aboutsummaryrefslogtreecommitdiff
path: root/fs/fscache
AgeCommit message (Collapse)Author
2012-12-20FS-Cache: Clear remaining page count on retrieval cancellationDavid Howells
Provide fscache_cancel_op() with a pointer to a function it should invoke under lock if it cancels an operation. Use this to clear the remaining page count upon cancellation of a pending retrieval operation so that fscache_release_retrieval_op() doesn't get an assertion failure (see below). This can happen when a signal occurs, say from CTRL-C being pressed during data retrieval. FS-Cache: Assertion failed 3 == 0 is false ------------[ cut here ]------------ kernel BUG at fs/fscache/page.c:237! invalid opcode: 0000 [#641] SMP Modules linked in: cachefiles(F) nfsv4(F) nfsv3(F) nfsv2(F) nfs(F) fscache(F) auth_rpcgss(F) nfs_acl(F) lockd(F) sunrpc(F) CPU 0 Pid: 6075, comm: slurp-q Tainted: GF D 3.7.0-rc8-fsdevel+ #411 /DG965RY RIP: 0010:[<ffffffffa007f328>] [<ffffffffa007f328>] fscache_release_retrieval_op+0x75/0xff [fscache] RSP: 0000:ffff88001c6d7988 EFLAGS: 00010296 RAX: 000000000000000f RBX: ffff880014cdfe00 RCX: ffffffff6c102000 RDX: ffffffff8102d1ad RSI: ffffffff6c102000 RDI: ffffffff8102d1d6 RBP: ffff88001c6d7998 R08: 0000000000000002 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 00000000fffffe00 R13: ffff88001c6d7ab4 R14: ffff88001a8638a0 R15: ffff88001552b190 FS: 00007f877aaf0700(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007fff11378fd2 CR3: 000000001c6c6000 CR4: 00000000000007f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process slurp-q (pid: 6075, threadinfo ffff88001c6d6000, task ffff88001c6c4080) Stack: ffffffffa007ec07 ffff880014cdfe00 ffff88001c6d79c8 ffffffffa007db4d ffffffffa007ec07 ffff880014cdfe00 00000000fffffe00 ffff88001c6d7ab4 ffff88001c6d7a38 ffffffffa008116d 0000000000000000 ffff88001c6c4080 Call Trace: [<ffffffffa007ec07>] ? fscache_cancel_op+0x194/0x1cf [fscache] [<ffffffffa007db4d>] fscache_put_operation+0x135/0x2ed [fscache] [<ffffffffa007ec07>] ? fscache_cancel_op+0x194/0x1cf [fscache] [<ffffffffa008116d>] __fscache_read_or_alloc_pages+0x413/0x4bc [fscache] [<ffffffff810ac8ae>] ? __alloc_pages_nodemask+0x195/0x75c [<ffffffffa00aab0f>] __nfs_readpages_from_fscache+0x86/0x13d [nfs] [<ffffffffa00a5fe0>] nfs_readpages+0x186/0x1bd [nfs] [<ffffffff810d23c8>] ? alloc_pages_current+0xc7/0xe4 [<ffffffff810a68b5>] ? __page_cache_alloc+0x84/0x91 [<ffffffff810af912>] ? __do_page_cache_readahead+0xa6/0x2e0 [<ffffffff810afaa3>] __do_page_cache_readahead+0x237/0x2e0 [<ffffffff810af912>] ? __do_page_cache_readahead+0xa6/0x2e0 [<ffffffff810afe3e>] ra_submit+0x1c/0x20 [<ffffffff810b019b>] ondemand_readahead+0x359/0x382 [<ffffffff810b0279>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810a77b5>] generic_file_aio_read+0x26b/0x637 [<ffffffffa00f1852>] ? nfs_mark_delegation_referenced+0xb/0xb [nfsv4] [<ffffffffa009cc85>] nfs_file_read+0xaa/0xcf [nfs] [<ffffffff810db5b3>] do_sync_read+0x91/0xd1 [<ffffffff810dbb8b>] vfs_read+0x9b/0x144 [<ffffffff810dbc78>] sys_read+0x44/0x75 [<ffffffff81422892>] system_call_fastpath+0x16/0x1b Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Mark cancellation of in-progress operationDavid Howells
Mark as cancelled an operation that is in progress rather than pending at the time it is cancelled, and call fscache_complete_op() to cancel an operation so that blocked ops can be started. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: One of the write operation paths doesn't set the object stateDavid Howells
In fscache_write_op(), if the object is determined to have become inactive or to have lost its cookie, we don't move the operation state from in-progress, and so an assertion in fscache_put_operation() fails with an assertion (see below). Instrumenting fscache_op_work_func() indicates that it called fscache_write_op() before calling fscache_put_operation() - where the assertion failed. The assertion at line 433 indicates that the operation state is IN_PROGRESS rather than being COMPLETE or CANCELLED. Instrumenting fscache_write_op() showed that it was being called on an object that had had its cookie removed and that this was due to relinquishment of the cookie by the netfs. At this point fscache no longer has access to the pages of netfs data that were requested to be written, and so simply cancelling the operation is the thing to do. FS-Cache: Assertion failed 3 == 5 is false ------------[ cut here ]------------ kernel BUG at fs/fscache/operation.c:433! invalid opcode: 0000 [#1] SMP Modules linked in: cachefiles(F) nfsv4(F) nfsv3(F) nfsv2(F) nfs(F) fscache(F) auth_rpcgss(F) nfs_acl(F) lockd(F) sunrpc(F) CPU 0 Pid: 1035, comm: kworker/u:3 Tainted: GF 3.7.0-rc8-fsdevel+ #411 /DG965RY RIP: 0010:[<ffffffffa007db22>] [<ffffffffa007db22>] fscache_put_operation+0x11a/0x2ed [fscache] RSP: 0018:ffff88003e32bcf8 EFLAGS: 00010296 RAX: 000000000000000f RBX: ffff88001818eb78 RCX: ffffffff6c102000 RDX: ffffffff8102d1ad RSI: ffffffff6c102000 RDI: ffffffff8102d1d6 RBP: ffff88003e32bd18 R08: 0000000000000002 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffa00811da R13: 0000000000000001 R14: 0000000100625d26 