the bounding set of another task. As there appears to be no security reason not to, and as Michael Kerrisk points out the following valid reasons to do so exist: * consistency (I can see all of the other per-thread/process sets in /proc/.../status) * debugging -- I could imagine that it would make the job of debugging an application that uses capabilities a little simpler. this patch adds the bounding set to /proc/self/status right after the effective set. Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-01[PATCH] split linux/file.hAl Viro
Initial splitoff of the low-level stuff; taken to fdtable.h Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-04-30tty_io: fix remaining pid struct lockingAlan Cox
This fixes the last couple of pid struct locking failures I know about. [oleg@tv-sign.ru: clean up do_task_stat()] Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30do_task_stat: don't take rcu_read_lock()Oleg Nesterov
lock_task_sighand() was changed, and do_task_stat() doesn't need rcu_read_lock any longer. sighand->siglock protects all "interesting" fields. Except: it doesn't protect ->tty->pgrp, but neither does rcu_read_lock(), this should be fixed. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Pavel Emelyanov <xemul@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08proc: seqfile convert proc_pid_status to properly handle pid namespacesEric W. Biederman
Currently we possibly lookup the pid in the wrong pid namespace. So seq_file convert proc_pid_status which ensures the proper pid namespaces is passed in. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: s390 build fix] [akpm@linux-foundation.org: fix task_name() output] [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Andrew Morgan <morgan@kernel.org> Cc: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Paul Jackson <pj@sgi.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>