Age | Commit message (Collapse) | Author |
|
Add a flag for mmap that will be used to request a huge page region that
will look like anonymous memory to user space. This is accomplished by
using a file on the internal vfsmount. MAP_HUGETLB is a modifier of
MAP_ANONYMOUS and so must be specified with it. The region will behave
the same as a MAP_ANONYMOUS region using small pages.
The patch also adds the MAP_STACK flag, which was previously defined only
on some architectures but not on others. Since MAP_STACK is meant to be a
hint only, architectures can define it without assigning a specific
meaning to it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: David Rientjes <rientjes@google.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
internal mount
This patchset adds a flag to mmap that allows the user to request that an
anonymous mapping be backed with huge pages. This mapping will borrow
functionality from the huge page shm code to create a file on the kernel
internal mount and use it to approximate an anonymous mapping. The
MAP_HUGETLB flag is a modifier to MAP_ANONYMOUS and will not work without
both flags being preset.
A new flag is necessary because there is no other way to hook into huge
pages without creating a file on a hugetlbfs mount which wouldn't be
MAP_ANONYMOUS.
To userspace, this mapping will behave just like an anonymous mapping
because the file is not accessible outside of the kernel.
This patchset is meant to simplify the programming model. Presently there
is a large chunk of boiler platecode, contained in libhugetlbfs, required
to create private, hugepage backed mappings. This patch set would allow
use of hugepages without linking to libhugetlbfs or having hugetblfs
mounted.
Unification of the VM code would provide these same benefits, but it has
been resisted each time that it has been suggested for several reasons: it
would break PAGE_SIZE assumptions across the kernel, it makes page-table
abstractions really expensive, and it does not provide any benefit on
architectures that do not support huge pages, incurring fast path
penalties without providing any benefit on these architectures.
This patch:
There are two means of creating mappings backed by huge pages:
1. mmap() a file created on hugetlbfs
2. Use shm which creates a file on an internal mount which essentially
maps it MAP_SHARED
The internal mount is only used for shared mappings but there is very
little that stops it being used for private mappings. This patch extends
hugetlbfs_file_setup() to deal with the creation of files that will be
mapped MAP_PRIVATE on the internal hugetlbfs mount. This extended API is
used in a subsequent patch to implement the MAP_HUGETLB mmap() flag.
Signed-off-by: Eric Munson <ebmunson@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
shmem_zero_setup() does not change vm_start, pgoff or vm_flags, only some
drivers change them (such as /driver/video/bfin-t350mcqb-fb.c).
Move these codes to a more proper place to save cycles for shared
anonymous mapping.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We noticed very erratic behavior [throughput] with the AIM7 shared
workload running on recent distro [SLES11] and mainline kernels on an
8-socket, 32-core, 256GB x86_64 platform. On the SLES11 kernel
[2.6.27.19+] with Barcelona processors, as we increased the load [10s of
thousands of tasks], the throughput would vary between two "plateaus"--one
at ~65K jobs per minute and one at ~130K jpm. The simple patch below
causes the results to smooth out at the ~130k plateau.
But wait, there's more:
We do not see this behavior on smaller platforms--e.g., 4 socket/8 core.
This could be the result of the larger number of cpus on the larger
platform--a scalability issue--or it could be the result of the larger
number of interconnect "hops" between some nodes in this platform and how
the tasks for a given load end up distributed over the nodes' cpus and
memories--a stochastic NUMA effect.
The variability in the results are less pronounced [on the same platform]
with Shanghai processors and with mainline kernels. With 31-rc6 on
Shanghai processors and 288 file systems on 288 fibre attached storage
volumes, the curves [jpm vs load] are both quite flat with the patched
kernel consistently producing ~3.9% better throughput [~80K jpm vs ~77K
jpm] than the unpatched kernel.
Profiling indicated that the "slow" runs were incurring high[er]
contention on an anon_vma lock in vma_adjust(), apparently called from the
sbrk() system call.
The patch:
A comment in mm/mmap.c:vma_adjust() suggests that we don't really need the
anon_vma lock when we're only adjusting the end of a vma, as is the case
for brk(). The comment questions whether it's worth while to optimize for
this case. Apparently, on the newer, larger x86_64 platforms, with
interesting NUMA topologies, it is worth while--especially considering
that the patch [if correct!] is quite simple.
We can detect this condition--no overlap with next vma--by noting a NULL
"importer". The anon_vma pointer will also be NULL in this case, so
simply avoid loading vma->anon_vma to avoid the lock.