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007fff7dd31c68 CR3: 000000003d730000 CR4: 00000000000007f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/u:3 (pid: 1035, threadinfo ffff88003e32a000, task ffff88003bb38080) Stack: ffffffff8102d1ad ffff88001818eb78 ffffffffa00811da 0000000000000001 ffff88003e32bd48 ffffffffa007f0ad ffff88001818eb78 ffffffff819583c0 ffff88003df24e00 ffff88003882c3e0 ffff88003e32bde8 ffffffff81042de0 Call Trace: [<ffffffff8102d1ad>] ? vprintk_emit+0x3c6/0x41a [<ffffffffa00811da>] ? __fscache_read_or_alloc_pages+0x4bc/0x4bc [fscache] [<ffffffffa007f0ad>] fscache_op_work_func+0xec/0x123 [fscache] [<ffffffff81042de0>] process_one_work+0x21c/0x3b0 [<ffffffff81042d82>] ? process_one_work+0x1be/0x3b0 [<ffffffffa007efc1>] ? fscache_operation_gc+0x23e/0x23e [fscache] [<ffffffff8104332e>] worker_thread+0x202/0x2df [<ffffffff8104312c>] ? rescuer_thread+0x18e/0x18e [<ffffffff81047c1c>] kthread+0xd0/0xd8 [<ffffffff81421bfa>] ? _raw_spin_unlock_irq+0x29/0x3e [<ffffffff81047b4c>] ? __init_kthread_worker+0x55/0x55 [<ffffffff814227ec>] ret_from_fork+0x7c/0xb0 [<ffffffff81047b4c>] ? __init_kthread_worker+0x55/0x55 Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Fix signal handling during waitsDavid Howells
wait_on_bit() with TASK_INTERRUPTIBLE returns 1 rather than a negative error code, so change what we check for. This means that the signal handling in fscache_wait_for_retrieval_activation() should now work properly. Without this, the following bug can be seen if CTRL-C is pressed during fscache read operation: FS-Cache: Assertion failed 2 == 3 is false ------------[ cut here ]------------ kernel BUG at fs/fscache/page.c:347! invalid opcode: 0000 [#1] SMP Modules linked in: cachefiles(F) nfsv4(F) nfsv3(F) nfsv2(F) nfs(F) fscache(F) auth_rpcgss(F) nfs_acl(F) lockd(F) sunrpc(F) CPU 1 Pid: 15006, comm: slurp-q Tainted: GF 3.7.0-rc8-fsdevel+ #411 /DG965RY RIP: 0010:[<ffffffffa007fcb4>] [<ffffffffa007fcb4>] fscache_wait_for_retrieval_activation+0x167/0x177 [fscache] RSP: 0018:ffff88002a4c39a8 EFLAGS: 00010292 RAX: 000000000000001a RBX: ffff88002d3dc158 RCX: 0000000000008685 RDX: ffffffff8102ccd6 RSI: 0000000000000001 RDI: ffffffff8102d1d6 RBP: ffff88002a4c39c8 R08: 0000000000000002 R09: 0000000000000000 R10: ffffffff8163afa0 R11: ffff88003bd11900 R12: ffffffffa00868c8 R13: ffff880028306458 R14: ffff88002d3dc1b0 R15: ffff88001372e538 FS: 00007f17426a0700(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f1742494a44 CR3: 0000000031bd7000 CR4: 00000000000007e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process slurp-q (pid: 15006, threadinfo ffff88002a4c2000, task ffff880023de3040) Stack: ffff88002d3dc158 ffff88001372e538 ffff88002a4c3ab4 ffff8800283064e0 ffff88002a4c3a38 ffffffffa0080f6d 0000000000000000 ffff880023de3040 ffff88002a4c3ac8 ffffffff810ac8ae ffff880028306458 ffff88002a4c3bc8 Call Trace: [<ffffffffa0080f6d>] __fscache_read_or_alloc_pages+0x24f/0x4bc [fscache] [<ffffffff810ac8ae>] ? __alloc_pages_nodemask+0x195/0x75c [<ffffffffa00aab0f>] __nfs_readpages_from_fscache+0x86/0x13d [nfs] [<ffffffffa00a5fe0>] nfs_readpages+0x186/0x1bd [nfs] [<ffffffff810d23c8>] ? alloc_pages_current+0xc7/0xe4 [<ffffffff810a68b5>] ? __page_cache_alloc+0x84/0x91 [<ffffffff810af912>] ? __do_page_cache_readahead+0xa6/0x2e0 [<ffffffff810afaa3>] __do_page_cache_readahead+0x237/0x2e0 [<ffffffff810af912>] ? __do_page_cache_readahead+0xa6/0x2e0 [<ffffffff810afe3e>] ra_submit+0x1c/0x20 [<ffffffff810b019b>] ondemand_readahead+0x359/0x382 [<ffffffff810b0279>] page_cache_sync_readahead+0x38/0x3a [<ffffffff810a77b5>] generic_file_aio_read+0x26b/0x637 [<ffffffffa00f1852>] ? nfs_mark_delegation_referenced+0xb/0xb [nfsv4] [<ffffffffa009cc85>] nfs_file_read+0xaa/0xcf [nfs] [<ffffffff810db5b3>] do_sync_read+0x91/0xd1 [<ffffffff810dbb8b>] vfs_read+0x9b/0x144 [<ffffffff810dbc78>] sys_read+0x44/0x75 [<ffffffff81422892>] system_call_fastpath+0x16/0x1b Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Add transition to handle invalidate immediately after lookup David Howells
Add a missing transition to the FS-Cache object state machine to handle an invalidation event occuring between the back end completing the object lookup by calling fscache_obtained_object() (which moves to state OBJECT_AVAILABLE) and the backend returning to fscache_lookup_object() and thence to fscache_object_state_machine() which then does a goto lookup_transit to handle the transition - but lookup_transit doesn't handle EV_INVALIDATE. Without this, the following BUG can be logged: FS-Cache: Unsupported event 2 [5/f7] in state OBJECT_AVAILABLE ------------[ cut here ]------------ kernel BUG at fs/fscache/object.c:357! Where event 2 is EV_INVALIDATE. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20NFS: nfs_migrate_page() does not wait for FS-Cache to finish with a pageDavid Howells
