diff options
Diffstat (limited to 'net/ipv4/tcp_minisocks.c')
-rw-r--r-- | net/ipv4/tcp_minisocks.c | 1077 |
1 files changed, 1077 insertions, 0 deletions
diff --git a/net/ipv4/tcp_minisocks.c b/net/ipv4/tcp_minisocks.c new file mode 100644 index 00000000000..fd70509f0d5 --- /dev/null +++ b/net/ipv4/tcp_minisocks.c @@ -0,0 +1,1077 @@ +/* + * INET An implementation of the TCP/IP protocol suite for the LINUX + * operating system. INET is implemented using the BSD Socket + * interface as the means of communication with the user level. + * + * Implementation of the Transmission Control Protocol(TCP). + * + * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ + * + * Authors: Ross Biro, <bir7@leland.Stanford.Edu> + * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> + * Mark Evans, <evansmp@uhura.aston.ac.uk> + * Corey Minyard <wf-rch!minyard@relay.EU.net> + * Florian La Roche, <flla@stud.uni-sb.de> + * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> + * Linus Torvalds, <torvalds@cs.helsinki.fi> + * Alan Cox, <gw4pts@gw4pts.ampr.org> + * Matthew Dillon, <dillon@apollo.west.oic.com> + * Arnt Gulbrandsen, <agulbra@nvg.unit.no> + * Jorge Cwik, <jorge@laser.satlink.net> + */ + +#include <linux/config.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/sysctl.h> +#include <linux/workqueue.h> +#include <net/tcp.h> +#include <net/inet_common.h> +#include <net/xfrm.h> + +#ifdef CONFIG_SYSCTL +#define SYNC_INIT 0 /* let the user enable it */ +#else +#define SYNC_INIT 1 +#endif + +int sysctl_tcp_tw_recycle; +int sysctl_tcp_max_tw_buckets = NR_FILE*2; + +int sysctl_tcp_syncookies = SYNC_INIT; +int sysctl_tcp_abort_on_overflow; + +static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); + +static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) +{ + if (seq == s_win) + return 1; + if (after(end_seq, s_win) && before(seq, e_win)) + return 1; + return (seq == e_win && seq == end_seq); +} + +/* New-style handling of TIME_WAIT sockets. */ + +int tcp_tw_count; + + +/* Must be called with locally disabled BHs. */ +static void tcp_timewait_kill(struct tcp_tw_bucket *tw) +{ + struct tcp_ehash_bucket *ehead; + struct tcp_bind_hashbucket *bhead; + struct tcp_bind_bucket *tb; + + /* Unlink from established hashes. */ + ehead = &tcp_ehash[tw->tw_hashent]; + write_lock(&ehead->lock); + if (hlist_unhashed(&tw->tw_node)) { + write_unlock(&ehead->lock); + return; + } + __hlist_del(&tw->tw_node); + sk_node_init(&tw->tw_node); + write_unlock(&ehead->lock); + + /* Disassociate with bind bucket. */ + bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; + spin_lock(&bhead->lock); + tb = tw->tw_tb; + __hlist_del(&tw->tw_bind_node); + tw->tw_tb = NULL; + tcp_bucket_destroy(tb); + spin_unlock(&bhead->lock); + +#ifdef INET_REFCNT_DEBUG + if (atomic_read(&tw->tw_refcnt) != 1) { + printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, + atomic_read(&tw->tw_refcnt)); + } +#endif + tcp_tw_put(tw); +} + +/* + * * Main purpose of TIME-WAIT state is to close connection gracefully, + * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN + * (and, probably, tail of data) and one or more our ACKs are lost. + * * What is TIME-WAIT timeout? It is associated with maximal packet + * lifetime in the internet, which results in wrong conclusion, that + * it is set to catch "old duplicate segments" wandering out of their path. + * It is not quite correct. This timeout is calculated so that it exceeds + * maximal retransmission timeout enough to allow to lose one (or more) + * segments sent by peer and our ACKs. This time may be calculated from RTO. + * * When TIME-WAIT socket receives RST, it means that another end + * finally closed and we are allowed to kill TIME-WAIT too. + * * Second purpose of TIME-WAIT is catching old duplicate segments. + * Well, certainly it is pure paranoia, but if we load TIME-WAIT + * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. + * * If we invented some more clever way to catch duplicates + * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. + * + * The