However, we DO need to take the anon_vma lock when we're inserting a vma
['insert' non-NULL] even when we have no overlap [NULL "importer"], so we
need to check for 'insert', as well. And Hugh points out that we should
also take it when adjusting vm_start (so that rmap.c can rely upon
vma_address() while it holds the anon_vma lock).
akpm: Zhang Yanmin reprts a 150% throughput improvement with aim7, so it
might be -stable material even though thiss isn't a regression: "this
issue is not clear on dual socket Nehalem machine (2*4*2 cpu), but is
severe on large machine (4*8*2 cpu)"
[hugh.dickins@tiscali.co.uk: test vma start too]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Eric Whitney <eric.whitney@hp.com>
Tested-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CONFIG_SHMEM off gives you (ramfs masquerading as) tmpfs, even when
CONFIG_TMPFS is off: that's a little anomalous, and I'd intended to make
more sense of it by removing CONFIG_TMPFS altogether, always enabling its
code when CONFIG_SHMEM; but so many defconfigs have CONFIG_SHMEM on
CONFIG_TMPFS off that we'd better leave that as is.
But there is no point in asking for CONFIG_TMPFS if CONFIG_SHMEM is off:
make TMPFS depend on SHMEM, which also prevents TMPFS_POSIX_ACL
shmem_acl.o being pointlessly built into the kernel when SHMEM is off.
And a selfish change, to prevent the world from being rebuilt when I
switch between CONFIG_SHMEM on and off: the only CONFIG_SHMEM in the
header files is mm.h shmem_lock() - give that a shmem.c stub instead.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If (flags & MAP_LOCKED) is true, it means vm_flags has already contained
the bit VM_LOCKED which is set by calc_vm_flag_bits().
So there is no need to reset it again, just remove it.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move highest_memmap_pfn __read_mostly from page_alloc.c next to zero_pfn
__read_mostly in memory.c: to help them share a cacheline, since they're
very often tested together in vm_normal_page().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Reinstate anonymous use of ZERO_PAGE to all architectures, not just to
those which __HAVE_ARCH_PTE_SPECIAL: as suggested by Nick Piggin.
Contrary to how I'd imagined it, there's nothing ugly about this, just a
zero_pfn test built into one or another block of vm_normal_page().
But the MIPS ZERO_PAGE-of-many-colours case demands is_zero_pfn() and
my_zero_pfn() inlines. Reinstate its mremap move_pte() shuffling of
ZERO_PAGEs we did from 2.6.17 to 2.6.19? Not unless someone shouts for
that: it would have to take vm_flags to weed out some cases.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename hugetlbfs_backed() to hugetlbfs_pagecache_present()
and add more comments, as suggested by Mel Gorman.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I'm still reluctant to clutter __get_user_pages() with another flag, just
to avoid touching ZERO_PAGE count in mlock(); though we can add that later
if it shows up as an issue in practice.
But when mlocking, we can test page->mapping slightly earlier, to avoid
the potentially bouncy rescheduling of lock_page on ZERO_PAGE - mlock
didn't lock_page in olden ZERO_PAGE days, so we might have regressed.
And when munlocking, it turns out that FOLL_DUMP coincidentally does
what's needed to avoid all updates to ZERO_PAGE, so use that here also.
Plus add comment suggested by KAMEZAWA Hiroyuki.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__get_user_pages() has been taking its own GUP flags, then processing
them into FOLL flags for follow_page(). Though oddly named, the FOLL
flags are more widely used, so pass them to __get_user_pages() now.
Sorry, VM flags, VM_FAULT flags and FAULT_FLAGs are still distinct.
(The patch to __get_user_pages() looks peculiar, with both gup_flags
and foll_flags: the gup_flags remain constant; but as before there's
an exceptional case, out of scope of the patch, in which foll_flags
per page have FOLL_WRITE masked off.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KAMEZAWA Hiroyuki has observed customers of earlier kernels taking
advantage of the ZERO_PAGE: which we stopped do_anonymous_page() from
using in 2.6.24. And there were a couple of regression reports on LKML.
Following suggestions from Linus, reinstate do_anonymous_page() use of
the ZERO_PAGE; but this time avoid dirtying its struct page cacheline
with (map)count updates - let vm_normal_page() regard it as abnormal.
Use it only on arches which __HAVE_ARCH_PTE_SPECIAL (x86, s390, sh32,
most powerpc): that's not essential, but minimizes additional branches
(keeping them in the unlikely pte_special case); and incidentally
excludes mips (some models of which needed eight colours of ZERO_PAGE
to avoid costly exceptions).