nfs_migrate_page() does not wait for FS-Cache to finish with a page, probably leading to the following bad-page-state: BUG: Bad page state in process python-bin pfn:17d39b page:ffffea00053649e8 flags:004000000000100c count:0 mapcount:0 mapping:(null) index:38686 (Tainted: G B ---------------- ) Pid: 31053, comm: python-bin Tainted: G B ---------------- 2.6.32-71.24.1.el6.x86_64 #1 Call Trace: [<ffffffff8111bfe7>] bad_page+0x107/0x160 [<ffffffff8111ee69>] free_hot_cold_page+0x1c9/0x220 [<ffffffff8111ef19>] __pagevec_free+0x59/0xb0 [<ffffffff8104b988>] ? flush_tlb_others_ipi+0x128/0x130 [<ffffffff8112230c>] release_pages+0x21c/0x250 [<ffffffff8115b92a>] ? remove_migration_pte+0x28a/0x2b0 [<ffffffff8115f3f8>] ? mem_cgroup_get_reclaim_stat_from_page+0x18/0x70 [<ffffffff81122687>] ____pagevec_lru_add+0x167/0x180 [<ffffffff811226f8>] __lru_cache_add+0x58/0x70 [<ffffffff81122731>] lru_cache_add_lru+0x21/0x40 [<ffffffff81123f49>] putback_lru_page+0x69/0x100 [<ffffffff8115c0bd>] migrate_pages+0x13d/0x5d0 [<ffffffff81122687>] ? ____pagevec_lru_add+0x167/0x180 [<ffffffff81152ab0>] ? compaction_alloc+0x0/0x370 [<ffffffff8115255c>] compact_zone+0x4cc/0x600 [<ffffffff8111cfac>] ? get_page_from_freelist+0x15c/0x820 [<ffffffff810672f4>] ? check_preempt_wakeup+0x1c4/0x3c0 [<ffffffff8115290e>] compact_zone_order+0x7e/0xb0 [<ffffffff81152a49>] try_to_compact_pages+0x109/0x170 [<ffffffff8111e94d>] __alloc_pages_nodemask+0x5ed/0x850 [<ffffffff814c9136>] ? thread_return+0x4e/0x778 [<ffffffff81150d43>] alloc_pages_vma+0x93/0x150 [<ffffffff81167ea5>] do_huge_pmd_anonymous_page+0x135/0x340 [<ffffffff814cb6f6>] ? rwsem_down_read_failed+0x26/0x30 [<ffffffff81136755>] handle_mm_fault+0x245/0x2b0 [<ffffffff814ce383>] do_page_fault+0x123/0x3a0 [<ffffffff814cbdf5>] page_fault+0x25/0x30 nfs_migrate_page() calls nfs_fscache_release_page() which doesn't actually wait - even if __GFP_WAIT is set. The reason that doesn't wait is that fscache_maybe_release_page() might deadlock the allocator as the work threads writing to the cache may all end up sleeping on memory allocation. However, I wonder if that is actually a problem. There are a number of things I can do to deal with this: (1) Make nfs_migrate_page() wait. (2) Make fscache_maybe_release_page() honour the __GFP_WAIT flag. (3) Set a timeout around the wait. (4) Make nfs_migrate_page() return an error if the page is still busy. For the moment, I'll select (2) and (4). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com>
2012-12-20FS-Cache: Exclusive op submission can BUG if there's been an I/O errorDavid Howells
The function to submit an exclusive op (fscache_submit_exclusive_op()) can BUG if there's been an I/O error because it may see the parent cache object in an unexpected state. It should only BUG if there hasn't been an I/O error. In this case the problem was produced by remounting the cache partition to be R/O. The EROFS state was detected and the cache was aborted, but not everything handled the aborting correctly. SysRq : Emergency Remount R/O EXT4-fs (sda6): re-mounted. Opts: (null) Emergency Remount complete CacheFiles: I/O Error: Failed to update xattr with error -30 FS-Cache: Cache cachefiles stopped due to I/O error ------------[ cut here ]------------ kernel BUG at fs/fscache/operation.c:128! invalid opcode: 0000 [#1] SMP CPU 0 Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc Pid: 6612, comm: kworker/u:2 Not tainted 3.1.0-rc8-fsdevel+ #1093 /DG965RY RIP: 0010:[<ffffffffa00739c0>] [<ffffffffa00739c0>] fscache_submit_exclusive_op+0x2ad/0x2c2 [fscache] RSP: 0018:ffff880000853d40 EFLAGS: 00010206 RAX: ffff880038ac72a8 RBX: ffff8800181f2260 RCX: ffffffff81f2b2b0 RDX: 0000000000000001 RSI: ffffffff8179a478 RDI: ffff8800181f2280 RBP: ffff880000853d60 R08: 0000000000000002 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffff880038ac7268 R13: ffff8800181f2280 R14: ffff88003a359190 R15: 000000010122b162 FS: 0000000000000000(0000) GS:ffff88003bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000034cc4a77f0 CR3: 0000000010e96000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/u:2 (pid: 6612, threadinfo ffff880000852000, task ffff880014c3c040) Stack: ffff8800181f2260 ffff8800181f2310 ffff880038ac7268 ffff8800181f2260 ffff880000853dc0 ffffffffa0072375 ffff880037ecfe00 ffff88003a359198 ffff880000853dc0 0000000000000246 0000000000000000 ffff88000a91d308 Call Trace: [<ffffffffa0072375>] fscache_object_work_func+0x792/0xe65 [fscache] [<ffffffff81047e44>] process_one_work+0x1eb/0x37f [<ffffffff81047de6>] ? process_one_work+0x18d/0x37f [<ffffffffa0071be3>] ? fscache_enqueue_dependents+0xd8/0xd8 [fscache] [<ffffffff810482e4>] worker_thread+0x15a/0x21a [<ffffffff8104818a>] ? rescuer_thread+0x188/0x188 [<ffffffff8104bf96>] kthread+0x7f/0x87 [<ffffffff813ad6f4>] kernel_thread_helper+0x4/0x10 [<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0 [<ffffffff813abd1d>] ? retint_restore_args+0xe/0xe [<ffffffff8104bf17>] ? __init_kthread_worker+0x53/0x53 [<ffffffff813ad6f0>] ? gs_change+0xb/0xb Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Limit the number of I/O error reports for a cacheDavid Howells
Limit the number of I/O error reports for a cache to 1 to prevent massive amounts of noise. After the first I/O error the cache is taken off line automatically, so must be restarted to resume caching. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Don't mask off the object event mask when printing itDavid Howells
