diff options
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/auto_group.c | 4 | ||||
-rw-r--r-- | kernel/sched/auto_group.h | 5 | ||||
-rw-r--r-- | kernel/sched/core.c | 11 | ||||
-rw-r--r-- | kernel/sched/cputime.c | 131 | ||||
-rw-r--r-- | kernel/sched/debug.c | 36 | ||||
-rw-r--r-- | kernel/sched/fair.c | 914 | ||||
-rw-r--r-- | kernel/sched/features.h | 5 | ||||
-rw-r--r-- | kernel/sched/sched.h | 60 |
8 files changed, 929 insertions, 237 deletions
diff --git a/kernel/sched/auto_group.c b/kernel/sched/auto_group.c index 15f60d01198..0984a21076a 100644 --- a/kernel/sched/auto_group.c +++ b/kernel/sched/auto_group.c @@ -143,11 +143,15 @@ autogroup_move_group(struct task_struct *p, struct autogroup *ag) p->signal->autogroup = autogroup_kref_get(ag); + if (!ACCESS_ONCE(sysctl_sched_autogroup_enabled)) + goto out; + t = p; do { sched_move_task(t); } while_each_thread(p, t); +out: unlock_task_sighand(p, &flags); autogroup_kref_put(prev); } diff --git a/kernel/sched/auto_group.h b/kernel/sched/auto_group.h index 443232ebbb5..8bd04714281 100644 --- a/kernel/sched/auto_group.h +++ b/kernel/sched/auto_group.h @@ -4,6 +4,11 @@ #include <linux/rwsem.h> struct autogroup { + /* + * reference doesn't mean how many thread attach to this + * autogroup now. It just stands for the number of task + * could use this autogroup. + */ struct kref kref; struct task_group *tg; struct rw_semaphore lock; diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 80f80dfca70..f5066a61f97 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -953,6 +953,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) trace_sched_migrate_task(p, new_cpu); if (task_cpu(p) != new_cpu) { + if (p->sched_class->migrate_task_rq) + p->sched_class->migrate_task_rq(p, new_cpu); p->se.nr_migrations++; perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); } @@ -1525,6 +1527,15 @@ static void __sched_fork(struct task_struct *p) p->se.vruntime = 0; INIT_LIST_HEAD(&p->se.group_node); +/* + * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be + * removed when useful for applications beyond shares distribution (e.g. + * load-balance). + */ +#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) + p->se.avg.runnable_avg_period = 0; + p->se.avg.runnable_avg_sum = 0; +#endif #ifdef CONFIG_SCHEDSTATS memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c index 81b763ba58a..293b202fcf7 100644 --- a/kernel/sched/cputime.c +++ b/kernel/sched/cputime.c @@ -43,7 +43,7 @@ DEFINE_PER_CPU(seqcount_t, irq_time_seq); * Called before incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ -void vtime_account(struct task_struct *curr) +void irqtime_account_irq(struct task_struct *curr) { unsigned long flags; s64 delta; @@ -73,7 +73,7 @@ void vtime_account(struct task_struct *curr) irq_time_write_end(); local_irq_restore(flags); } -EXPORT_SYMBOL_GPL(vtime_account); +EXPORT_SYMBOL_GPL(irqtime_account_irq); static int irqtime_account_hi_update(void) { @@ -288,6 +288,34 @@ static __always_inline bool steal_account_process_tick(void) return false; } +/* + * Accumulate raw cputime values of dead tasks (sig->[us]time) and live + * tasks (sum on group iteration) belonging to @tsk's group. + */ +void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) +{ + struct signal_struct *sig = tsk->signal; + struct task_struct *t; + + times->utime = sig->utime; + times->stime = sig->stime; + times->sum_exec_runtime = sig->sum_sched_runtime; + + rcu_read_lock(); + /* make sure we can trust tsk->thread_group list */ + if (!likely(pid_alive(tsk))) + goto out; + + t = tsk; + do { + times->utime += t->utime; + times->stime += t->stime; + times->sum_exec_runtime += task_sched_runtime(t); + } while_each_thread(tsk, t); +out: + rcu_read_unlock(); +} + #ifndef CONFIG_VIRT_CPU_ACCOUNTING #ifdef CONFIG_IRQ_TIME_ACCOUNTING @@ -417,13 +445,13 @@ void account_idle_ticks(unsigned long ticks) * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) { *ut = p->utime; *st = p->stime; } -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) { struct task_cputime cputime; @@ -433,6 +461,29 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) *st = cputime.stime; } +void vtime_account_system_irqsafe(struct task_struct *tsk) +{ + unsigned long flags; + + local_irq_save(flags); + vtime_account_system(tsk); + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe); + +#ifndef __ARCH_HAS_VTIME_TASK_SWITCH +void vtime_task_switch(struct task_struct *prev) +{ + if (is_idle_task(prev)) + vtime_account_idle(prev); + else + vtime_account_system(prev); + + vtime_account_user(prev); + arch_vtime_task_switch(prev); +} +#endif + /* * Archs that account the whole time spent in the idle task * (outside irq) as idle time can rely on this and just implement @@ -444,16 +495,10 @@ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) #ifndef __ARCH_HAS_VTIME_ACCOUNT void vtime_account(struct task_struct *tsk) { - unsigned long flags; - - local_irq_save(flags); - if (in_interrupt() || !is_idle_task(tsk)) vtime_account_system(tsk); else vtime_account_idle(tsk); - - local_irq_restore(flags); } EXPORT_SYMBOL_GPL(vtime_account); #endif /* __ARCH_HAS_VTIME_ACCOUNT */ @@ -478,14 +523,30 @@ static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) return (__force cputime_t) temp; } -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +/* + * Adjust tick based cputime random precision against scheduler + * runtime accounting. + */ +static void cputime_adjust(struct task_cputime *curr, + struct cputime *prev, + cputime_t *ut, cputime_t *st) { - cputime_t rtime, utime = p->utime, total = utime + p->stime; + cputime_t rtime, utime, total; + + utime = curr->utime; + total = utime + curr->stime; /* - * Use CFS's precise accounting: + * Tick based cputime accounting depend on random scheduling + * timeslices of a task to be interrupted or not by the timer. + * Depending on these circumstances, the number of these interrupts + * may be over or under-optimistic, matching the real user and system + * cputime with a variable precision. + * + * Fix this by scaling these tick based values against the total + * runtime accounted by the CFS scheduler. */ - rtime = nsecs_to_cputime(p->se.sum_exec_runtime); + rtime = nsecs_to_cputime(curr->sum_exec_runtime); if (total) utime = scale_utime(utime, rtime, total); @@ -493,38 +554,36 @@ void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) utime = rtime; /* - * Compare with previous values, to keep monotonicity: + * If the tick based count grows faster than the scheduler one, + * the result of the scaling may go backward. + * Let's enforce monotonicity. */ - p->prev_utime = max(p->prev_utime, utime); - p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); + prev->utime = max(prev->utime, utime); + prev->stime = max(prev->stime, rtime - prev->utime); - *ut = p->prev_utime; - *st = p->prev_stime; + *ut = prev->utime; + *st = prev->stime; +} + +void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + struct task_cputime cputime = { + .utime = p->utime, + .stime = p->stime, + .sum_exec_runtime = p->se.sum_exec_runtime, + }; + + cputime_adjust(&cputime, &p->prev_cputime, ut, st); } /* * Must be called with siglock held. */ -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) { - struct signal_struct *sig = p->signal; struct task_cputime cputime; - cputime_t rtime, utime, total; thread_group_cputime(p, &cputime); - - total = cputime.utime + cputime.stime; - rtime = nsecs_to_cputime(cputime.sum_exec_runtime); - - if (total) - utime = scale_utime(cputime.utime, rtime, total); - else - utime = rtime; - - sig->prev_utime = max(sig->prev_utime, utime); - sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); - - *ut = sig->prev_utime; - *st = sig->prev_stime; + cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); } #endif diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 6f79596e0ea..2cd3c1b4e58 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -61,14 +61,20 @@ static unsigned long nsec_low(unsigned long long nsec) static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; - if (!se) - return; #define P(F) \ SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define PN(F) \ SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) + if (!se) { + struct sched_avg *avg = &cpu_rq(cpu)->avg; + P(avg->runnable_avg_sum); + P(avg->runnable_avg_period); + return; + } + + PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); @@ -85,6 +91,12 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group P(se->statistics.wait_count); #endif P(se->load.weight); +#ifdef CONFIG_SMP + P(se->avg.runnable_avg_sum); + P(se->avg.runnable_avg_period); + P(se->avg.load_avg_contrib); + P(se->avg.decay_count); +#endif #undef PN #undef P } @@ -206,14 +218,18 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_SMP - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg", - SPLIT_NS(cfs_rq->load_avg)); - SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period", - SPLIT_NS(cfs_rq->load_period)); - SEQ_printf(m, " .