aboutsummaryrefslogtreecommitdiff
path: root/mm/slob.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slob.c')
-rw-r--r--mm/slob.c586
1 files changed, 390 insertions, 196 deletions
diff --git a/mm/slob.c b/mm/slob.c
index 71976c5d40d..c89ef116d7a 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -3,57 +3,159 @@
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
+ * NUMA support by Paul Mundt, 2007.
+ *
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
* support for returning aligned objects. The granularity of this
- * allocator is 8 bytes on x86, though it's perhaps possible to reduce
- * this to 4 if it's deemed worth the effort. The slob heap is a
- * singly-linked list of pages from __get_free_page, grown on demand
- * and allocation from the heap is currently first-fit.
+ * allocator is as little as 2 bytes, however typically most architectures
+ * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
+ *
+ * The slob heap is a linked list of pages from alloc_pages(), and
+ * within each page, there is a singly-linked list of free blocks (slob_t).
+ * The heap is grown on demand and allocation from the heap is currently
+ * first-fit.
*
* Above this is an implementation of kmalloc/kfree. Blocks returned
- * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
+ * from kmalloc are prepended with a 4-byte header with the kmalloc size.
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
- * __get_free_pages directly so that it can return page-aligned blocks
- * and keeps a linked list of such pages and their orders. These
- * objects are detected in kfree() by their page alignment.
+ * alloc_pages() directly, allocating compound pages so the page order
+ * does not have to be separately tracked, and also stores the exact
+ * allocation size in page->private so that it can be used to accurately
+ * provide ksize(). These objects are detected in kfree() because slob_page()
+ * is false for them.
*
* SLAB is emulated on top of SLOB by simply calling constructors and
- * destructors for every SLAB allocation. Objects are returned with
- * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is
- * set, in which case the low-level allocator will fragment blocks to
- * create the proper alignment. Again, objects of page-size or greater
- * are allocated by calling __get_free_pages. As SLAB objects know
- * their size, no separate size bookkeeping is necessary and there is
- * essentially no allocation space overhead.
+ * destructors for every SLAB allocation. Objects are returned with the
+ * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
+ * case the low-level allocator will fragment blocks to create the proper
+ * alignment. Again, objects of page-size or greater are allocated by
+ * calling alloc_pages(). As SLAB objects know their size, no separate
+ * size bookkeeping is necessary and there is essentially no allocation
+ * space overhead, and compound pages aren't needed for multi-page
+ * allocations.
+ *
+ * NUMA support in SLOB is fairly simplistic, pushing most of the real
+ * logic down to the page allocator, and simply doing the node accounting
+ * on the upper levels. In the event that a node id is explicitly
+ * provided, alloc_pages_node() with the specified node id is used
+ * instead. The common case (or when the node id isn't explicitly provided)
+ * will default to the current node, as per numa_node_id().
+ *
+ * Node aware pages are still inserted in to the global freelist, and
+ * these are scanned for by matching against the node id encoded in the
+ * page flags. As a result, block allocations that can be satisfied from
+ * the freelist will only be done so on pages residing on the same node,
+ * in order to prevent random node placement.
*/
+#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/module.h>
-#include <linux/timer.h>
#include <linux/rcupdate.h>
+#include <linux/list.h>
+#include <asm/atomic.h>
+
+/*
+ * slob_block has a field 'units', which indicates size of block if +ve,
+ * or offset of next block if -ve (in SLOB_UNITs).
+ *
+ * Free blocks of size 1 unit simply contain the offset of the next block.
+ * Those with larger size contain their size in the first SLOB_UNIT of
+ * memory, and the offset of the next free block in the second SLOB_UNIT.
+ */
+#if PAGE_SIZE <= (32767 * 2)
+typedef s16 slobidx_t;
+#else
+typedef s32 slobidx_t;
+#endif
struct slob_block {
- int units;
- struct slob_block *next;
+ slobidx_t units;
};
typedef struct slob_block slob_t;
+/*
+ * We use struct page fields to manage some slob allocation aspects,
+ * however to avoid the horrible mess in include/linux/mm_types.h, we'll
+ * just define our own struct page type variant here.