Don't mask off the object event mask when printing it. That way it can be seen if threre are bits set that shouldn't be. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Initialise the object event mask with the calculated maskDavid Howells
Initialise the object event mask with the calculated mask rather than unmasking undefined events also. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20CacheFiles: Add missing retrieval completionsDavid Howells
CacheFiles is missing some calls to fscache_retrieval_complete() in the error handling/collision paths of its reader functions. This can be seen by the following assertion tripping in fscache_put_operation() whereby the operation being destroyed is still in the in-progress state and has not been cancelled or completed: FS-Cache: Assertion failed 3 == 5 is false ------------[ cut here ]------------ kernel BUG at fs/fscache/operation.c:408! invalid opcode: 0000 [#1] SMP CPU 2 Modules linked in: xfs ioatdma dca loop joydev evdev psmouse dcdbas pcspkr serio_raw i5000_edac edac_core i5k_amb shpchp pci_hotplug sg sr_mod] Pid: 8062, comm: httpd Not tainted 3.1.0-rc8 #1 Dell Inc. PowerEdge 1950/0DT097 RIP: 0010:[<ffffffff81197b24>] [<ffffffff81197b24>] fscache_put_operation+0x304/0x330 RSP: 0018:ffff880062f739d8 EFLAGS: 00010296 RAX: 0000000000000025 RBX: ffff8800c5122e84 RCX: ffffffff81ddf040 RDX: 00000000ffffffff RSI: 0000000000000082 RDI: ffffffff81ddef30 RBP: ffff880062f739f8 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000003 R12: ffff8800c5122e40 R13: ffff880037a2cd20 R14: ffff880087c7a058 R15: ffff880087c7a000 FS: 00007f63dcf636e0(0000) GS:ffff88022fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0c0a91f000 CR3: 0000000062ec2000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process httpd (pid: 8062, threadinfo ffff880062f72000, task ffff880087e58000) Stack: ffff880062f73bf8 0000000000000000 ffff880062f73bf8 ffff880037a2cd20 ffff880062f73a68 ffffffff8119aa7e ffff88006540e000 ffff880062f73ad4 ffff88008e9a4308 ffff880037a2cd20 ffff880062f73a48 ffff8800c5122e40 Call Trace: [<ffffffff8119aa7e>] __fscache_read_or_alloc_pages+0x1fe/0x530 [<ffffffff81250780>] __nfs_readpages_from_fscache+0x70/0x1c0 [<ffffffff8123142a>] nfs_readpages+0xca/0x1e0 [<ffffffff815f3c06>] ? rpc_do_put_task+0x36/0x50 [<ffffffff8122755b>] ? alloc_nfs_open_context+0x4b/0x110 [<ffffffff815ecd1a>] ? rpc_call_sync+0x5a/0x70 [<ffffffff810e7e9a>] __do_page_cache_readahead+0x1ca/0x270 [<ffffffff810e7f61>] ra_submit+0x21/0x30 [<ffffffff810e818d>] ondemand_readahead+0x11d/0x250 [<ffffffff810e83b6>] page_cache_sync_readahead+0x36/0x60 [<ffffffff810dffa4>] generic_file_aio_read+0x454/0x770 [<ffffffff81224ce1>] nfs_file_read+0xe1/0x130 [<ffffffff81121bd9>] do_sync_read+0xd9/0x120 [<ffffffff8114088f>] ? mntput+0x1f/0x40 [<ffffffff811238cb>] ? fput+0x1cb/0x260 [<ffffffff81122938>] vfs_read+0xc8/0x180 [<ffffffff81122af5>] sys_read+0x55/0x90 Reported-by: Mark Moseley <moseleymark@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Provide proper invalidationDavid Howells
Provide a proper invalidation method rather than relying on the netfs retiring the cookie it has and getting a new one. The problem with this is that isn't easy for the netfs to make sure that it has completed/cancelled all its outstanding storage and retrieval operations on the cookie it is retiring. Instead, have the cache provide an invalidation method that will cancel or wait for all currently outstanding operations before invalidating the cache, and will cause new operations to queue up behind that. Whilst invalidation is in progress, some requests will be rejected until the cache can stack a barrier on the operation queue to cause new operations to be deferred behind it. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Fix operation state management and accountingDavid Howells
Fix the state management of internal fscache operations and the accounting of what operations are in what states. This is done by: (1) Give struct fscache_operation a enum variable that directly represents the state it's currently in, rather than spreading this knowledge over a bunch of flags, who's processing the operation at the moment and whether it is queued or not. This makes it easier to write assertions to check the state at various points and to prevent invalid state transitions. (2) Add an 'operation complete' state and supply a function to indicate the completion of an operation (fscache_op_complete()) and make things call it. The final call to fscache_put_operation() can then check that an op in the appropriate state (complete or cancelled). (3) Adjust the use of object->n_ops, ->n_in_progress, ->n_exclusive to better govern the state of an object: (a) The ->n_ops is now the number of extant operations on the object and is now decremented by fscache_put_operation() only. (b) The ->n_in_progress is simply the number of objects that have been taken off of the object's pending queue for the purposes of being run. This is decremented by fscache_op_complete() only. (c) The ->n_exclusive is the number of exclusive ops that have been submitted and queued or are in progress. It is decremented