diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/rcutree.c | 16 | ||||
-rw-r--r-- | kernel/rcutree.h | 5 | ||||
-rw-r--r-- | kernel/rcutree_plugin.h | 296 | ||||
-rw-r--r-- | kernel/time/Kconfig | 27 |
4 files changed, 337 insertions, 7 deletions
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 7b5be56d95a..eca70f4469c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c @@ -734,6 +734,7 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp, bool *isidle, unsigned long *maxj) { rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); + rcu_sysidle_check_cpu(rdp, isidle, maxj); return (rdp->dynticks_snap & 0x1) == 0; } @@ -1373,11 +1374,17 @@ int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) rsp->n_force_qs++; if (fqs_state == RCU_SAVE_DYNTICK) { /* Collect dyntick-idle snapshots. */ + if (is_sysidle_rcu_state(rsp)) { + isidle = 1; + maxj = jiffies - ULONG_MAX / 4; + } force_qs_rnp(rsp, dyntick_save_progress_counter, &isidle, &maxj); + rcu_sysidle_report_gp(rsp, isidle, maxj); fqs_state = RCU_FORCE_QS; } else { /* Handle dyntick-idle and offline CPUs. */ + isidle = 0; force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); } /* Clear flag to prevent immediate re-entry. */ @@ -2103,9 +2110,12 @@ static void force_qs_rnp(struct rcu_state *rsp, cpu = rnp->grplo; bit = 1; for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { - if ((rnp->qsmask & bit) != 0 && - f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) - mask |= bit; + if ((rnp->qsmask & bit) != 0) { + if ((rnp->qsmaskinit & bit) != 0) + *isidle = 0; + if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) + mask |= bit; + } } if (mask != 0) { diff --git a/kernel/rcutree.h b/kernel/rcutree.h index 9dd8b177f1a..6fd3659cf01 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h @@ -555,6 +555,11 @@ static void rcu_kick_nohz_cpu(int cpu); static bool init_nocb_callback_list(struct rcu_data *rdp); static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq); static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq); +static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, + unsigned long *maxj); +static bool is_sysidle_rcu_state(struct rcu_state *rsp); +static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, + unsigned long maxj); static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp); #endif /* #ifndef RCU_TREE_NONCORE */ diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index a7419ceb19a..45ebba747af 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h @@ -28,7 +28,7 @@ #include <linux/gfp.h> #include <linux/oom.h> #include <linux/smpboot.h> -#include <linux/tick.h> +#include "time/tick-internal.h" #define RCU_KTHREAD_PRIO 1 @@ -2382,12 +2382,12 @@ static void rcu_kick_nohz_cpu(int cpu) * most active flavor of RCU. */ #ifdef CONFIG_PREEMPT_RCU -static struct rcu_state __maybe_unused *rcu_sysidle_state = &rcu_preempt_state; +static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state; #else /* #ifdef CONFIG_PREEMPT_RCU */ -static struct rcu_state __maybe_unused *rcu_sysidle_state = &rcu_sched_state; +static struct rcu_state *rcu_sysidle_state = &rcu_sched_state; #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ -static int __maybe_unused full_sysidle_state; /* Current system-idle state. */ +static int full_sysidle_state; /* Current system-idle state. */ #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ @@ -2431,6 +2431,38 @@ static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq) } /* + * Unconditionally force exit from full system-idle state. This is + * invoked when a normal CPU exits idle, but must be called separately + * for the timekeeping CPU (tick_do_timer_cpu). The reason for this + * is that the timekeeping CPU is permitted to take scheduling-clock + * interrupts while the system is in system-idle state, and of course + * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock + * interrupt from any other type of interrupt. + */ +void rcu_sysidle_force_exit(void) +{ + int oldstate = ACCESS_ONCE(full_sysidle_state); + int newoldstate; + + /* + * Each pass through the following loop attempts to exit full + * system-idle state. If contention proves to be a problem, + * a trylock-based contention tree could be used here. + */ + while (oldstate > RCU_SYSIDLE_SHORT) { + newoldstate = cmpxchg(&full_sysidle_state, + oldstate, RCU_SYSIDLE_NOT); + if (oldstate == newoldstate && + oldstate == RCU_SYSIDLE_FULL_NOTED) { + rcu_kick_nohz_cpu(tick_do_timer_cpu); + return; /* We cleared it, done! */ + } + oldstate = newoldstate; + } + smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ +} + +/* * Invoked to note entry to irq or task transition from idle. Note that * usermode execution does -not- count as idle