+ */
+struct slob_page {
+ union {
+ struct {
+ unsigned long flags; /* mandatory */
+ atomic_t _count; /* mandatory */
+ slobidx_t units; /* free units left in page */
+ unsigned long pad[2];
+ slob_t *free; /* first free slob_t in page */
+ struct list_head list; /* linked list of free pages */
+ };
+ struct page page;
+ };
+};
+static inline void struct_slob_page_wrong_size(void)
+{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
+
+/*
+ * free_slob_page: call before a slob_page is returned to the page allocator.
+ */
+static inline void free_slob_page(struct slob_page *sp)
+{
+ reset_page_mapcount(&sp->page);
+ sp->page.mapping = NULL;
+}
+
+/*
+ * All (partially) free slob pages go on this list.
+ */
+static LIST_HEAD(free_slob_pages);
+
+/*
+ * slob_page: True for all slob pages (false for bigblock pages)
+ */
+static inline int slob_page(struct slob_page *sp)
+{
+ return test_bit(PG_active, &sp->flags);
+}
+
+static inline void set_slob_page(struct slob_page *sp)
+{
+ __set_bit(PG_active, &sp->flags);
+}
+
+static inline void clear_slob_page(struct slob_page *sp)
+{
+ __clear_bit(PG_active, &sp->flags);
+}
+
+/*
+ * slob_page_free: true for pages on free_slob_pages list.
+ */
+static inline int slob_page_free(struct slob_page *sp)
+{
+ return test_bit(PG_private, &sp->flags);
+}
+
+static inline void set_slob_page_free(struct slob_page *sp)
+{
+ list_add(&sp->list, &free_slob_pages);
+ __set_bit(PG_private, &sp->flags);
+}
+
+static inline void clear_slob_page_free(struct slob_page *sp)
+{
+ list_del(&sp->list);
+ __clear_bit(PG_private, &sp->flags);
+}
+
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
#define SLOB_ALIGN L1_CACHE_BYTES
-struct bigblock {
- int order;
- void *pages;
- struct bigblock *next;
-};
-typedef struct bigblock bigblock_t;
-
/*
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
* were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
@@ -64,215 +166,321 @@ struct slob_rcu {
int size;
};
-static slob_t arena = { .next = &arena, .units = 1 };
-static slob_t *slobfree = &arena;
-static bigblock_t *bigblocks;
+/*
+ * slob_lock protects all slob allocator structures.
+ */
static DEFINE_SPINLOCK(slob_lock);
-static DEFINE_SPINLOCK(block_lock);
-static void slob_free(void *b, int size);
-static void slob_timer_cbk(void);
+/*
+ * Encode the given size and next info into a free slob block s.
+ */
+static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
+{
+ slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
+ slobidx_t offset = next - base;
+
+ if (size > 1) {
+ s[0].units = size;
+ s[1].units = offset;
+ } else
+ s[0].units = -offset;
+}
+
+/*
+ * Return the size of a slob block.
+ */
+static slobidx_t slob_units(slob_t *s)
+{
+ if (s->units > 0)
+ return s->units;
+ return 1;
+}
+
+/*
+ * Return the next free slob block pointer after this one.
+ */
+static slob_t *slob_next(slob_t *s)
+{
+ slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
+ slobidx_t next;
+
+ if (s[0].units < 0)
+ next = -s[0].units;
+ else
+ next = s[1].units;
+ return base+next;
+}
+/*
+ * Returns true if s is the last free block in its page.
+ */
+static int slob_last(slob_t *s)
+{
+ return !((unsigned long)slob_next(s) & ~PAGE_MASK);
+}
-static void *slob_alloc(size_t size, gfp_t gfp, int align)
+static void *slob_new_page(gfp_t gfp, int order, int node)
+{
+ void *page;
+
+#ifdef CONFIG_NUMA
+ if (node != -1)
+ page = alloc_pages_node(node, gfp, order);
+ else
+#endif
+ page = alloc_pages(gfp, order);
+
+ if (!page)
+ return NULL;
+
+ return page_address(page);
+}
+
+/*
+ * Allocate a slob block within a given slob_page sp.