by fscache_op_complete() and by fscache_cancel_op(). fscache_put_operation() and fscache_operation_gc() now no longer try to clean up ->n_exclusive and ->n_in_progress. That was leading to double decrements against fscache_cancel_op(). fscache_cancel_op() now no longer decrements ->n_ops. That was leading to double decrements against fscache_put_operation(). fscache_submit_exclusive_op() now decides whether it has to queue an op based on ->n_in_progress being > 0 rather than ->n_ops > 0 as the latter will persist in being true even after all preceding operations have been cancelled or completed. Furthermore, if an object is active and there are runnable ops against it, there must be at least one op running. (4) Add a remaining-pages counter (n_pages) to struct fscache_retrieval and provide a function to record completion of the pages as they complete. When n_pages reaches 0, the operation is deemed to be complete and fscache_op_complete() is called. Add calls to fscache_retrieval_complete() anywhere we've finished with a page we've been given to read or allocate for. This includes places where we just return pages to the netfs for reading from the server and where accessing the cache fails and we discard the proposed netfs page. The bugs in the unfixed state management manifest themselves as oopses like the following where the operation completion gets out of sync with return of the cookie by the netfs. This is possible because the cache unlocks and returns all the netfs pages before recording its completion - which means that there's nothing to stop the netfs discarding them and returning the cookie. FS-Cache: Cookie 'NFS.fh' still has outstanding reads ------------[ cut here ]------------ kernel BUG at fs/fscache/cookie.c:519! invalid opcode: 0000 [#1] SMP CPU 1 Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc Pid: 400, comm: kswapd0 Not tainted 3.1.0-rc7-fsdevel+ #1090 /DG965RY RIP: 0010:[<ffffffffa007050a>] [<ffffffffa007050a>] __fscache_relinquish_cookie+0x170/0x343 [fscache] RSP: 0018:ffff8800368cfb00 EFLAGS: 00010282 RAX: 000000000000003c RBX: ffff880023cc8790 RCX: 0000000000000000 RDX: 0000000000002f2e RSI: 0000000000000001 RDI: ffffffff813ab86c RBP: ffff8800368cfb50 R08: 0000000000000002 R09: 0000000000000000 R10: ffff88003a1b7890 R11: ffff88001df6e488 R12: ffff880023d8ed98 R13: ffff880023cc8798 R14: 0000000000000004 R15: ffff88003b8bf370 FS: 0000000000000000(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00000000008ba008 CR3: 0000000023d93000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kswapd0 (pid: 400, threadinfo ffff8800368ce000, task ffff88003b8bf040) Stack: ffff88003b8bf040 ffff88001df6e528 ffff88001df6e528 ffffffffa00b46b0 ffff88003b8bf040 ffff88001df6e488 ffff88001df6e620 ffffffffa00b46b0 ffff88001ebd04c8 0000000000000004 ffff8800368cfb70 ffffffffa00b2c91 Call Trace: [<ffffffffa00b2c91>] nfs_fscache_release_inode_cookie+0x3b/0x47 [nfs] [<ffffffffa008f25f>] nfs_clear_inode+0x3c/0x41 [nfs] [<ffffffffa0090df1>] nfs4_evict_inode+0x2f/0x33 [nfs] [<ffffffff810d8d47>] evict+0xa1/0x15c [<ffffffff810d8e2e>] dispose_list+0x2c/0x38 [<ffffffff810d9ebd>] prune_icache_sb+0x28c/0x29b [<ffffffff810c56b7>] prune_super+0xd5/0x140 [<ffffffff8109b615>] shrink_slab+0x102/0x1ab [<ffffffff8109d690>] balance_pgdat+0x2f2/0x595 [<ffffffff8103e009>] ? process_timeout+0xb/0xb [<ffffffff8109dba3>] kswapd+0x270/0x289 [<ffffffff8104c5ea>] ? __init_waitqueue_head+0x46/0x46 [<ffffffff8109d933>] ? balance_pgdat+0x595/0x595 [<ffffffff8104bf7a>] kthread+0x7f/0x87 [<ffffffff813ad6b4>] kernel_thread_helper+0x4/0x10 [<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0 [<ffffffff813abcdd>] ? retint_restore_args+0xe/0xe [<ffffffff8104befb>] ? __init_kthread_worker+0x53/0x53 [<ffffffff813ad6b0>] ? gs_change+0xb/0xb Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Make cookie relinquishment wait for outstanding readsDavid Howells
Make fscache_relinquish_cookie() log a warning and wait if there are any outstanding reads left on the cookie it was given. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20FS-Cache: Check that there are no read ops when cookie relinquishedDavid Howells
Check that the netfs isn't trying to relinquish a cookie that still has read operations in progress upon it. If there are, then give log a warning and BUG. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20CacheFiles: Downgrade the requirements passed to the allocatorDavid Howells
Downgrade the requirements passed to the allocator in the gfp flags parameter. FS-Cache/CacheFiles can handle OOM conditions simply by aborting the attempt to store an object or a page in the cache. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-20CacheFiles: Fix the marking of cached pagesDavid Howells