Don't be fanatical about avoiding ZERO_PAGE updates: get_user_pages()
callers won't want to make exceptions for it, so increment its count
there. Changes to mlock and migration? happily seems not needed.
In most places it's quicker to check pfn than struct page address:
prepare a __read_mostly zero_pfn for that. Does get_dump_page()
still need its ZERO_PAGE check? probably not, but keep it anyway.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
do_anonymous_page() has been wrong to dirty the pte regardless.
If it's not going to mark the pte writable, then it won't help
to mark it dirty here, and clogs up memory with pages which will
need swap instead of being thrown away. Especially wrong if no
overcommit is chosen, and this vma is not yet VM_ACCOUNTed -
we could exceed the limit and OOM despite no overcommit.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: <stable@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
follow_hugetlb_page() shouldn't be guessing about the coredump case
either: pass the foll_flags down to it, instead of just the write bit.
Remove that obscure huge_zeropage_ok() test. The decision is easy,
though unlike the non-huge case - here vm_ops->fault is always set.
But we know that a fault would serve up zeroes, unless there's
already a hugetlbfs pagecache page to back the range.
(Alternatively, since hugetlb pages aren't swapped out under pressure,
you could save more dump space by arguing that a page not yet faulted
into this process cannot be relevant to the dump; but that would be
more surprising.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The "FOLL_ANON optimization" and its use_zero_page() test have caused
confusion and bugs: why does it test VM_SHARED? for the very good but
unsatisfying reason that VMware crashed without. As we look to maybe
reinstating anonymous use of the ZERO_PAGE, we need to sort this out.
Easily done: it's silly for __get_user_pages() and follow_page() to
be guessing whether it's safe to assume that they're being used for
a coredump (which can take a shortcut snapshot where other uses must
handle a fault) - just tell them with GUP_FLAGS_DUMP and FOLL_DUMP.
get_dump_page() doesn't even want a ZERO_PAGE: an error suits fine.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In preparation for the next patch, add a simple get_dump_page(addr)
interface for the CONFIG_ELF_CORE dumpers to use, instead of calling
get_user_pages() directly. They're not interested in errors: they
just want to use holes as much as possible, to save space and make
sure that the data is aligned where the headers said it would be.
Oh, and don't use that horrid DUMP_SEEK(off) macro!
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
GUP_FLAGS_IGNORE_VMA_PERMISSIONS and GUP_FLAGS_IGNORE_SIGKILL were
flags added solely to prevent __get_user_pages() from doing some of
what it usually does, in the munlock case: we can now remove them.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Hiroaki Wakabayashi points out that when mlock() has been interrupted
by SIGKILL, the subsequent munlock() takes unnecessarily long because
its use of __get_user_pages() insists on faulting in all the pages
which mlock() never reached.
It's worse than slowness if mlock() is terminated by Out Of Memory kill:
the munlock_vma_pages_all() in exit_mmap() insists on faulting in all the
pages which mlock() could not find memory for; so innocent bystanders are
killed too, and perhaps the system hangs.
__get_user_pages() does a lot that's silly for munlock(): so remove the
munlock option from __mlock_vma_pages_range(), and use a simple loop of
follow_page()s in munlock_vma_pages_range() instead; ignoring absent
pages, and not marking present pages as accessed or dirty.
(Change munlock() to only go so far as mlock() reached? That does not
work out, given the convention that mlock() claims complete success even
when it has to give up early - in part so that an underlying file can be
extended later, and those pages locked which earlier would give SIGBUS.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: <stable@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Hiroaki Wakabayashi <primulaelatior@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In Documentation/numastat.txt, it confused me. For example, there are
nodes [0,1] in system.
barrios:~$ cat /proc/zoneinfo | egrep 'numa|zone'
Node 0, zone DMA
numa_hit 33226
numa_miss 1739
numa_foreign 27978
..
..
Node 1, zone DMA
numa_hit 307
numa_miss 46900
numa_foreign 0
1) In node 0, NUMA_MISS means it wanted to allocate page
in node 1 but ended up with page in node 0
2) In node 0, NUMA_FOREIGN means it wanted to allocate page
in node 0 but ended up with page from Node 1.
But now, numastat explains it oppositely about (MISS, FOREIGN).