algorithm below is based on FORMAL INTERPRETATION of RFCs. + * When you compare it to RFCs, please, read section SEGMENT ARRIVES + * from the very beginning. + * + * NOTE. With recycling (and later with fin-wait-2) TW bucket + * is _not_ stateless. It means, that strictly speaking we must + * spinlock it. I do not want! Well, probability of misbehaviour + * is ridiculously low and, seems, we could use some mb() tricks + * to avoid misread sequence numbers, states etc. --ANK + */ +enum tcp_tw_status +tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, + struct tcphdr *th, unsigned len) +{ + struct tcp_options_received tmp_opt; + int paws_reject = 0; + + tmp_opt.saw_tstamp = 0; + if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { + tcp_parse_options(skb, &tmp_opt, 0); + + if (tmp_opt.saw_tstamp) { + tmp_opt.ts_recent = tw->tw_ts_recent; + tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; + paws_reject = tcp_paws_check(&tmp_opt, th->rst); + } + } + + if (tw->tw_substate == TCP_FIN_WAIT2) { + /* Just repeat all the checks of tcp_rcv_state_process() */ + + /* Out of window, send ACK */ + if (paws_reject || + !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, + tw->tw_rcv_nxt, + tw->tw_rcv_nxt + tw->tw_rcv_wnd)) + return TCP_TW_ACK; + + if (th->rst) + goto kill; + + if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) + goto kill_with_rst; + + /* Dup ACK? */ + if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || + TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { + tcp_tw_put(tw); + return TCP_TW_SUCCESS; + } + + /* New data or FIN. If new data arrive after half-duplex close, + * reset. + */ + if (!th->fin || + TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { +kill_with_rst: + tcp_tw_deschedule(tw); + tcp_tw_put(tw); + return TCP_TW_RST; + } + + /* FIN arrived, enter true time-wait state. */ + tw->tw_substate = TCP_TIME_WAIT; + tw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; + if (tmp_opt.saw_tstamp) { + tw->tw_ts_recent_stamp = xtime.tv_sec; + tw->tw_ts_recent = tmp_opt.rcv_tsval; + } + + /* I am shamed, but failed to make it more elegant. + * Yes, it is direct reference to IP, which is impossible + * to generalize to IPv6. Taking into account that IPv6 + * do not undertsnad recycling in any case, it not + * a big problem in practice. --ANK */ + if (tw->tw_family == AF_INET && + sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && + tcp_v4_tw_remember_stamp(tw)) + tcp_tw_schedule(tw, tw->tw_timeout); + else + tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); + return TCP_TW_ACK; + } + + /* + * Now real TIME-WAIT state. + * + * RFC 1122: + * "When a connection is [...] on TIME-WAIT state [...] + * [a TCP] MAY accept a new SYN from the remote TCP to + * reopen the connection directly, if it: + * + * (1) assigns its initial sequence number for the new + * connection to be larger than the largest sequence + * number it used on the previous connection incarnation, + * and + * + * (2) returns to TIME-WAIT state if the SYN turns out + * to be an old duplicate". + */ + + if (!paws_reject && + (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && + (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { + /* In window segment, it may be only reset or bare ack. */ + + if (th->rst) { + /* This is TIME_WAIT assasination, in two flavors. + * Oh well... nobody has a sufficient solution to this + * protocol bug yet. + */ + if (sysctl_tcp_rfc1337 == 0) { +kill: + tcp_tw_deschedule(tw); + tcp_tw_put(tw); + return TCP_TW_SUCCESS; + } + } + tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); + + if (tmp_opt.saw_tstamp) { + tw->tw_ts_recent = tmp_opt.rcv_tsval; + tw->tw_ts_recent_stamp = xtime.tv_sec; + } + + tcp_tw_put(tw); + return TCP_TW_SUCCESS; + } + + /* Out of window segment. + + All the segments are ACKed immediately. + + The only exception is new SYN. We accept it, if it is + not old duplicate and we are not in danger to be killed + by delayed old duplicates. RFC check is that it has + newer