Under some circumstances CacheFiles defers the marking of pages with PG_fscache so that it can take advantage of pagevecs to reduce the number of calls to fscache_mark_pages_cached() and the netfs's hook to keep track of this. There are, however, two problems with this: (1) It can lead to the PG_fscache mark being applied _after_ the page is set PG_uptodate and unlocked (by the call to fscache_end_io()). (2) CacheFiles's ref on the page is dropped immediately following fscache_end_io() - and so may not still be held when the mark is applied. This can lead to the page being passed back to the allocator before the mark is applied. Fix this by, where appropriate, marking the page before calling fscache_end_io() and releasing the page. This means that we can't take advantage of pagevecs and have to make a separate call for each page to the marking routines. The symptoms of this are Bad Page state errors cropping up under memory pressure, for example: BUG: Bad page state in process tar pfn:002da page:ffffea0000009fb0 count:0 mapcount:0 mapping: (null) index:0x1447 page flags: 0x1000(private_2) Pid: 4574, comm: tar Tainted: G W 3.1.0-rc4-fsdevel+ #1064 Call Trace: [<ffffffff8109583c>] ? dump_page+0xb9/0xbe [<ffffffff81095916>] bad_page+0xd5/0xea [<ffffffff81095d82>] get_page_from_freelist+0x35b/0x46a [<ffffffff810961f3>] __alloc_pages_nodemask+0x362/0x662 [<ffffffff810989da>] __do_page_cache_readahead+0x13a/0x267 [<ffffffff81098942>] ? __do_page_cache_readahead+0xa2/0x267 [<ffffffff81098d7b>] ra_submit+0x1c/0x20 [<ffffffff8109900a>] ondemand_readahead+0x28b/0x29a [<ffffffff81098ee2>] ? ondemand_readahead+0x163/0x29a [<ffffffff810990ce>] page_cache_sync_readahead+0x38/0x3a [<ffffffff81091d8a>] generic_file_aio_read+0x2ab/0x67e [<ffffffffa008cfbe>] nfs_file_read+0xa4/0xc9 [nfs] [<ffffffff810c22c4>] do_sync_read+0xba/0xfa [<ffffffff81177a47>] ? security_file_permission+0x7b/0x84 [<ffffffff810c25dd>] ? rw_verify_area+0xab/0xc8 [<ffffffff810c29a4>] vfs_read+0xaa/0x13a [<ffffffff810c2a79>] sys_read+0x45/0x6c [<ffffffff813ac37b>] system_call_fastpath+0x16/0x1b As can be seen, PG_private_2 (== PG_fscache) is set in the page flags. Instrumenting fscache_mark_pages_cached() to verify whether page->mapping was set appropriately showed that sometimes it wasn't. This led to the discovery that sometimes the page has apparently been reclaimed by the time the marker got to see it. Reported-by: M. Stevens <m@tippett.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com>
2011-07-21FS-Cache: Fix __fscache_uncache_all_inode_pages()'s outer loopJan Beulich
The compiler, at least for ix86 and m68k, validly warns that the comparison: next <= (loff_t)-1 is always true (and it's always true also for x86-64 and probably all other arches - as long as pgoff_t isn't wider than loff_t). The intention appears to be to avoid wrapping of "next", so rather than eliminating the pointless comparison, fix the loop to indeed get exited when "next" would otherwise wrap. On m68k the following warning is observed: fs/fscache/page.c: In function '__fscache_uncache_all_inode_pages': fs/fscache/page.c:979: warning: comparison is always false due to limited range of data type Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Reported-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Suresh Jayaraman <sjayaraman@suse.de> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-07FS-Cache: Add a helper to bulk uncache pages on an inodeDavid Howells
Add an FS-Cache helper to bulk uncache pages on an inode. This will only work for the circumstance where the pages in the cache correspond 1:1 with the pages attached to an inode's page cache. This is required for CIFS and NFS: When disabling inode cookie, we were returning the cookie and setting cifsi->fscache to NULL but failed to invalidate any previously mapped pages. This resulted in "Bad page state" errors and manifested in other kind of errors when running fsstress. Fix it by uncaching mapped pages when we disable the inode cookie. This patch should fix the following oops and "Bad page state" errors seen during fsstress testing. ------------[ cut here ]------------ kernel BUG at fs/cachefiles/namei.c:201! invalid opcode: 0000 [#1] SMP Pid: 5, comm: kworker/u:0 Not tainted 2.6.38.7-30.fc15.x86_64 #1 Bochs Bochs RIP: 0010: cachefiles_walk_to_object+0x436/0x745 [cachefiles] RSP: 0018:ffff88002ce6dd00 EFLAGS: 00010282 RAX: ffff88002ef165f0 RBX: ffff88001811f500 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000282 RBP: ffff88002ce6dda0 R08: 0000000000000100 R09: ffffffff81b3a300 R10: 0000ffff00066c0a R11: 0000000000000003 R12: ffff88002ae54840 R13: ffff88002ae54840 R14: ffff880029c29c00 R15: ffff88001811f4b0 FS: 00007f394dd32720(0000) GS:ffff88002ef00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007fffcb62ddf8 CR3: 000000001825f000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process kworker/u:0 (pid: 5, threadinfo ffff88002ce6c000, task ffff88002ce55cc0) Stack: 0000000000000246 ffff88002ce55cc0 ffff88002ce6dd58 ffff88001815dc00 ffff8800185246c0 ffff88001811f618 ffff880029c29d18 ffff88001811f380 ffff88002ce6dd50 ffffffff814757e4 ffff88002ce6dda0 ffffffff8106ac56 Call Trace: cachefiles_lookup_object+0x78/0xd4 [cachefiles] fscache_lookup_object+0x131/0x16d [fscache] fscache_object_work_func+0x1bc/0x669 [fscache] process_one_work+0x186/0x298 worker_thread+0xda/0x15d kthread+0x84/0x8c kernel_thread_helper+0x4/0x10 RIP cachefiles_walk_to_object+0x436/0x745 [cachefiles] ---[ end trace 1d481c9af1804caa ]--- I tested the uncaching by the following means: (1) Create a big file on my NFS server (104857600 bytes). (2) Read the file into the cache with md5sum on the NFS client. Look in /proc/fs/fscache/stats: Pages : mrk=25601 unc=0 (3) Open the file for read/write ("bash 5<>/warthog/bigfile"). Look in proc again: Pages : mrk=25601 unc=25601 Reported-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-and-Tested-by: Suresh Jayaraman <sjayaraman@suse.de> cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25fscache: remove dead code under CONFIG_WORKQUEUE_DEBUGFSAmerigo Wang