%-30s: %ld\n", "load_contrib", - cfs_rq->load_contribution); - SEQ_printf(m, " .%-30s: %d\n", "load_tg", - atomic_read(&cfs_rq->tg->load_weight)); + SEQ_printf(m, " .%-30s: %lld\n", "runnable_load_avg", + cfs_rq->runnable_load_avg); + SEQ_printf(m, " .%-30s: %lld\n", "blocked_load_avg", + cfs_rq->blocked_load_avg); + SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", + atomic64_read(&cfs_rq->tg->load_avg)); + SEQ_printf(m, " .%-30s: %lld\n", "tg_load_contrib", + cfs_rq->tg_load_contrib); + SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", + cfs_rq->tg_runnable_contrib); + SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", + atomic_read(&cfs_rq->tg->runnable_avg)); #endif print_cfs_group_stats(m, cpu, cfs_rq->tg); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 6b800a14b99..59e072b2db9 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -259,6 +259,9 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) return grp->my_q; } +static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, + int force_update); + static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) { if (!cfs_rq->on_list) { @@ -278,6 +281,8 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) } cfs_rq->on_list = 1; + /* We should have no load, but we need to update last_decay. */ + update_cfs_rq_blocked_load(cfs_rq, 0); } } @@ -653,9 +658,6 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) return calc_delta_fair(sched_slice(cfs_rq, se), se); } -static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); -static void update_cfs_shares(struct cfs_rq *cfs_rq); - /* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. @@ -675,10 +677,6 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, curr->vruntime += delta_exec_weighted; update_min_vruntime(cfs_rq); - -#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED - cfs_rq->load_unacc_exec_time += delta_exec; -#endif } static void update_curr(struct cfs_rq *cfs_rq) @@ -801,72 +799,7 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) } #ifdef CONFIG_FAIR_GROUP_SCHED -/* we need this in update_cfs_load and load-balance functions below */ -static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); # ifdef CONFIG_SMP -static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, - int global_update) -{ - struct task_group *tg = cfs_rq->tg; - long load_avg; - - load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); - load_avg -= cfs_rq->load_contribution; - - if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { - atomic_add(load_avg, &tg->load_weight); - cfs_rq->load_contribution += load_avg; - } -} - -static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) -{ - u64 period = sysctl_sched_shares_window; - u64 now, delta; - unsigned long load = cfs_rq->load.weight; - - if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) - return; - - now = rq_of(cfs_rq)->clock_task; - delta = now - cfs_rq->load_stamp; - - /* truncate load history at 4 idle periods */ - if (cfs_rq->load_stamp > cfs_rq->load_last && - now - cfs_rq->load_last > 4 * period) { - cfs_rq->load_period = 0; - cfs_rq->load_avg = 0; - delta = period - 1; - } - - cfs_rq->load_stamp = now; - cfs_rq->load_unacc_exec_time = 0; - cfs_rq->load_period += delta; - if (load) { - cfs_rq->load_last = now; - cfs_rq->load_avg += delta * load; - } - - /* consider updating load contribution on each fold or truncate */ - if (global_update || cfs_rq->load_period > period - || !cfs_rq->load_period) - update_cfs_rq_load_contribution(cfs_rq, global_update); - - while (cfs_rq->load_period > period) { - /* - * Inline assembly required to prevent the compiler - * optimising this loop into a divmod call. - * See __iter_div_u64_rem() for another example of this. - */ - asm("" : "+rm" (cfs_rq->load_period)); - cfs_rq->load_period /= 2; - cfs_rq->load_avg /= 2; - } - - if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) - list_del_leaf_cfs_rq(cfs_rq); -} - static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) { long