here! The caller must * have disabled interrupts. @@ -2463,6 +2495,247 @@ static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) atomic_inc(&rdtp->dynticks_idle); smp_mb__after_atomic_inc(); WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); + + /* + * If we are the timekeeping CPU, we are permitted to be non-idle + * during a system-idle state. This must be the case, because + * the timekeeping CPU has to take scheduling-clock interrupts + * during the time that the system is transitioning to full + * system-idle state. This means that the timekeeping CPU must + * invoke rcu_sysidle_force_exit() directly if it does anything + * more than take a scheduling-clock interrupt. + */ + if (smp_processor_id() == tick_do_timer_cpu) + return; + + /* Update system-idle state: We are clearly no longer fully idle! */ + rcu_sysidle_force_exit(); +} + +/* + * Check to see if the current CPU is idle. Note that usermode execution + * does not count as idle. The caller must have disabled interrupts. + */ +static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, + unsigned long *maxj) +{ + int cur; + unsigned long j; + struct rcu_dynticks *rdtp = rdp->dynticks; + + /* + * If some other CPU has already reported non-idle, if this is + * not the flavor of RCU that tracks sysidle state, or if this + * is an offline or the timekeeping CPU, nothing to do. + */ + if (!*isidle || rdp->rsp != rcu_sysidle_state || + cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) + return; + /* WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); */ + + /* Pick up current idle and NMI-nesting counter and check. */ + cur = atomic_read(&rdtp->dynticks_idle); + if (cur & 0x1) { + *isidle = false; /* We are not idle! */ + return; + } + smp_mb(); /* Read counters before timestamps. */ + + /* Pick up timestamps. */ + j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); + /* If this CPU entered idle more recently, update maxj timestamp. */ + if (ULONG_CMP_LT(*maxj, j)) + *maxj = j; +} + +/* + * Is this the flavor of RCU that is handling full-system idle? + */ +static bool is_sysidle_rcu_state(struct rcu_state *rsp) +{ + return rsp == rcu_sysidle_state; +} + +/* + * Return a delay in jiffies based on the number of CPUs, rcu_node + * leaf fanout, and jiffies tick rate. The idea is to allow larger + * systems more time to transition to full-idle state in order to + * avoid the cache thrashing that otherwise occur on the state variable. + * Really small systems (less than a couple of tens of CPUs) should + * instead use a single global atomically incremented counter, and later + * versions of this will automatically reconfigure themselves accordingly. + */ +static unsigned long rcu_sysidle_delay(void) +{ + if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) + return 0; + return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); +} + +/* + * Advance the full-system-idle state. This is invoked when all of + * the non-timekeeping CPUs are idle. + */ +static void rcu_sysidle(unsigned long j) +{ + /* Check the current state. */ + switch (ACCESS_ONCE(full_sysidle_state)) { + case RCU_SYSIDLE_NOT: + + /* First time all are idle, so note a short idle period. */ + ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; + break; + + case RCU_SYSIDLE_SHORT: + + /* + * Idle for a bit, time to advance to next state? + * cmpxchg failure means race with non-idle, let them win. + */ + if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) + (void)cmpxchg(&full_sysidle_state, + RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); + break; + + case RCU_SYSIDLE_LONG: + + /* + * Do an additional check pass before advancing to full. + * cmpxchg failure means race with non-idle, let them win. + */ + if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) + (void)cmpxchg(&full_sysidle_state, + RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); + break; + + default: + break; + } +} + +/* + * Found a non-idle non-timekeeping CPU, so kick the system-idle state + * back to the beginning. + */ +static void rcu_sysidle_cancel(void) +{ + smp_mb(); + ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; +} + +/* + * Update the sysidle state based on the results of a force-quiescent-state + * scan of the CPUs' dyntick-idle state. + */ +static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, + unsigned long maxj, bool gpkt) +{ + if (rsp != rcu_sysidle_state) + return; /* Wrong flavor, ignore. */ + if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) + return; /* Running state machine from timekeeping CPU. */ + if (isidle) + rcu_sysidle(maxj); /* More idle! */ + else + rcu_sysidle_cancel(); /* Idle is over. */ +} + +/* + * Wrapper for rcu_sysidle_report() when called from