sequence number works at rates <40Mbit/sec. + However, if paws works, it is reliable AND even more, + we even may relax silly seq space cutoff. + + RED-PEN: we violate main RFC requirement, if this SYN will appear + old duplicate (i.e. we receive RST in reply to SYN-ACK), + we must return socket to time-wait state. It is not good, + but not fatal yet. + */ + + if (th->syn && !th->rst && !th->ack && !paws_reject && + (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || + (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { + u32 isn = tw->tw_snd_nxt + 65535 + 2; + if (isn == 0) + isn++; + TCP_SKB_CB(skb)->when = isn; + return TCP_TW_SYN; + } + + if (paws_reject) + NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); + + if(!th->rst) { + /* In this case we must reset the TIMEWAIT timer. + * + * If it is ACKless SYN it may be both old duplicate + * and new good SYN with random sequence number <rcv_nxt. + * Do not reschedule in the last case. + */ + if (paws_reject || th->ack) + tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); + + /* Send ACK. Note, we do not put the bucket, + * it will be released by caller. + */ + return TCP_TW_ACK; + } + tcp_tw_put(tw); + return TCP_TW_SUCCESS; +} + +/* Enter the time wait state. This is called with locally disabled BH. + * Essentially we whip up a timewait bucket, copy the + * relevant info into it from the SK, and mess with hash chains + * and list linkage. + */ +static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) +{ + struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; + struct tcp_bind_hashbucket *bhead; + + /* Step 1: Put TW into bind hash. Original socket stays there too. + Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in + binding cache, even if it is closed. + */ + bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; + spin_lock(&bhead->lock); + tw->tw_tb = tcp_sk(sk)->bind_hash; + BUG_TRAP(tcp_sk(sk)->bind_hash); + tw_add_bind_node(tw, &tw->tw_tb->owners); + spin_unlock(&bhead->lock); + + write_lock(&ehead->lock); + + /* Step 2: Remove SK from established hash. */ + if (__sk_del_node_init(sk)) + sock_prot_dec_use(sk->sk_prot); + + /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ + tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); + atomic_inc(&tw->tw_refcnt); + + write_unlock(&ehead->lock); +} + +/* + * Move a socket to time-wait or dead fin-wait-2 state. + */ +void tcp_time_wait(struct sock *sk, int state, int timeo) +{ + struct tcp_tw_bucket *tw = NULL; + struct tcp_sock *tp = tcp_sk(sk); + int recycle_ok = 0; + + if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) + recycle_ok = tp->af_specific->remember_stamp(sk); + + if (tcp_tw_count < sysctl_tcp_max_tw_buckets) + tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); + + if(tw != NULL) { + struct inet_sock *inet = inet_sk(sk); + int rto = (tp->rto<<2) - (tp->rto>>1); + + /* Give us an identity. */ + tw->tw_daddr = inet->daddr; + tw->tw_rcv_saddr = inet->rcv_saddr; + tw->tw_bound_dev_if = sk->sk_bound_dev_if; + tw->tw_num = inet->num; + tw->tw_state = TCP_TIME_WAIT; + tw->tw_substate = state; + tw->tw_sport = inet->sport; + tw->tw_dport = inet->dport; + tw->tw_family = sk->sk_family; + tw->tw_reuse = sk->sk_reuse; + tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; + atomic_set(&tw->tw_refcnt, 1); + + tw->tw_hashent = sk->sk_hashent; + tw->tw_rcv_nxt = tp->rcv_nxt; + tw->tw_snd_nxt = tp->snd_nxt; + tw->tw_rcv_wnd = tcp_receive_window(tp); + tw->tw_ts_recent = tp->rx_opt.ts_recent; + tw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; + tw_dead_node_init(tw); + +#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) + if (tw->tw_family == PF_INET6) { + struct ipv6_pinfo *np = inet6_sk(sk); + + ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); + ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); + tw->tw_v6_ipv6only = np->ipv6only; + } else { + memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); + memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); + tw->tw_v6_ipv6only = 0; + } +#endif + /* Linkage updates. */ + __tcp_tw_hashdance(sk, tw); + + /* Get the TIME_WAIT timeout firing. */ + if (timeo < rto) + timeo = rto; + + if (recycle_ok) { + tw->tw_timeout = rto; + } else { + tw->tw_timeout = TCP_TIMEWAIT_LEN; + if (state == TCP_TIME_WAIT) + timeo = TCP_TIMEWAIT_LEN; + } + + tcp_tw_schedule(tw, timeo); + tcp_tw_put(tw); + } else { + /* Sorry, if we're out of memory, just CLOSE this + * socket up. We've got bigger problems than + * non-graceful socket closings. + */ + if (net_ratelimit()) + printk(KERN_INFO "TCP: time wait bucket table overflow\n"); + } + + tcp_update_metrics(sk); + tcp_done(sk); +} + +/* Kill off TIME_WAIT sockets once their lifetime has expired. */ +static int tcp_tw_death_row_slot; + +static void tcp_twkill(unsigned long); + +/* TIME_WAIT reaping mechanism. */ +#define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */ +#define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) + +#define TCP_TWKILL_QUOTA 100 + +static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; +static DEFINE_SPINLOCK(tw_death_lock); +static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); +static void twkill_work(void *); +static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); +static u32 twkill_thread_slots; + +/* Returns non-zero if quota exceeded. */ +static int tcp_do_twkill_work(int slot, unsigned int quota) +{ + struct tcp_tw_bucket *tw; + struct hlist_node *node; + unsigned int killed; + int ret; + + /* NOTE: compare this to previous version where lock + * was released after detaching chain. It was racy, + * because tw buckets are scheduled in not serialized context + * in 2.3 (with netfilter), and with softnet it is common, because + * soft irqs are not sequenced. + */ + killed = 0; + ret = 0; +rescan: + tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { + __tw_del_dead_node(tw); + spin_unlock(&tw_death_lock); + tcp_timewait_kill(tw); + tcp_tw_put(tw); + killed++; + spin_lock(&tw_death_lock); + if (killed > quota) { + ret = 1; + break; + } + + /* While we dropped tw_death_lock, another cpu may have + * killed off the next TW bucket in the list, therefore + * do a fresh re-read of the hlist head node with the + * lock reacquired. We still use the hlist traversal + * macro in order to get the prefetches. + */ + goto rescan; + } + + tcp_tw_count -= killed; + NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); + + return ret; +} + +static void tcp_twkill(unsigned long dummy) +{ + int need_timer, ret; + + spin_lock(&tw_death_lock); + + if (tcp_tw_count == 0) + goto out; + + need_timer = 0; + ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); + if (ret) { + twkill_thread_slots |= (1 << tcp_tw_death_row_slot); + mb(); + schedule_work(&tcp_twkill_work); + need_timer = 1; + } else { + /* We purged the entire slot, anything left? */ + if (tcp_tw_count) + need_timer = 1; + } + tcp_tw_death_row_slot = + ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); + if (need_timer) + mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); +out: + spin_unlock(&tw_death_lock); +} + +extern void twkill_slots_invalid(void); + +static void twkill_work(void *dummy) +{ + int i; + + if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) + twkill_slots_invalid(); + + while (twkill_thread_slots) { + spin_lock_bh(&tw_death_lock); + for (i = 0; i < TCP_TWKILL_SLOTS; i++) { + if (!(twkill_thread_slots & (1 << i))) + continue; + + while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { + if (need_resched()) { + spin_unlock_bh(&tw_death_lock); + schedule(); + spin_lock_bh(&tw_death_lock); + } + } + + twkill_thread_slots &= ~(1 << i); + } + spin_unlock_bh(&tw_death_lock); + } +} + +/* These are always called from BH context. See callers in + * tcp_input.c to verify this. + */ + +/* This is for handling early-kills of TIME_WAIT sockets. */ +void tcp_tw_deschedule(struct tcp_tw_bucket *tw) +{ + spin_lock(&tw_death_lock); + if (tw_del_dead_node(tw)) { + tcp_tw_put(tw); + if (--tcp_tw_count == 