+ */
+static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
{
slob_t *prev, *cur, *aligned = 0;
int delta = 0, units = SLOB_UNITS(size);
- unsigned long flags;
- spin_lock_irqsave(&slob_lock, flags);
- prev = slobfree;
- for (cur = prev->next; ; prev = cur, cur = cur->next) {
+ for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
+ slobidx_t avail = slob_units(cur);
+
if (align) {
aligned = (slob_t *)ALIGN((unsigned long)cur, align);
delta = aligned - cur;
}
- if (cur->units >= units + delta) { /* room enough? */
+ if (avail >= units + delta) { /* room enough? */
+ slob_t *next;
+
if (delta) { /* need to fragment head to align? */
- aligned->units = cur->units - delta;
- aligned->next = cur->next;
- cur->next = aligned;
- cur->units = delta;
+ next = slob_next(cur);
+ set_slob(aligned, avail - delta, next);
+ set_slob(cur, delta, aligned);
prev = cur;
cur = aligned;
+ avail = slob_units(cur);
}
- if (cur->units == units) /* exact fit? */
- prev->next = cur->next; /* unlink */
- else { /* fragment */
- prev->next = cur + units;
- prev->next->units = cur->units - units;
- prev->next->next = cur->next;
- cur->units = units;
+ next = slob_next(cur);
+ if (avail == units) { /* exact fit? unlink. */
+ if (prev)
+ set_slob(prev, slob_units(prev), next);
+ else
+ sp->free = next;
+ } else { /* fragment */
+ if (prev)
+ set_slob(prev, slob_units(prev), cur + units);
+ else
+ sp->free = cur + units;
+ set_slob(cur + units, avail - units, next);
}
- slobfree = prev;
- spin_unlock_irqrestore(&slob_lock, flags);
+ sp->units -= units;
+ if (!sp->units)
+ clear_slob_page_free(sp);
return cur;
}
- if (cur == slobfree) {
- spin_unlock_irqrestore(&slob_lock, flags);
-
- if (size == PAGE_SIZE) /* trying to shrink arena? */
- return 0;
+ if (slob_last(cur))
+ return NULL;
+ }
+}
- cur = (slob_t *)__get_free_page(gfp);
- if (!cur)
- return 0;
+/*
+ * slob_alloc: entry point into the slob allocator.
+ */
+static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
+{
+ struct slob_page *sp;
+ slob_t *b = NULL;
+ unsigned long flags;
- slob_free(cur, PAGE_SIZE);
- spin_lock_irqsave(&slob_lock, flags);
- cur = slobfree;
+ spin_lock_irqsave(&slob_lock, flags);
+ /* Iterate through each partially free page, try to find room */
+ list_for_each_entry(sp, &free_slob_pages, list) {
+#ifdef CONFIG_NUMA
+ /*
+ * If there's a node specification, search for a partial
+ * page with a matching node id in the freelist.
+ */
+ if (node != -1 && page_to_nid(&sp->page) != node)
+ continue;
+#endif
+
+ if (sp->units >= SLOB_UNITS(size)) {
+ b = slob_page_alloc(sp, size, align);
+ if (b)
+ break;
}
}
+ spin_unlock_irqrestore(&slob_lock, flags);
+
+ /* Not enough space: must allocate a new page */
+ if (!b) {
+ b = slob_new_page(gfp, 0, node);
+ if (!b)
+ return 0;
+ sp = (struct slob_page *)virt_to_page(b);
+ set_slob_page(sp);
+
+ spin_lock_irqsave(&slob_lock, flags);
+ sp->units = SLOB_UNITS(PAGE_SIZE);
+ sp->free = b;
+ INIT_LIST_HEAD(&sp->list);
+ set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
+ set_slob_page_free(sp);
+ b = slob_page_alloc(sp, size, align);
+ BUG_ON(!b);
+ spin_unlock_irqrestore(&slob_lock, flags);
+ }
+ if (unlikely((gfp & __GFP_ZERO) && b))
+ memset(b, 0, size);
+ return b;
}
+/*
+ * slob_free: entry point into the slob allocator.