the grace-period + * kthread's context. + */ +static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, + unsigned long maxj) +{ + rcu_sysidle_report(rsp, isidle, maxj, true); +} + +/* Callback and function for forcing an RCU grace period. */ +struct rcu_sysidle_head { + struct rcu_head rh; + int inuse; +}; + +static void rcu_sysidle_cb(struct rcu_head *rhp) +{ + struct rcu_sysidle_head *rshp; + + /* + * The following memory barrier is needed to replace the + * memory barriers that would normally be in the memory + * allocator. + */ + smp_mb(); /* grace period precedes setting inuse. */ + + rshp = container_of(rhp, struct rcu_sysidle_head, rh); + ACCESS_ONCE(rshp->inuse) = 0; +} + +/* + * Check to see if the system is fully idle, other than the timekeeping CPU. + * The caller must have disabled interrupts. + */ +bool rcu_sys_is_idle(void) +{ + static struct rcu_sysidle_head rsh; + int rss = ACCESS_ONCE(full_sysidle_state); + + if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) + return false; + + /* Handle small-system case by doing a full scan of CPUs. */ + if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { + int oldrss = rss - 1; + + /* + * One pass to advance to each state up to _FULL. + * Give up if any pass fails to advance the state. + */ + while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { + int cpu; + bool isidle = true; + unsigned long maxj = jiffies - ULONG_MAX / 4; + struct rcu_data *rdp; + + /* Scan all the CPUs looking for nonidle CPUs. */ + for_each_possible_cpu(cpu) { + rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu); + rcu_sysidle_check_cpu(rdp, &isidle, &maxj); + if (!isidle) + break; + } + rcu_sysidle_report(rcu_sysidle_state, + isidle, maxj, false); + oldrss = rss; + rss = ACCESS_ONCE(full_sysidle_state); + } + } + + /* If this is the first observation of an idle period, record it. */ + if (rss == RCU_SYSIDLE_FULL) { + rss = cmpxchg(&full_sysidle_state, + RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); + return rss == RCU_SYSIDLE_FULL; + } + + smp_mb(); /* ensure rss load happens before later caller actions. */ + + /* If already fully idle, tell the caller (in case of races). */ + if (rss == RCU_SYSIDLE_FULL_NOTED) + return true; + + /* + * If we aren't there yet, and a grace period is not in flight, + * initiate a grace period. Either way, tell the caller that + * we are not there yet. We use an xchg() rather than an assignment + * to make up for the memory barriers that would otherwise be + * provided by the memory allocator. + */ + if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && + !rcu_gp_in_progress(rcu_sysidle_state) && + !rsh.inuse && xchg(&rsh.inuse, 1) == 0) + call_rcu(&rsh.rh, rcu_sysidle_cb); + return false; } /* @@ -2483,6 +2756,21 @@ static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq) { } +static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, + unsigned long *maxj) +{ +} + +static bool is_sysidle_rcu_state(struct rcu_state *rsp) +{ + return false; +} + +static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, + unsigned long maxj) +{ +} + static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) { } diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig index c7d2fd67799..3381f098070 100644 --- a/kernel/time/Kconfig +++ b/kernel/time/Kconfig @@ -157,6 +157,33 @@ config NO_HZ_FULL_SYSIDLE Say N if you are unsure. +config NO_HZ_FULL_SYSIDLE_SMALL + int "Number of CPUs above which large-system approach is used" + depends on NO_HZ_FULL_SYSIDLE + range 1 NR_CPUS + default 8 + help + The full-system idle detection mechanism takes a lazy approach + on large systems, as is required to attain decent scalability. + However, on smaller systems, scalability is not anywhere near as + large a concern as is energy efficiency. The sysidle subsystem + therefore uses a fast but non-scalable algorithm for small + systems and a lazier but scalable algorithm for large systems. + This Kconfig parameter defines the number of CPUs in the largest + system that will be considered to be "small". + + The default value will be fine in most cases. Battery-powered + systems that (1) enable NO_HZ_FULL_SYSIDLE, (2) have larger + numbers of CPUs, and (3) are suffering from battery-lifetime + problems due to long sysidle latencies might wish to experiment + with larger values for this Kconfig parameter. On the other + hand, they might be even better served by disabling NO_HZ_FULL + entirely, given that NO_HZ_FULL is intended for HPC and + real-time workloads that at present do not tend to be run on + battery-powered systems. + + Take the default if you are unsure. + config NO_HZ bool "Old Idle dynticks config" depends on !ARCH_USES_GETTIMEOFFSET && GENERIC_CLOCKEVENTS |