0) + del_timer(&tcp_tw_timer); + } + spin_unlock(&tw_death_lock); + tcp_timewait_kill(tw); +} + +/* Short-time timewait calendar */ + +static int tcp_twcal_hand = -1; +static int tcp_twcal_jiffie; +static void tcp_twcal_tick(unsigned long); +static struct timer_list tcp_twcal_timer = + TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); +static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; + +static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) +{ + struct hlist_head *list; + int slot; + + /* timeout := RTO * 3.5 + * + * 3.5 = 1+2+0.5 to wait for two retransmits. + * + * RATIONALE: if FIN arrived and we entered TIME-WAIT state, + * our ACK acking that FIN can be lost. If N subsequent retransmitted + * FINs (or previous seqments) are lost (probability of such event + * is p^(N+1), where p is probability to lose single packet and + * time to detect the loss is about RTO*(2^N - 1) with exponential + * backoff). Normal timewait length is calculated so, that we + * waited at least for one retransmitted FIN (maximal RTO is 120sec). + * [ BTW Linux. following BSD, violates this requirement waiting + * only for 60sec, we should wait at least for 240 secs. + * Well, 240 consumes too much of resources 8) + * ] + * This interval is not reduced to catch old duplicate and + * responces to our wandering segments living for two MSLs. + * However, if we use PAWS to detect + * old duplicates, we can reduce the interval to bounds required + * by RTO, rather than MSL. So, if peer understands PAWS, we + * kill tw bucket after 3.5*RTO (it is important that this number + * is greater than TS tick!) and detect old duplicates with help + * of PAWS. + */ + slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; + + spin_lock(&tw_death_lock); + + /* Unlink it, if it was scheduled */ + if (tw_del_dead_node(tw)) + tcp_tw_count--; + else + atomic_inc(&tw->tw_refcnt); + + if (slot >= TCP_TW_RECYCLE_SLOTS) { + /* Schedule to slow timer */ + if (timeo >= TCP_TIMEWAIT_LEN) { + slot = TCP_TWKILL_SLOTS-1; + } else { + slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; + if (slot >= TCP_TWKILL_SLOTS) + slot = TCP_TWKILL_SLOTS-1; + } + tw->tw_ttd = jiffies + timeo; + slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); + list = &tcp_tw_death_row[slot]; + } else { + tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); + + if (tcp_twcal_hand < 0) { + tcp_twcal_hand = 0; + tcp_twcal_jiffie = jiffies; + tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); + add_timer(&tcp_twcal_timer); + } else { + if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) + mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); + slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); + } + list = &tcp_twcal_row[slot]; + } + + hlist_add_head(&tw->tw_death_node, list); + + if (tcp_tw_count++ == 0) + mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); + spin_unlock(&tw_death_lock); +} + +void tcp_twcal_tick(unsigned long dummy) +{ + int n, slot; + unsigned long j; + unsigned long now = jiffies; + int killed = 0; + int adv = 0; + + spin_lock(&tw_death_lock); + if (tcp_twcal_hand < 0) + goto out; + + slot = tcp_twcal_hand; + j = tcp_twcal_jiffie; + + for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { + if (time_before_eq(j, now)) { + struct hlist_node *node, *safe; + struct tcp_tw_bucket *tw; + + tw_for_each_inmate_safe(tw, node, safe, + &tcp_twcal_row[slot]) { + __tw_del_dead_node(tw); + tcp_timewait_kill(tw); + tcp_tw_put(tw); + killed++; + } + } else { + if (!adv) { + adv = 1; + tcp_twcal_jiffie = j; + tcp_twcal_hand = slot; + } + + if (!hlist_empty(&tcp_twcal_row[slot])) { + mod_timer(&tcp_twcal_timer, j); + goto out; + } + } + j += (1<<TCP_TW_RECYCLE_TICK); + slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); + } + tcp_twcal_hand = -1; + +out: + if ((tcp_tw_count -= killed) == 0) + del_timer(&tcp_tw_timer); + NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); + spin_unlock(&tw_death_lock); +} + +/* This is not only more efficient than what we used to