+ */
static void slob_free(void *block, int size)
{
- slob_t *cur, *b = (slob_t *)block;
+ struct slob_page *sp;
+ slob_t *prev, *next, *b = (slob_t *)block;
+ slobidx_t units;
unsigned long flags;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return;
+ BUG_ON(!size);
- if (size)
- b->units = SLOB_UNITS(size);
+ sp = (struct slob_page *)virt_to_page(block);
+ units = SLOB_UNITS(size);
- /* Find reinsertion point */
spin_lock_irqsave(&slob_lock, flags);
- for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next)
- if (cur >= cur->next && (b > cur || b < cur->next))
- break;
-
- if (b + b->units == cur->next) {
- b->units += cur->next->units;
- b->next = cur->next->next;
- } else
- b->next = cur->next;
-
- if (cur + cur->units == b) {
- cur->units += b->units;
- cur->next = b->next;
- } else
- cur->next = b;
- slobfree = cur;
-
- spin_unlock_irqrestore(&slob_lock, flags);
-}
-
-void *__kmalloc(size_t size, gfp_t gfp)
-{
- slob_t *m;
- bigblock_t *bb;
- unsigned long flags;
+ if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
+ /* Go directly to page allocator. Do not pass slob allocator */
+ if (slob_page_free(sp))
+ clear_slob_page_free(sp);
+ clear_slob_page(sp);
+ free_slob_page(sp);
+ free_page((unsigned long)b);
+ goto out;
+ }
- if (size < PAGE_SIZE - SLOB_UNIT) {
- m = slob_alloc(size + SLOB_UNIT, gfp, 0);
- return m ? (void *)(m + 1) : 0;
+ if (!slob_page_free(sp)) {
+ /* This slob page is about to become partially free. Easy! */
+ sp->units = units;
+ sp->free = b;
+ set_slob(b, units,
+ (void *)((unsigned long)(b +
+ SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
+ set_slob_page_free(sp);
+ goto out;
}
- bb = slob_alloc(sizeof(bigblock_t), gfp, 0);
- if (!bb)
- return 0;
+ /*
+ * Otherwise the page is already partially free, so find reinsertion
+ * point.
+ */
+ sp->units += units;
- bb->order = get_order(size);
- bb->pages = (void *)__get_free_pages(gfp, bb->order);
+ if (b < sp->free) {
+ set_slob(b, units, sp->free);
+ sp->free = b;
+ } else {
+ prev = sp->free;
+ next = slob_next(prev);
+ while (b > next) {
+ prev = next;
+ next = slob_next(prev);
+ }
- if (bb->pages) {
- spin_lock_irqsave(&block_lock, flags);
- bb->next = bigblocks;
- bigblocks = bb;
- spin_unlock_irqrestore(&block_lock, flags);
- return bb->pages;
+ if (!slob_last(prev) && b + units == next) {
+ units += slob_units(next);
+ set_slob(b, units, slob_next(next));
+ } else
+ set_slob(b, units, next);
+
+ if (prev + slob_units(prev) == b) {
+ units = slob_units(b) + slob_units(prev);
+ set_slob(prev, units, slob_next(b));
+ } else
+ set_slob(prev, slob_units(prev), b);
}
-
- slob_free(bb, sizeof(bigblock_t));
- return 0;
+out:
+ spin_unlock_irqrestore(&slob_lock, flags);
}
-EXPORT_SYMBOL(__kmalloc);
-/**
- * krealloc - reallocate memory. The contents will remain unchanged.
- *
- * @p: object to reallocate memory for.
- * @new_size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * The contents of the object pointed to are preserved up to the
- * lesser of the new and old sizes. If @p is %NULL, krealloc()
- * behaves exactly like kmalloc(). If @size is 0 and @p is not a
- * %NULL pointer, the object pointed to is freed.
