Age | Commit message (Collapse) | Author |
|
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|
The below patch fixes a typo "diable" to "disable" and also fixes another typo in a comment.
Please let me know if this is correct or not.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
The usbcore headers: hcd.h and hub.h are shared between usbcore,
HCDs and a couple of other drivers (e.g. USBIP modules).
So, it makes sense to move them into a more public location and
to cleanup dependency of those modules on kernel internal headers.
This patch moves hcd.h from drivers/usb/core into include/linux/usb/
Signed-of-by: Eric Lescouet <eric@lescouet.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
After kfifo rework FHCI fails to build:
CC drivers/usb/host/fhci-tds.o
drivers/usb/host/fhci-tds.c: In function 'fhci_ep0_free':
drivers/usb/host/fhci-tds.c:108: error: used struct type value where scalar is required
drivers/usb/host/fhci-tds.c:118: error: used struct type value where scalar is required
drivers/usb/host/fhci-tds.c:128: error: used struct type value where scalar is required
This is because kfifos are no longer pointers in the ep struct.
So, instead of checking the pointers, we should now check if kfifo
is initialized.
Reported-by: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Acked-by: Stefani Seibold <stefani@seibold.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
This is a new generic kernel FIFO implementation.
The current kernel fifo API is not very widely used, because it has to
many constrains. Only 17 files in the current 2.6.31-rc5 used it.
FIFO's are like list's a very basic thing and a kfifo API which handles
the most use case would save a lot of development time and memory
resources.
I think this are the reasons why kfifo is not in use:
- The API is to simple, important functions are missing
- A fifo can be only allocated dynamically
- There is a requirement of a spinlock whether you need it or not
- There is no support for data records inside a fifo
So I decided to extend the kfifo in a more generic way without blowing up
the API to much. The new API has the following benefits:
- Generic usage: For kernel internal use and/or device driver.
- Provide an API for the most use case.
- Slim API: The whole API provides 25 functions.
- Linux style habit.
- DECLARE_KFIFO, DEFINE_KFIFO and INIT_KFIFO Macros
- Direct copy_to_user from the fifo and copy_from_user into the fifo.
- The kfifo itself is an in place member of the using data structure, this save an
indirection access and does not waste the kernel allocator.
- Lockless access: if only one reader and one writer is active on the fifo,
which is the common use case, no additional locking is necessary.
- Remove spinlock - give the user the freedom of choice what kind of locking to use if
one is required.
- Ability to handle records. Three type of records are supported:
- Variable length records between 0-255 bytes, with a record size
field of 1 bytes.
- Variable length records between 0-65535 bytes, with a record size
field of 2 bytes.
- Fixed size records, which no record size field.
- Preserve memory resource.
- Performance!
- Easy to use!
This patch:
Since most users want to have the kfifo as part of another object,
reorganize the code to allow including struct kfifo in another data
structure. This requires changing the kfifo_alloc and kfifo_init
prototypes so that we pass an existing kfifo pointer into them. This
patch changes the implementation and all existing users.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds support for the FHCI USB controller, as found
in the Freescale MPC836x and MPC832x processors. It can support
Full or Low speed modes.
Quite a lot the hardware is doing by itself (SOF generation, CRC
generation and checking), though scheduling and retransmission is on
software's shoulders.
This controller does not integrate the root hub, so this driver also
fakes one-port hub. External hub is required to support more than
one device.
Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|