There is no CONFIG_WORKQUEUE_DEBUGFS any more, so this code is dead. Signed-off-by: WANG Cong <amwang@redhat.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14FS-Cache: Fix operation handlingAkshat Aranya
fscache_submit_exclusive_op() adds an operation to the pending list if other operations are pending. Fix the check for pending ops as n_ops must be greater than 0 at the point it is checked as it is incremented immediately before under lock. Signed-off-by: Akshat Aranya <aranya@nec-labs.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-12Add a dummy printk function for the maintenance of unused printksDavid Howells
Add a dummy printk function for the maintenance of unused printks through gcc format checking, and also so that side-effect checking is maintained too. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-24fscache: fix build on !CONFIG_SYSCTLTejun Heo
Commit 8b8edefa (fscache: convert object to use workqueue instead of slow-work) made fscache_exit() call unregister_sysctl_table() unconditionally breaking build when sysctl is disabled. Fix it by putting it inside CONFIG_SYSCTL. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: David Howells <dhowells@redhat.com>
2010-07-22fscache: drop references to slow-workTejun Heo
fscache no longer uses slow-work. Drop references to it. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Howells <dhowells@redhat.com>
2010-07-22fscache: convert operation to use workqueue instead of slow-workTejun Heo
Make fscache operation to use only workqueue instead of combination of workqueue and slow-work. FSCACHE_OP_SLOW is dropped and FSCACHE_OP_FAST is renamed to FSCACHE_OP_ASYNC and uses newly added fscache_op_wq workqueue to execute op->processor(). fscache_operation_init_slow() is dropped and fscache_operation_init() now takes @processor argument directly. * Unbound workqueue is used. * fscache_retrieval_work() is no longer necessary as OP_ASYNC now does the equivalent thing. * sysctl fscache.operation_max_active added to control concurrency. The default value is nr_cpus clamped between 2 and WQ_UNBOUND_MAX_ACTIVE. * debugfs support is dropped for now. Tracing API based debug facility is planned to be added. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Howells <dhowells@redhat.com>
2010-07-22fscache: convert object to use workqueue instead of slow-workTejun Heo
Make fscache object state transition callbacks use workqueue instead of slow-work. New dedicated unbound CPU workqueue fscache_object_wq is created. get/put callbacks are renamed and modified to take @object and called directly from the enqueue wrapper and the work function. While at it, make all open coded instances of get/put to use fscache_get/put_object(). * Unbound workqueue is used. * work_busy() output is printed instead of slow-work flags in object debugging outputs. They mean basically the same thing bit-for-bit. * sysctl fscache.object_max_active added to control concurrency. The default value is nr_cpus clamped between 4 and WQ_UNBOUND_MAX_ACTIVE. * slow_work_sleep_till_thread_needed() is replaced with fscache private implementation fscache_object_sleep_till_congested() which waits on fscache_object_wq congestion. * debugfs support is dropped for now. Tracing API based debug facility is planned to be added. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Howells <dhowells@redhat.com>
2010-06-01FS-Cache: Remove unneeded null checksDan Carpenter
fscache_write_op() makes unnecessary checks of the page variable to see if it is NULL. It can't be NULL at those points as the kernel would already have crashed a little higher up where we examined page->index. Furthermore, unless radix_tree_gang_lookup_tag() can return 1 but no page, a NULL pointer crash should not be encountered there as we can only get there if r_t_g_l_t() returned 1. Signed-off-by: Dan Carpenter <error27@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-26fs/fscache/object-list.c: fix warning on 32-bitAndrew Morton
fs/fscache/object-list.c: In function 'fscache_objlist_lookup': fs/fscache/object-list.c:105: warning: cast to pointer from integer of different size Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-07fs-cache: order the debugfs stats correctlyDavid Howells
Order the debugfs statistics correctly. The values displayed through a seq_printf() statement should be in the same order as the names in the format string. In the 'Lookups' line, objects created ('crt=') and lookups timed out ('tmo=') have their values transposed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-29SLOW_WORK: CONFIG_SLOW_WORK_PROC should be CONFIG_SLOW_WORK_DEBUGDavid Howells
