aboutsummaryrefslogtreecommitdiff
path: root/arch/m68k/include/asm/m5407sim.h
AgeCommit message (Collapse)Author
2012-09-27m68knommu: fix inconsistent formating in ColdFire 5407 definitionsGreg Ungerer
Fix tab broken address defines to be consistent with others in this file. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire Park and Assignment register definitions absolute ↵Greg Ungerer
addresses Make all definitions of the ColdFire MPARK and IRQ Assignment registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire Chip Select register definitions absolute addressesGreg Ungerer
Make all definitions of the ColdFire Chip Select registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire Interrupt Source register definitions absolute ↵Greg Ungerer
addresses Make all definitions of the ColdFire Interrupt Source registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire Pin Assignment register definitions absolute addressesGreg Ungerer
Make all definitions of the ColdFire Pin Assignment registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire watchdog register definitions absolute addressesGreg Ungerer
Make all definitions of the ColdFire Software watchdog registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire SYPCR and RSR register definitions absolute addressesGreg Ungerer
Make all definitions of the ColdFire Reset and System registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the abolsute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: make ColdFire IMR and IPR register definitions absolute addressesGreg Ungerer
Make all definitions of the ColdFire Interrupt Mask and Pending registers absolute addresses. Currently some are relative to the MBAR peripheral region. The various ColdFire parts use different methods to address the internal registers, some are absolute, some are relative to peripheral regions which can be mapped at different address ranges (such as the MBAR and IPSBAR registers). We don't want to deal with this in the code when we are accessing these registers, so make all register definitions the absolute address - factoring out whether it is an offset into a peripheral region. This makes them all consistently defined, and reduces the occasional bugs caused by inconsistent definition of the register addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-03-05m68knommu: make 5407 UART platform addressing consistentGreg Ungerer
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 5407 UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-31Fix common misspellingsLucas De Marchi
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-15m68knommu: remove ColdFire CLOCK_DIV config optionGreg Ungerer
The reality is that you do not need the abiltity to configure the clock divider for ColdFire CPUs. It is a fixed ratio on any given ColdFire family member. It is not the same for all ColdFire parts, but it is always the same in a model range. So hard define the divider for each supported ColdFire CPU type and remove the Kconfig option. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: clean up use of MBAR for DRAM registers on ColdFire startGreg Ungerer
In some of the RAM size autodetection code on ColdFire CPU startup we reference DRAM registers relative to the MBAR register. Not all of the supported ColdFire CPUs have an MBAR, and currently this works because we fake an MBAR address on those registers. In an effort to clean this up, and eventually remove the fake MBAR setting make the DRAM register address definitions actually contain the MBAR (or IPSBAR as appropriate) value as required. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: remove use of MBAR in old-style ColdFire timerGreg Ungerer
Not all ColdFire CPUs that use the old style timer hardware module use an MBAR set peripheral region. Move the TIMER base address defines to the per-CPU header files where we can set it correctly based on how the peripherals are mapped - instead of using a fake MBAR for some platforms. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: move ColdFire DMA register addresses to per-cpu headersGreg Ungerer
The base addresses of the ColdFire DMA unit registers belong with all the other address definitions in the per-cpu headers. The current definitions assume they are relative to an MBAR register. Not all ColdFire CPUs have an MBAR register. A clean address define can only be acheived in the per-cpu headers along with all the other chips peripheral base addresses. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move inclusion of ColdFire v4 cache registersGreg Ungerer
Move the inclusion of the version 4 cache controller registers so that it is with all the other register bit flag definitions. This makes it consistent with the other version core inclusion points, and means we don't need "#ifdef"ery in odd-ball places for these definitions. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move UART addressing to part specific includesGreg Ungerer
The ColdFire UART base addresses varies between the different ColdFire family members. Instead of keeping the base addresses with the UART definitions keep them with the other addresses definitions for each ColdFire part. The motivation for this move is so that when we add new ColdFire part definitions, they are all in a single file (and we shouldn't normally need to modify the UART definitions in mcfuart.h at all). Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: fix clock rate value reported for ColdFire 54xx partsGreg Ungerer