Let's fix up with viewpoint of zone.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When round-robin freeing pages from the PCP lists, empty lists may be
encountered. In the event one of the lists has more pages than another,
there may be numerous checks for list_empty() which is undesirable. This
patch maintains a count of pages to free which is incremented when empty
lists are encountered. The intention is that more pages will then be
freed from fuller lists than the empty ones reducing the number of empty
list checks in the free path.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Andrew Morton pointed out oom_adjust_write() has very strange EIO
and new line handling. this patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Current oom_kill doesn't only kill the victim process, but also kill all
thas shread the same mm. it mean vfork parent will be killed.
This is definitely incorrect. another process have another oom_adj. we
shouldn't ignore their oom_adj (it might have OOM_DISABLE).
following caller hit the minefield.
===============================
switch (constraint) {
case CONSTRAINT_MEMORY_POLICY:
oom_kill_process(current, gfp_mask, order, 0, NULL,
"No available memory (MPOL_BIND)");
break;
Note: force_sig(SIGKILL) send SIGKILL to all thread in the process.
We don't need to care multi thread in here.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
oom-killer kills a process, not task. Then oom_score should be calculated
as per-process too. it makes consistency more and makes speed up
select_bad_process().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, OOM logic callflow is here.
__out_of_memory()
select_bad_process() for each task
badness() calculate badness of one task
oom_kill_process() search child
oom_kill_task() kill target task and mm shared tasks with it
example, process-A have two thread, thread-A and thread-B and it have very
fat memory and each thread have following oom_adj and oom_score.
thread-A: oom_adj = OOM_DISABLE, oom_score = 0
thread-B: oom_adj = 0, oom_score = very-high
Then, select_bad_process() select thread-B, but oom_kill_task() refuse
kill the task because thread-A have OOM_DISABLE. Thus __out_of_memory()
call select_bad_process() again. but select_bad_process() select the same
task. It mean kernel fall in livelock.
The fact is, select_bad_process() must select killable task. otherwise
OOM logic go into livelock.
And root cause is, oom_adj shouldn't be per-thread value. it should be
per-process value because OOM-killer kill a process, not thread. Thus
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct signal_struct. it naturally prevent
select_bad_process() choose wrong task.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 084f71ae5c(kill page_queue_congested()) removed
page_queue_congested(). Remove the page_queue_congested() comment in
vmscan pageout() too.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in
which case shrink_list() _still_ calls isolate_pages() with the much
larger SWAP_CLUSTER_MAX. It effectively scales up the inactive list scan
rate by up to 32 times.
For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4.
So when shrink_zone() expects to scan 4 pages in the active/inactive list,
the active list will be scanned 4 pages, while the inactive list will be
(over) scanned SWAP_CLUSTER_MAX=32 pages in effect. And that could break
the balance between the two lists.
It can further impact the scan of anon active list, due to the anon
active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone():
inactive anon list over scanned => inactive_anon_is_low() == TRUE
=> shrink_active_list()
=> active anon list over scanned
So the end result may be
- anon inactive => over scanned
- anon active => over scanned (maybe not as much)
- file inactive => over scanned
- file active => under scanned (relatively)
The accesses to nr_saved_scan are not lock protected and so not 100%
accurate, however we can tolerate small errors and the resulted small
imbalanced scan rates between zones.
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The name `zone_nr_pages' can be mis-read as zone's (total) number pages,
but it actually returns zone's LRU list number pages.
Signed-off-by: Vincent Li <macli@brc.ubc.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is being done by allowing boot time allocations to specify that they
may want a sub-page sized amount of memory.
Overall this seems more consistent with the other hash table allocations,
and allows making two supposedly mm-only variables really mm-only
(nr_{kernel,all}_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since alloc_bootmem() will never return inaccessible (via virtual
addressing) memory anyway, using the ..._low() variant only makes sense
when the physical address range of the allocated memory must fulfill
further constraints, espacially since on 64-bits (or more generally in all
cases where the pools the two variants allocate from are than the full
available range.
Probably the use in alloc_tce_table() could also be eliminated (based on
code inspection of pci-calgary_64.c), but that seems too risky given I
know nothing about that hardware and have no way to test it.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
Some of the calculations (i.e. those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
In line with that, the memory hotplug code should update num_physpages in
a way that it retains its original (post-boot) meaning; in particular,
decreasing the value should at best be done with great care - this patch
doesn't try to ever decrease this value at all as it doesn't really seem
meaningful to do so.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After anti-fragmentation was merged, a bug was reported whereby devices
that depended on high-order atomic allocations were failing. The solution
was to preserve a property in the buddy allocator which tended to keep the
minimum number of free pages in the zone at the lower physical addresses
and contiguous. To preserve this property, MIGRATE_RESERVE was introduced
and a number of pageblocks at the start of a zone would be marked
"reserve", the number of which depended on min_free_kbytes.