CONFIG_SLOW_WORK_PROC was changed to CONFIG_SLOW_WORK_DEBUG, but not in all instances. Change the remaining instances. This makes the debugfs file display the time mark and the owner's description again. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-24fscache: add missing unlockDan Carpenter
Sparse complained about this missing spin_unlock() Signed-off-by: Dan Carpenter <error27@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-08FS-Cache: Remove the EXPERIMENTAL flagChristian Kujau
Remove the EXPERIMENTAL flag from FS-Cache so that Ubuntu can make use of the facility. Signed-off-by: Christian Kujau <lists@nerdbynature.de> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16FS-Cache: Avoid maybe-used-uninitialised warning on variableDavid Howells
Andrew Morton's compiler sees the following warning in FS-Cache: fs/fscache/object-list.c: In function 'fscache_objlist_lookup': fs/fscache/object-list.c:94: warning: 'obj' may be used uninitialized in this function which my compiler doesn't. This is a false positive as obj can only be used in the comparison against minobj if minobj has been set to something other than NULL, but for that to happen, obj has to be first set to something. Deal with this by preclearing obj too. Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-11-20FS-Cache: Provide nop fscache_stat_d() if CONFIG_FSCACHE_STATS=nDavid Howells
Provide nop fscache_stat_d() macro if CONFIG_FSCACHE_STATS=n lest errors like the following occur: fs/fscache/cache.c: In function 'fscache_withdraw_cache': fs/fscache/cache.c:386: error: implicit declaration of function 'fscache_stat_d' fs/fscache/cache.c:386: error: 'fscache_n_cop_sync_cache' undeclared (first use in this function) fs/fscache/cache.c:386: error: (Each undeclared identifier is reported only once fs/fscache/cache.c:386: error: for each function it appears in.) fs/fscache/cache.c:392: error: 'fscache_n_cop_dissociate_pages' undeclared (first use in this function) Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19CacheFiles: Catch an overly long wait for an old active objectDavid Howells
Catch an overly long wait for an old, dying active object when we want to replace it with a new one. The probability is that all the slow-work threads are hogged, and the delete can't get a look in. What we do instead is: (1) if there's nothing in the slow work queue, we sleep until either the dying object has finished dying or there is something in the slow work queue behind which we can queue our object. (2) if there is something in the slow work queue, we return ETIMEDOUT to fscache_lookup_object(), which then puts us back on the slow work queue, presumably behind the deletion that we're blocked by. We are then deferred for a while until we work our way back through the queue - without blocking a slow-work thread unnecessarily. A backtrace similar to the following may appear in the log without this patch: INFO: task kslowd004:5711 blocked for more than 120 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. kslowd004 D 0000000000000000 0 5711 2 0x00000080 ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000 ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8 000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8 Call Trace: [<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles] [<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles] [<ffffffff81353153>] __wait_on_bit+0x43/0x76 [<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270 [<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74 [<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles] [<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e [<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles] [<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles] [<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles] [<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache] [<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache] [<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache] [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308 [<ffffffff8104be91>] kthread+0x7a/0x82 [<ffffffff8100beda>] child_rip+0xa/0x20 [<ffffffff8100b87c>] ? restore_args+0x0/0x30 [<ffffffff8104be17>] ? kthread+0x0/0x82 [<ffffffff8100bed0>] ? child_rip+0x0/0x20 1 lock held by kslowd004/5711: #0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles] Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Actually requeue an object when requestedDavid Howells
FS-Cache objects have an FSCACHE_OBJECT_EV_REQUEUE event that can theoretically be raised to ask the state machine to requeue the object for further processing before the work function returns to the slow-work facility. However, fscache_object_work_execute() was clearing that bit before checking the event mask to see whether the object has any pending events that require it to be requeued immediately. Instead, the bit should be cleared after the check and enqueue. Signed-off-by: David Howells <dhowells@redhat.com>
2009-11-19FS-Cache: Start processing an object's operations on that object's deathDavid Howells