do, it eliminates + * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM + * + * Actually, we could lots of memory writes here. tp of listening + * socket contains all necessary default parameters. + */ +struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) +{ + /* allocate the newsk from the same slab of the master sock, + * if not, at sk_free time we'll try to free it from the wrong + * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ + struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); + + if(newsk != NULL) { + struct tcp_sock *newtp; + struct sk_filter *filter; + + memcpy(newsk, sk, sizeof(struct tcp_sock)); + newsk->sk_state = TCP_SYN_RECV; + + /* SANITY */ + sk_node_init(&newsk->sk_node); + tcp_sk(newsk)->bind_hash = NULL; + + /* Clone the TCP header template */ + inet_sk(newsk)->dport = req->rmt_port; + + sock_lock_init(newsk); + bh_lock_sock(newsk); + + rwlock_init(&newsk->sk_dst_lock); + atomic_set(&newsk->sk_rmem_alloc, 0); + skb_queue_head_init(&newsk->sk_receive_queue); + atomic_set(&newsk->sk_wmem_alloc, 0); + skb_queue_head_init(&newsk->sk_write_queue); + atomic_set(&newsk->sk_omem_alloc, 0); + newsk->sk_wmem_queued = 0; + newsk->sk_forward_alloc = 0; + + sock_reset_flag(newsk, SOCK_DONE); + newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; + newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; + newsk->sk_send_head = NULL; + rwlock_init(&newsk->sk_callback_lock); + skb_queue_head_init(&newsk->sk_error_queue); + newsk->sk_write_space = sk_stream_write_space; + + if ((filter = newsk->sk_filter) != NULL) + sk_filter_charge(newsk, filter); + + if (unlikely(xfrm_sk_clone_policy(newsk))) { + /* It is still raw copy of parent, so invalidate + * destructor and make plain sk_free() */ + newsk->sk_destruct = NULL; + sk_free(newsk); + return NULL; + } + + /* Now setup tcp_sock */ + newtp = tcp_sk(newsk); + newtp->pred_flags = 0; + newtp->rcv_nxt = req->rcv_isn + 1; + newtp->snd_nxt = req->snt_isn + 1; + newtp->snd_una = req->snt_isn + 1; + newtp->snd_sml = req->snt_isn + 1; + + tcp_prequeue_init(newtp); + + tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); + + newtp->retransmits = 0; + newtp->backoff = 0; + newtp->srtt = 0; + newtp->mdev = TCP_TIMEOUT_INIT; + newtp->rto = TCP_TIMEOUT_INIT; + + newtp->packets_out = 0; + newtp->left_out = 0; + newtp->retrans_out = 0; + newtp->sacked_out = 0; + newtp->fackets_out = 0; + newtp->snd_ssthresh = 0x7fffffff; + + /* So many TCP implementations out there (incorrectly) count the + * initial SYN frame in their delayed-ACK and congestion control + * algorithms that we must have the following bandaid to talk + * efficiently to them. -DaveM + */ + newtp->snd_cwnd = 2; + newtp->snd_cwnd_cnt = 0; + + newtp->frto_counter = 0; + newtp->frto_highmark = 0; + + tcp_set_ca_state(newtp, TCP_CA_Open); + tcp_init_xmit_timers(newsk); + skb_queue_head_init(&newtp->out_of_order_queue); + newtp->rcv_wup = req->rcv_isn + 1; + newtp->write_seq = req->snt_isn + 1; + newtp->pushed_seq = newtp->write_seq; + newtp->copied_seq = req->rcv_isn + 1; + + newtp->rx_opt.saw_tstamp = 0; + + newtp->rx_opt.dsack = 0; + newtp->rx_opt.eff_sacks = 0; + + newtp->probes_out = 0; + newtp->rx_opt.num_sacks = 0; + newtp->urg_data = 0; + newtp->listen_opt = NULL; + newtp->accept_queue = newtp->accept_queue_tail = NULL; + /* Deinitialize syn_wait_lock to trap illegal accesses. */ + memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); + + /* Back to base struct sock members. */ + newsk->sk_err = 0; + newsk->sk_priority = 0; + atomic_set(&newsk->sk_refcnt, 2); +#ifdef INET_REFCNT_DEBUG + atomic_inc(&inet_sock_nr); +#endif + atomic_inc(&tcp_sockets_allocated); + + if (sock_flag(newsk, SOCK_KEEPOPEN)) + tcp_reset_keepalive_timer(newsk, + keepalive_time_when(newtp)); + newsk->sk_socket = NULL; + newsk->sk_sleep = NULL; + + newtp->rx_opt.tstamp_ok = req->tstamp_ok; + if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { + if (sysctl_tcp_fack) + newtp->rx_opt.sack_ok |= 2; + } + newtp->window_clamp = req->window_clamp; + newtp->rcv_ssthresh = req->rcv_wnd; + newtp->rcv_wnd = req->rcv_wnd; + newtp->rx_opt.wscale_ok = req->wscale_ok; + if (newtp->rx_opt.wscale_ok) { + newtp->rx_opt.snd_wscale = req->snd_wscale; + newtp->rx_opt.rcv_wscale = req->rcv_wscale; + } else { + newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; + newtp->window_clamp = min(newtp->window_clamp, 65535U); + } + newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; + newtp->max_window = newtp->snd_wnd; + + if (newtp->rx_opt.tstamp_ok) { + newtp->rx_opt.ts_recent = req->ts_recent; + newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; + newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; + } else { + newtp->rx_opt.ts_recent_stamp = 0; + newtp->tcp_header_len = sizeof(struct tcphdr); + } + if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) + newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; + newtp->rx_opt.mss_clamp = req->mss; + TCP_ECN_openreq_child(newtp, req); + if (newtp->ecn_flags&TCP_ECN_OK) + sock_set_flag(newsk, SOCK_NO_LARGESEND); + + tcp_ca_init(newtp); + + TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); + } + return newsk; +} + +/* + * Process an incoming packet for SYN_RECV sockets represented + * as an open_request. + */ + +struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, + struct open_request *req, + struct open_request **prev) +{ + struct tcphdr *th = skb->h.th; + struct tcp_sock *tp = tcp_sk(sk); + u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); + int paws_reject = 0; + struct tcp_options_received tmp_opt; + struct sock *child; + + tmp_opt.saw_tstamp = 0; + if (th->doff > (sizeof(struct tcphdr)>>2)) { + tcp_parse_options(skb, &tmp_opt, 0); + + if (tmp_opt.saw_tstamp) { + tmp_opt.ts_recent = req->ts_recent; + /* We do not store true stamp, but it is not required, + * it can be estimated (approximately) + * from another data. + */ + tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); + paws_reject = tcp_paws_check(&tmp_opt, th->rst); + } + } + + /* Check for pure retransmitted SYN. */ + if (TCP_SKB_CB(skb)->seq == req->rcv_isn && + flg == TCP_FLAG_SYN && + !paws_reject) { + /* + * RFC793 draws (Incorrectly! It was fixed in RFC1122) + * this case on figure 6 and figure 8, but formal + * protocol description says NOTHING. + * To be more exact, it says that we should send ACK, + * because this segment (at least, if it has no data) + * is out of window. + * + * CONCLUSION: RFC793 (even with RFC1122) DOES NOT + * describe SYN-RECV state. All the description + * is wrong, we cannot believe to it and should + * rely only on common sense and implementation + * experience. + * + * Enforce "SYN-ACK" according to figure 8, figure 6 + * of RFC793, fixed by RFC1122. + */ + req->class->rtx_syn_ack(sk, req, NULL); + return NULL; + } + + /* Further reproduces section "SEGMENT ARRIVES" + for state SYN-RECEIVED of RFC793. + It is broken, however, it does not work only + when SYNs are crossed. + + You would think that SYN crossing is impossible here, since + we should have a SYN_SENT socket (from connect()) on our end, + but this is not true if the crossed SYNs were sent to both + ends by a malicious third party. We must defend against this, + and to do that we first verify the ACK (as per RFC793, page + 36) and reset if it is invalid. Is this a true full defense? + To convince ourselves, let us consider a way in which the ACK + test can still pass in this 'malicious crossed SYNs' case. + Malicious sender sends identical SYNs (and thus identical sequence + numbers) to both A and B: + + A: gets SYN, seq=7 + B: gets SYN, seq=7 + + By our good fortune, both A and B select the same initial + send sequence number of seven :-) + + A: sends SYN|ACK, seq=7, ack_seq=8 + B: sends SYN|ACK, seq=7, ack_seq=8 + + So we are now A eating this SYN|ACK, ACK test passes. So + does sequence test, SYN is truncated, and thus we consider + it a bare ACK. + + If tp->defer_accept, we silently drop this bare ACK. Otherwise, + we create an established connection. Both ends (listening sockets) + accept the new incoming connection and try to talk to each other. 