Anti-fragmentation works by avoiding the mixing of page migratetypes
within the same pageblock. One way of helping this is to increase
min_free_kbytes because it becomes less like that it will be necessary to
place pages of of MIGRATE_RESERVE is unbounded, the free memory is kept
there in large contiguous blocks instead of helping anti-fragmentation as
much as it should. With the page-allocator tracepoint patches applied, it
was found during anti-fragmentation tests that the number of
fragmentation-related events were far higher than expected even with
min_free_kbytes at higher values.
This patch limits the number of MIGRATE_RESERVE blocks that exist per zone
to two. For example, with a sufficient min_free_kbytes, 4MB of memory
will be kept aside on an x86-64 and remain more or less free and
contiguous for the systems uptime. This should be sufficient for devices
depending on high-order atomic allocations while helping fragmentation
control when min_free_kbytes is tuned appropriately. As side-effect of
this patch is that the reserve variable is converted to int as unsigned
long was the wrong type to use when ensuring that only the required number
of reserve blocks are created.
With the patches applied, fragmentation-related events as measured by the
page allocator tracepoints were significantly reduced when running some
fragmentation stress-tests on systems with min_free_kbytes tuned to a
value appropriate for hugepage allocations at runtime. On x86, the events
recorded were reduced by 99.8%, on x86-64 by 99.72% and on ppc64 by
99.83%.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Enlighten the reader of this code about what reference count makes a page
cache page freeable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make page_has_private() return a true boolean value and remove the double
negations from the two callsites using it for arithmetic.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
page_is_file_cache() has been used for both boolean checks and LRU
arithmetic, which was always a bit weird.
Now that page_lru_base_type() exists for LRU arithmetic, make
page_is_file_cache() a real predicate function and adjust the
boolean-using callsites to drop those pesky double negations.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add
another helper with a more appropriate name and convert the non-boolean
users of page_is_file_cache() accordingly.
This new helper gives the LRU base type a page is supposed to live on,
inactive anon or inactive file.
[hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove double negations where the operand is already boolean.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kzalloc mempool zeros items when they are initially allocated, but
does not rezero used items that are returned to the pool. Consequently
mempool_alloc()s may return non-zeroed memory.
Since there are/were only two in-tree users for
mempool_create_kzalloc_pool(), and 'fixing' this in a way that will
re-zero used (but not new) items before first use is non-trivial, just
remove it.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kzalloc mempool does not re-zero items that have been used and then
returned to the pool. Manually zero the allocated multipath_bh instead.
Acked-by: Neil Brown <neilb@suse.de>
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix the following 'make includecheck' warning:
mm/nommu.c: internal.h is included more than once.
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix the following 'make includecheck' warning:
mm/shmem.c: linux/vfs.h is included more than once.
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
only the context which have set SWAP_HAS_CACHE flag by swapcache_prepare()
or get_swap_page() would call add_to_swap_cache(). So add_to_swap_cache()
doesn't return -EEXIST any more.
Even though it doesn't return -EEXIST, it's not good behavior conceptually
to call swapcache_prepare() in the -EEXIST case, because it means clearing
SWAP_HAS_CACHE flag while the entry is on swap cache.
This patch removes redundant codes and comments from callers of it, and
adds VM_BUG_ON() in error path of add_to_swap_cache() and some comments.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After commit 355cfa73 ("mm: modify swap_map and add SWAP_HAS_CACHE flag"),
read_swap_cache_async() will busy-wait while a entry doesn't exist in swap
cache but it has SWAP_HAS_CACHE flag.
Such entries can exist on add/delete path of swap cache. On add path,
add_to_swap_cache() is called soon after SWAP_HAS_CACHE flag is set, and
on delete path, swapcache_free() will be called (SWAP_HAS_CACHE flag is
cleared) soon after __delete_from_swap_cache() is called. So, the
busy-wait works well in most cases.
But this mechanism can cause soft lockup if add_to_swap_cache() sleeps and
read_swap_cache_async() tries to swap-in the same entry on the same cpu.
This patch calls radix_tree_preload() before swapcache_prepare() and
divides add_to_swap_cache() into two part: radix_tree_preload() part and
radix_tree_insert() part(define it as __add_to_swap_cache()).
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Knowing tracepoints exist is not quite the same as knowing what they
should be used for. This patch adds a document giving a basic description
of the kmem tracepoints and why they might be useful to a performance
analyst.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Ming Chun <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|