The instruction timings of the ColdFire 54xx family parts are different to other version 4 parts (or version 2 or 3 parts for that matter too). Move the instruction timing setting into the ColdFire part specific headers, and set the 54xx value appropriately. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move ColdFire CPU names into their headersGreg Ungerer
Move the ColdFire CPU names out of setup.c and into their repsective headers. That way when we add new ones we won't need to modify setup.c any more. Add the missing 548x CPU name. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: Create new m54xxacr.h from m5407sim.h subpartPhilippe De Muyter
The MCF548x have the same cache control registers as the MCF5407. Extract the bit definitions for the ACR and CACR registers from m5407sim.h and move them to a new file m54xxacr.h. Those definitions are not used anywhere yet, so no other file is involved. This is a preparation for m54xx cache support cleanup. Signed-off-by: Philippe De Muyter <phdm@macqel.be> Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2009-09-16m68knommu: simplify ColdFire "timers" clock initializationGreg Ungerer
The ColdFire "timers" clock setup can be simplified. There is really no need for the flexible per-platform setup code. The clock interrupt can be hard defined per CPU platform (in CPU include files). This makes the actual timer code simpler. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2009-09-16m68knommu: merge old ColdFire interrupt controller masking macrosGreg Ungerer
Currently the code that supports setting the old style ColdFire interrupt controller mask registers is macros in the include files of each of the CPU types. Merge all these into a set of real masking functions in the old Coldfire interrupt controller code proper. All the macros are basically the same (excepting a register size difference on really early parts). Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2009-09-10generic GPIO support for the Freescale Coldfire 5407.sfking@fdwdc.com
Add support for the 5407. Signed-off-by: Steven King <sfking@fdwdc.com> Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2009-01-16m68k,m68knommu: merge header filesSam Ravnborg
Merge header files for m68k and m68knommu to the single location: arch/m68k/include/asm The majority of this patch was the result of the script that is included in the changelog below. The script was originally written by Arnd Bergman and exten by me to cover a few more files. When the header files differed the script uses the following: The original m68k file is named <file>_mm.h [mm for memory manager] The m68knommu file is named <file>_no.h [no for no memory manager] The files uses the following include guard: This include gaurd works as the m68knommu toolchain set the __uClinux__ symbol - so this should work in userspace too. Merging the header files for m68k and m68knommu exposes the (unexpected?) ABI differences thus it is easier to actually identify these and thus to fix them. The commit has been build tested with both a m68k and a m68knommu toolchain - with success. The commit has also been tested with "make headers_check" and this patch fixes make headers_check for m68knommu. The script used: TARGET=arch/m68k/include/asm SOURCE=arch/m68knommu/include/asm INCLUDE="cachectl.h errno.h fcntl.h hwtest.h ioctls.h ipcbuf.h \ linkage.h math-emu.h md.h mman.h movs.h msgbuf.h openprom.h \ oplib.h poll.h posix_types.h resource.h rtc.h sembuf.h shmbuf.h \ shm.h shmparam.h socket.h sockios.h spinlock.h statfs.h stat.h \ termbits.h termios.h tlb.h types.h user.h" EQUAL="auxvec.h cputime.h device.h emergency-restart.h futex.h \ ioctl.h irq_regs.h kdebug.h local.h mutex.h percpu.h \ sections.h topology.h" NOMUUFILES="anchor.h bootstd.h coldfire.h commproc.h dbg.h \ elia.h flat.h m5206sim.h m520xsim.h m523xsim.h m5249sim.h \ m5272sim.h m527xsim.h m528xsim.h m5307sim.h m532xsim.h \ m5407sim.h m68360_enet.h m68360.h m68360_pram.h m68360_quicc.h \ m68360_regs.h MC68328.h MC68332.h MC68EZ328.h MC68VZ328.h \ mcfcache.h mcfdma.h mcfmbus.h mcfne.h mcfpci.h mcfpit.h \ mcfsim.h mcfsmc.h mcftimer.h mcfuart.h mcfwdebug.h \ nettel.h quicc_simple.h smp.h" FILES="atomic.h bitops.h bootinfo.h bug.h bugs.h byteorder.h cache.h \ cacheflush.h checksum.h current.h delay.h div64.h \ dma-mapping.h dma.h elf.h entry.h fb.h fpu.h hardirq.h hw_irq.h io.h \ irq.h kmap_types.h machdep.h mc146818rtc.h mmu.h mmu_context.h \ module.h page.h page_offset.h param.h pci.h pgalloc.h \ pgtable.h processor.h ptrace.h scatterlist.h segment.h \ setup.h sigcontext.h siginfo.h signal.h string.h system.h swab.h \ thread_info.h timex.h tlbflush.h traps.h uaccess.h ucontext.h \ unaligned.h unistd.h" mergefile() { BASE=${1%.h} git mv ${SOURCE}/$1 ${TARGET}/${BASE}_no.h git mv ${TARGET}/$1 ${TARGET}/${BASE}_mm.h cat << EOF > ${TARGET}/$1 EOF git add ${TARGET}/$1 } set -e mkdir -p ${TARGET} git mv include/asm-m68k/* ${TARGET} rmdir include/asm-m68k git rm ${SOURCE}/Kbuild for F in $INCLUDE $EQUAL; do git rm ${SOURCE}/$F done for F in $NOMUUFILES; do git mv ${SOURCE}/$F ${TARGET}/$F done for F in $FILES ; do mergefile $F done rmdir arch/m68knommu/include/asm rmdir arch/m68knommu/include Cc: Arnd Bergmann <arnd@arndb.de> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Greg Ungerer <gerg@uclinux.org>