+/*
+ * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
-void *krealloc(const void *p, size_t new_size, gfp_t flags)
+
+#ifndef ARCH_KMALLOC_MINALIGN
+#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
+#endif
+
+#ifndef ARCH_SLAB_MINALIGN
+#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
+#endif
+
+void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
- void *ret;
+ unsigned int *m;
+ int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
- if (unlikely(!p))
- return kmalloc_track_caller(new_size, flags);
+ if (size < PAGE_SIZE - align) {
+ if (!size)
+ return ZERO_SIZE_PTR;
- if (unlikely(!new_size)) {
- kfree(p);
- return NULL;
- }
+ m = slob_alloc(size + align, gfp, align, node);
+ if (m)
+ *m = size;
+ return (void *)m + align;
+ } else {
+ void *ret;
- ret = kmalloc_track_caller(new_size, flags);
- if (ret) {
- memcpy(ret, p, min(new_size, ksize(p)));
- kfree(p);
+ ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
+ if (ret) {
+ struct page *page;
+ page = virt_to_page(ret);
+ page->private = size;
+ }
+ return ret;
}
- return ret;
}
-EXPORT_SYMBOL(krealloc);
+EXPORT_SYMBOL(__kmalloc_node);
void kfree(const void *block)
{
- bigblock_t *bb, **last = &bigblocks;
- unsigned long flags;
+ struct slob_page *sp;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return;
- if (!((unsigned long)block & (PAGE_SIZE-1))) {
- /* might be on the big block list */
- spin_lock_irqsave(&block_lock, flags);
- for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) {
- if (bb->pages == block) {
- *last = bb->next;
- spin_unlock_irqrestore(&block_lock, flags);
- free_pages((unsigned long)block, bb->order);
- slob_free(bb, sizeof(bigblock_t));
- return;
- }
- }
- spin_unlock_irqrestore(&block_lock, flags);
- }
-
- slob_free((slob_t *)block - 1, 0);
- return;
+ sp = (struct slob_page *)virt_to_page(block);
+ if (slob_page(sp)) {
+ int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
+ unsigned int *m = (unsigned int *)(block - align);
+ slob_free(m, *m + align);
+ } else
+ put_page(&sp->page);
}
-
EXPORT_SYMBOL(kfree);
+/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
{
- bigblock_t *bb;
- unsigned long flags;
+ struct slob_page *sp;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return 0;
- if (!((unsigned long)block & (PAGE_SIZE-1))) {
- spin_lock_irqsave(&block_lock, flags);
- for (bb = bigblocks; bb; bb = bb->next)
- if (bb->pages == block) {
- spin_unlock_irqrestore(&slob_lock, flags);
- return PAGE_SIZE << bb->order;
- }
- spin_unlock_irqrestore(&block_lock, flags);
- }
-
- return ((slob_t *)block - 1)->units * SLOB_UNIT;
+ sp = (struct slob_page *)virt_to_page(block);
+ if (slob_page(sp))
+ return ((slob_t *)block - 1)->units + SLOB_UNIT;
+ else
+ return sp->page.private;
}
struct kmem_cache {
@@ -289,7 +497,7 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
{
struct kmem_cache *c;
- c = slob_alloc(sizeof(struct kmem_cache), flags, 0);
+ c = slob_alloc(sizeof(struct kmem_cache), flags, 0, -1);
if (c) {
c->name = name;
@@ -302,6 +510,8 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
c->ctor = ctor;
/* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
+ if (c->align < ARCH_SLAB_MINALIGN)
+ c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
} else if (flags & SLAB_PANIC)
@@ -317,31 +527,21 @@ void kmem_cache_destroy(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_destroy);
-void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
+void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
if (c->size < PAGE_SIZE)
- b = slob_alloc(c->size, flags, c->align);
+ b = slob_alloc(c->size, flags, c->align, node);
else
- b = (void *)__get_free_pages(flags, get_order(c->size));
+ b = slob_new_page(flags, get_order(c->size), node);
if (c->ctor)
c->ctor(b, c, 0);
return b;
}
-EXPORT_SYMBOL(kmem_cache_alloc);
-
-void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags)
-{
- void *ret = kmem_cache_alloc(c, flags);
- if (ret)
- memset(ret, 0, c->size);
-
- return ret;
-}
-EXPORT_SYMBOL(kmem_cache_zalloc);
+EXPORT_SYMBOL(kmem_cache_alloc_node);
static void __kmem_cache_free(void *b, int size)
{
@@ -385,9 +585,6 @@ const char *kmem_cache_name(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_name);
-static struct timer_list slob_timer = TIMER_INITIALIZER(
- (void (*)(unsigned long))slob_timer_cbk, 0, 0);
-
int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
@@ -399,17 +596,14 @@ int kmem_ptr_validate(struct kmem_cache *a, const void *b)
return 0;
}
-void __init kmem_cache_init(void)
+static unsigned int slob_ready __read_mostly;
+
+int slab_is_available(void)
{
- slob_timer_cbk();
+ return slob_ready;
}
-static void slob_timer_cbk(void)
+void __init kmem_cache_init(void)
{
- void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1);
-
- if (p)
- free_page((unsigned long)p);
-
- mod_timer(&slob_timer, jiffies + HZ);
+ slob_ready = 1;
}