8-) + + Note: This case is both harmless, and rare. Possibility is about the + same as us discovering intelligent life on another plant tomorrow. + + But generally, we should (RFC lies!) to accept ACK + from SYNACK both here and in tcp_rcv_state_process(). + tcp_rcv_state_process() does not, hence, we do not too. + + Note that the case is absolutely generic: + we cannot optimize anything here without + violating protocol. All the checks must be made + before attempt to create socket. + */ + + /* RFC793 page 36: "If the connection is in any non-synchronized state ... + * and the incoming segment acknowledges something not yet + * sent (the segment carries an unaccaptable ACK) ... + * a reset is sent." + * + * Invalid ACK: reset will be sent by listening socket + */ + if ((flg & TCP_FLAG_ACK) && + (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) + return sk; + + /* Also, it would be not so bad idea to check rcv_tsecr, which + * is essentially ACK extension and too early or too late values + * should cause reset in unsynchronized states. + */ + + /* RFC793: "first check sequence number". */ + + if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, + req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { + /* Out of window: send ACK and drop. */ + if (!(flg & TCP_FLAG_RST)) + req->class->send_ack(skb, req); + if (paws_reject) + NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); + return NULL; + } + + /* In sequence, PAWS is OK. */ + + if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) + req->ts_recent = tmp_opt.rcv_tsval; + + if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { + /* Truncate SYN, it is out of window starting + at req->rcv_isn+1. */ + flg &= ~TCP_FLAG_SYN; + } + + /* RFC793: "second check the RST bit" and + * "fourth, check the SYN bit" + */ + if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) + goto embryonic_reset; + + /* ACK sequence verified above, just make sure ACK is + * set. If ACK not set, just silently drop the packet. + */ + if (!(flg & TCP_FLAG_ACK)) + return NULL; + + /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ + if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { + req->acked = 1; + return NULL; + } + + /* OK, ACK is valid, create big socket and + * feed this segment to it. It will repeat all + * the tests. THIS SEGMENT MUST MOVE SOCKET TO + * ESTABLISHED STATE. If it will be dropped after + * socket is created, wait for troubles. + */ + child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); + if (child == NULL) + goto listen_overflow; + + tcp_synq_unlink(tp, req, prev); + tcp_synq_removed(sk, req); + + tcp_acceptq_queue(sk, req, child); + return child; + + listen_overflow: + if (!sysctl_tcp_abort_on_overflow) { + req->acked = 1; + return NULL; + } + + embryonic_reset: + NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); + if (!(flg & TCP_FLAG_RST)) + req->class->send_reset(skb); + + tcp_synq_drop(sk, req, prev); + return NULL; +} + +/* + * Queue segment on the new socket if the new socket is active, + * otherwise we just shortcircuit this and continue with + * the new socket. + */ + +int tcp_child_process(struct sock *parent, struct sock *child, + struct sk_buff *skb) +{ + int ret = 0; + int state = child->sk_state; + + if (!sock_owned_by_user(child)) { + ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); + + /* Wakeup parent, send SIGIO */ + if (state == TCP_SYN_RECV && child->sk_state != state) + parent->sk_data_ready(parent, 0); + } else { + /* Alas, it is possible again, because we do lookup + * in main socket hash table and lock on listening + * socket does not protect us more. + */ + sk_add_backlog(child, skb); + } + + bh_unlock_sock(child); + sock_put(child); + return ret; +} + +EXPORT_SYMBOL(tcp_check_req); +EXPORT_SYMBOL(tcp_child_process); +EXPORT_SYMBOL(tcp_create_openreq_child); +EXPORT_SYMBOL(tcp_timewait_state_process); +EXPORT_SYMBOL(tcp_tw_deschedule); |