aboutsummaryrefslogtreecommitdiff
path: root/mm/slob.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slob.c')
-rw-r--r--mm/slob.c72
1 files changed, 55 insertions, 17 deletions
diff --git a/mm/slob.c b/mm/slob.c
index 06e5e725fab..b99b0ef2347 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -3,6 +3,8 @@
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
+ * NUMA support by Paul Mundt, 2007.
+ *
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
@@ -10,7 +12,7 @@
* allocator is as little as 2 bytes, however typically most architectures
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
*
- * The slob heap is a linked list of pages from __get_free_page, and
+ * The slob heap is a linked list of pages from alloc_pages(), and
* within each page, there is a singly-linked list of free blocks (slob_t).
* The heap is grown on demand and allocation from the heap is currently
* first-fit.
@@ -18,7 +20,7 @@
* Above this is an implementation of kmalloc/kfree. Blocks returned
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
- * __get_free_pages directly, allocating compound pages so the page order
+ * alloc_pages() directly, allocating compound pages so the page order
* does not have to be separately tracked, and also stores the exact
* allocation size in page->private so that it can be used to accurately
* provide ksize(). These objects are detected in kfree() because slob_page()
@@ -29,10 +31,23 @@
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
* case the low-level allocator will fragment blocks to create the proper
* alignment. Again, objects of page-size or greater are allocated by
- * calling __get_free_pages. As SLAB objects know their size, no separate
+ * calling alloc_pages(). As SLAB objects know their size, no separate
* size bookkeeping is necessary and there is essentially no allocation
* space overhead, and compound pages aren't needed for multi-page
* allocations.
+ *
+ * NUMA support in SLOB is fairly simplistic, pushing most of the real
+ * logic down to the page allocator, and simply doing the node accounting
+ * on the upper levels. In the event that a node id is explicitly
+ * provided, alloc_pages_node() with the specified node id is used
+ * instead. The common case (or when the node id isn't explicitly provided)
+ * will default to the current node, as per numa_node_id().
+ *
+ * Node aware pages are still inserted in to the global freelist, and
+ * these are scanned for by matching against the node id encoded in the
+ * page flags. As a result, block allocations that can be satisfied from
+ * the freelist will only be done so on pages residing on the same node,
+ * in order to prevent random node placement.
*/
#include <linux/kernel.h>
@@ -204,6 +219,23 @@ static int slob_last(slob_t *s)
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
+static void *slob_new_page(gfp_t gfp, int order, int node)
+{
+ void *page;
+
+#ifdef CONFIG_NUMA
+ if (node != -1)
+ page = alloc_pages_node(node, gfp, order);
+ else
+#endif
+ page = alloc_pages(gfp, order);
+
+ if (!page)
+ return NULL;
+
+ return page_address(page);
+}
+
/*
* Allocate a slob block within a given slob_page sp.
*/
@@ -258,7 +290,7 @@ static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
/*
* slob_alloc: entry point into the slob allocator.
*/
-static void *slob_alloc(size_t size, gfp_t gfp, int align)
+static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
struct slob_page *sp;
slob_t *b = NULL;
@@ -267,6 +299,15 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align)
spin_lock_irqsave(&slob_lock, flags);
/* Iterate through each partially free page, try to find room */
list_for_each_entry(sp, &free_slob_pages, list) {
+#ifdef CONFIG_NUMA
+ /*
+ * If there's a node specification, search for a partial
+ * page with a matching node id in the freelist.
+ */
+ if (node != -1 && page_to_nid(&sp->page) != node)
+ continue;
+#endif
+
if (sp->units >= SLOB_UNITS(size)) {
b = slob_page_alloc(sp, size, align);
if (b)
@@ -277,7 +318,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align)
/* Not enough space: must allocate a new page */
if (!b) {
- b = (slob_t *)__get_free_page(gfp);
+ b = slob_new_page(gfp, 0, node);
if (!b)
return 0;
sp = (struct slob_page *)virt_to_page(b);
@@ -381,22 +422,20 @@ out:
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
#endif
-
-void *__kmalloc(size_t size, gfp_t gfp)
+void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
if (size < PAGE_SIZE - align) {
unsigned int *m;
- m = slob_alloc(size + align, gfp, align);
+ m = slob_alloc(size + align, gfp, align, node);
if (m)
*m = size;
return (void *)m + align;
} else {
void *ret;
- ret = (void *) __get_free_pages(gfp | __GFP_COMP,
- get_order(size));
+ ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
if (ret) {
struct page *page;
page = virt_to_page(ret);
@@ -405,7 +444,7 @@ void *__kmalloc(size_t size, gfp_t gfp)
return ret;
}
}
-EXPORT_SYMBOL(__kmalloc);
+EXPORT_SYMBOL(__kmalloc_node);
/**
* krealloc - reallocate memory. The contents will remain unchanged.
@@ -455,7 +494,6 @@ void kfree(const void *block)
} else
put_page(&sp->page);
}
-
EXPORT_SYMBOL(kfree);
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
@@ -487,7 +525,7 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
{
struct kmem_cache *c;
- c = slob_alloc(sizeof(struct kmem_cache), flags, 0);
+ c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1);
if (c) {
c->name = name;
@@ -517,21 +555,21 @@ void kmem_cache_destroy(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_destroy);
-void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
+void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
if (c->size < PAGE_SIZE)
- b = slob_alloc(c->size, flags, c->align);
+ b = slob_alloc(c->size, flags, c->align, node);
else
- b = (void *)__get_free_pages(flags, get_order(c->size));
+ b = slob_new_page(flags, get_order(c->size), node);
if (c->ctor)
c->ctor(b, c, 0);
return b;
}
-EXPORT_SYMBOL(kmem_cache_alloc);
+EXPORT_SYMBOL(kmem_cache_alloc_node);
void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags)
{