aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/include/uapi/asm/kvm.h
AgeCommit message (Collapse)Author
2013-03-06ARM: KVM: convert GP registers from u32 to unsigned longMarc Zyngier
On 32bit ARM, unsigned long is guaranteed to be a 32bit quantity. On 64bit ARM, it is a 64bit quantity. In order to be able to share code between the two architectures, convert the registers to be unsigned long, so the core code can be oblivious of the change. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-02-11ARM: KVM: VGIC accept vcpu and dist base addresses from user spaceChristoffer Dall
User space defines the model to emulate to a guest and should therefore decide which addresses are used for both the virtual CPU interface directly mapped in the guest physical address space and for the emulated distributor interface, which is mapped in software by the in-kernel VGIC support. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-02-11KVM: ARM: Introduce KVM_ARM_SET_DEVICE_ADDR ioctlChristoffer Dall
On ARM some bits are specific to the model being emulated for the guest and user space needs a way to tell the kernel about those bits. An example is mmio device base addresses, where KVM must know the base address for a given device to properly emulate mmio accesses within a certain address range or directly map a device with virtualiation extensions into the guest address space. We make this API ARM-specific as we haven't yet reached a consensus for a generic API for all KVM architectures that will allow us to do something like this. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-01-23KVM: ARM: Power State Coordination Interface implementationMarc Zyngier
Implement the PSCI specification (ARM DEN 0022A) to control virtual CPUs being "powered" on or off. PSCI/KVM is detected using the KVM_CAP_ARM_PSCI capability. A virtual CPU can now be initialized in a "powered off" state, using the KVM_ARM_VCPU_POWER_OFF feature flag. The guest can use either SMC or HVC to execute a PSCI function. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23KVM: ARM: VFP userspace interfaceRusty Russell
We use space #18 for floating point regs. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23KVM: ARM: Demux CCSIDR in the userspace APIChristoffer Dall
The Cache Size Selection Register (CSSELR) selects the current Cache Size ID Register (CCSIDR). You write which cache you are interested in to CSSELR, and read the information out of CCSIDR. Which cache numbers are valid is known by reading the Cache Level ID Register (CLIDR). To export this state to userspace, we add a KVM_REG_ARM_DEMUX numberspace (17), which uses 8 bits to represent which register is being demultiplexed (0 for CCSIDR), and the lower 8 bits to represent this demultiplexing (in our case, the CSSELR value, which is 4 bits). Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23KVM: ARM: Inject IRQs and FIQs from userspaceChristoffer Dall
All interrupt injection is now based on the VM ioctl KVM_IRQ_LINE. This works semantically well for the GIC as we in fact raise/lower a line on a machine component (the gic). The IOCTL uses the follwing struct. struct kvm_irq_level { union { __u32 irq; /* GSI */ __s32 status; /* not used for KVM_IRQ_LEVEL */ }; __u32 level; /* 0 or 1 */ }; ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for specific cpus. The irq field is interpreted like this:  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 | field: | irq_type | vcpu_index | irq_number | The irq_type field has the following values: - irq_type[0]: out-of-kernel GIC: irq_number 0 is IRQ, irq_number 1 is FIQ - irq_type[1]: in-kernel GIC: SPI, irq_number between 32 and 1019 (incl.) (the vcpu_index field is ignored) - irq_type[2]: in-kernel GIC: PPI, irq_number between 16 and 31 (incl.) The irq_number thus corresponds to the irq ID in as in the GICv2 specs. This is documented in Documentation/kvm/api.txt. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2013-01-23KVM: ARM: Initial skeleton to compile KVM supportChristoffer Dall
Targets KVM support for Cortex A-15 processors. Contains all the framework components, make files, header files, some tracing functionality, and basic user space API. Only supported core is Cortex-A15 for now. Most functionality is in arch/arm/kvm/* or arch/arm/include/asm/kvm_*.h. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>