tg_weight; @@ -876,8 +809,8 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) * to gain a more accurate current total weight. See * update_cfs_rq_load_contribution(). */ - tg_weight = atomic_read(&tg->load_weight); - tg_weight -= cfs_rq->load_contribution; + tg_weight = atomic64_read(&tg->load_avg); + tg_weight -= cfs_rq->tg_load_contrib; tg_weight += cfs_rq->load.weight; return tg_weight; @@ -901,27 +834,11 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) return shares; } - -static void update_entity_shares_tick(struct cfs_rq *cfs_rq) -{ - if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { - update_cfs_load(cfs_rq, 0); - update_cfs_shares(cfs_rq); - } -} # else /* CONFIG_SMP */ -static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) -{ -} - static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) { return tg->shares; } - -static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) -{ -} # endif /* CONFIG_SMP */ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, unsigned long weight) @@ -939,6 +856,8 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, account_entity_enqueue(cfs_rq, se); } +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); + static void update_cfs_shares(struct cfs_rq *cfs_rq) { struct task_group *tg; @@ -958,18 +877,478 @@ static void update_cfs_shares(struct cfs_rq *cfs_rq) reweight_entity(cfs_rq_of(se), se, shares); } #else /* CONFIG_FAIR_GROUP_SCHED */ -static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +static inline void update_cfs_shares(struct cfs_rq *cfs_rq) { } +#endif /* CONFIG_FAIR_GROUP_SCHED */ -static inline void update_cfs_shares(struct cfs_rq *cfs_rq) +/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */ +#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) +/* + * We choose a half-life close to 1 scheduling period. + * Note: The tables below are dependent on this value. + */ +#define LOAD_AVG_PERIOD 32 +#define LOAD_AVG_MAX 47742 /* maximum possible load avg */ +#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ + +/* Precomputed fixed inverse multiplies for multiplication by y^n */ +static const u32 runnable_avg_yN_inv[] = { + 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, + 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, + 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, + 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, + 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, + 0x85aac367, 0x82cd8698, +}; + +/* + * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent + * over-estimates when re-combining. + */ +static const u32 runnable_avg_yN_sum[] = { + 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, + 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, + 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, +}; + +/* + * Approximate: + * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) + */ +static __always_inline u64 decay_load(u64 val, u64 n) { + unsigned int local_n; + + if (!n) + return val; + else if (unlikely(n > LOAD_AVG_PERIOD * 63)) + return 0; + + /* after bounds checking we can collapse to 32-bit */ + local_n = n; + + /* + * As y^PERIOD = 1/2, we can combine + * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) + * With a look-up table which covers k^n (n<PERIOD) + * + * To achieve constant time decay_load. + */ + if (unlikely(local_n >= LOAD_AVG_PERIOD)) { + val >>= local_n / LOAD_AVG_PERIOD; + local_n %= LOAD_AVG_PERIOD; + } + + val *= runnable_avg_yN_inv[local_n]; + /* We don't use SRR here since we always want to round down. */ + return val >> 32; } -static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) +/* + * For updates fully spanning n periods, the contribution to runnable + * average will be: \Sum 1024*y^n + * + * We can compute this reasonably efficiently by combining: + * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} + */ +static u32 __compute_runnable_contrib(u64 n) { + u32 contrib = 0; + + if (likely(n <= LOAD_AVG_PERIOD)) + return runnable_avg_yN_sum[n]; + else if (unlikely(n >= LOAD_AVG_MAX_N)) + return LOAD_AVG_MAX; + + /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ + do { + contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ + contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; + + n -= LOAD_AVG_PERIOD; + } while (n > LOAD_AVG_PERIOD); + + contrib = decay_load(contrib, n); + return contrib + runnable_avg_yN_sum[n]; } -#endif /* CONFIG_FAIR_GROUP_SCHED */ + +/* + * We can represent the historical contribution to runnable average as the + * coefficients of a geometric series. To do this we sub-divide our runnable + * history into segments of approximately 1ms (1024us); label the segment that + * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. + * + * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... + * p0 p1 p2 + * (now) (~1ms ago) (~2ms ago) + * + * Let u_i denote the fraction of p_i that the entity was runnable. + * + * We then designate the fractions u_i as our co-efficients, yielding the + * following representation of historical load: + * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... + * + * We choose y based on the with of a reasonably scheduling period, fixing: + * y^32 = 0.5 + * + * This means that the contribution to load ~32ms ago (u_32) will be weighted + * approximately half as much as the contribution to load within the last ms + * (u_0). + * + * When a period "rolls over" and we have new u_0`, multiplying the previous + * sum again by y is sufficient to update: + * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) + * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] + */ +static __always_inline int __update_entity_runnable_avg(u64 now, + struct sched_avg *sa, + int runnable) +{ + u64 delta, periods; + u32 runnable_contrib; + int delta_w, decayed = 0; + + delta = now - sa->last_runnable_update; + /* + * This should only happen when time goes backwards, which it + * unfortunately does during sched clock init when we swap over to TSC. + */ + if ((s64)delta < 0) { + sa->last_runnable_update = now; + return 0; + } + + /* + * Use 1024ns as the unit of measurement since it's a reasonable + * approximation of 1us and fast to compute. + */ + delta >>= 10; + if (!delta) + return 0; + sa->last_runnable_update = now; + + /* delta_w is the amount already accumulated against our next period */ + delta_w = sa->runnable_avg_period % 1024; + if (delta + delta_w >= 1024) { + /* period roll-over */ + decayed = 1; + + /* + * Now that we know we're crossing a period boundary, figure + * out how much from delta we need to complete the current + * period and accrue it. + */ + delta_w = 1024 - delta_w; + if (runnable) + sa->runnable_avg_sum += delta_w; + sa->runnable_avg_period += delta_w; + + delta -= delta_w; + + /* Figure out how many additional periods this update spans */ + periods = delta / 1024; + delta %= 1024; + + sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, + periods + 1); + sa->runnable_avg_period = decay_load(sa->runnable_avg_period, + periods + 1); + + /* Efficiently calculate \sum (1..n_period) 1024*y^i */ + runnable_contrib = __compute_runnable_contrib(periods); + if (runnable) + sa->runnable_avg_sum += runnable_contrib; + sa->runnable_avg_period += runnable_contrib; + } + + /* Remainder of delta accrued against u_0` */ + if (runnable) + sa->runnable_avg_sum += delta; + sa->runnable_avg_period += delta; + + return decayed; +} + +/* Synchronize an entity's decay with its parenting cfs_rq.*/ +static inline u64 __synchronize_entity_decay(struct sched_entity *se) +{ + struct cfs_rq *cfs_rq = cfs_rq_of(se); + u64 decays = atomic64_read(&cfs_rq->decay_counter); + + decays -= se->avg.decay_count; + if (!decays) + return 0; + + se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); + se->avg.decay_count = 0; + + return decays; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, + int force_update) +{ + struct task_group *tg = cfs_rq->tg; + s64 tg_contrib; + + tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; + tg_contrib -= cfs_rq->tg_load_contrib; + + if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) { + atomic64_add(tg_contrib, &tg->load_avg); + cfs_rq->tg_load_contrib += tg_contrib; + } +} + +/* + * Aggregate cfs_rq runnable averages into an equivalent task_group + * representation for computing load contributions. + */ +static inline void __update_tg_runnable_avg(struct sched_avg *sa, + struct cfs_rq *cfs_rq) +{ + struct task_group *tg = cfs_rq->tg; + long contrib; + + /* The fraction of a cpu used by this cfs_rq */ + contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT, + sa->runnable_avg_period + 1); + contrib -= cfs_rq->tg_runnable_contrib; + + if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { + atomic_add(contrib, &tg->runnable_avg); + cfs_rq->tg_runnable_contrib += contrib; + } +} + +static inline void __update_group_entity_contrib(struct sched_entity *se) +{ + struct cfs_rq *cfs_rq = group_cfs_rq(se); + struct task_group *tg = cfs_rq->tg; + int runnable_avg; + + u64 contrib; + + contrib = cfs_rq->tg_load_contrib * tg->shares; + se->avg.load_avg_contrib = div64_u64(contrib, + atomic64_read(&tg->load_avg) + 1); + + /* + * For group entities we need to compute a correction term in the case + * that they are consuming <1 cpu so that we would contribute the same + * load as a task of equal weight. + * + * Explicitly co-ordinating this measurement would be expensive, but + * fortunately the sum of each cpus contribution forms a usable + * lower-bound on the true value. + * + * Consider the aggregate of 2 contributions. Either they are disjoint + * (and the sum represents true value) or they are disjoint and we are + * understating by the aggregate of their overlap. + * + * Extending this to N cpus, for a given overlap, the maximum amount we + * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of + * cpus that overlap for this interval and w_i is the interval width. + * + * On a small machine; the first term is well-bounded which bounds the + * total error since w_i is a subset of the period. Whereas on a + * larger machine, while this first term can be larger, if w_i is the + * of consequential size guaranteed to see n_i*w_i quickly converge to + * our upper bound of 1-cpu. + */ + runnable_avg = atomic_read(&tg->runnable_avg); + if (runnable_avg < NICE_0_LOAD) { + se->avg.load_avg_contrib *= runnable_avg; + se->avg.load_avg_contrib >>= NICE_0_SHIFT; + } +} +#else +static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, + int force_update) {} +static inline void __update_tg_runnable_avg(struct sched_avg *sa, + struct cfs_rq *cfs_rq) {} +static inline void __update_group_entity_contrib(struct sched_entity *se) {} +#endif + +static inline void __update_task_entity_contrib(struct sched_entity *se) +{ + u32 contrib; + + /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ + contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); + contrib /= (se->avg.runnable_avg_period + 1); + se->avg.load_avg_contrib = scale_load(contrib); +} + +/* Compute the current contribution to load_avg by se, return any delta */ +static long __update_entity_load_avg_contrib(struct sched_entity *se) +{ + long old_contrib = se->avg.load_avg_contrib; + + if (entity_is_task(se)) { + __update_task_entity_contrib(se); + } else { + __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); + __update_group_entity_contrib(se); + } + + return se->avg.load_avg_contrib - old_contrib; +} + +static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, + long load_contrib) +{ + if (likely(load_contrib < cfs_rq->blocked_load_avg)) + cfs_rq->blocked_load_avg -= load_contrib; + else + cfs_rq->blocked_load_avg = 0; +} + +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); + +/* Update a sched_entity's runnable average */ +static inline void update_entity_load_avg(struct sched_entity *se, + int update_cfs_rq) +{ + struct cfs_rq *cfs_rq = cfs_rq_of(se); + long contrib_delta; + u64 now; + + /* + * For a group entity we need to use their owned cfs_rq_clock_task() in + * case they are the parent of a throttled hierarchy. + */ + if (entity_is_task(se)) + now = cfs_rq_clock_task(cfs_rq); + else + now = cfs_rq_clock_task(group_cfs_rq(se)); + + if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) + return; + + contrib_delta = __update_entity_load_avg_contrib(se); + + if (!update_cfs_rq) + return; + + if (se->on_rq) + cfs_rq->runnable_load_avg += contrib_delta; + else + subtract_blocked_load_contrib(cfs_rq, -contrib_delta); +} + +/* + * Decay the load contributed by all blocked children and account this so that + * their contribution may appropriately discounted when they wake up. + */ +static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) +{ + u64 now = cfs_rq_clock_task(cfs_rq) >> 20; + u64 decays; + + decays = now - cfs_rq->last_decay; + if (!decays && !force_update) + return; + + if (atomic64_read(&cfs_rq->removed_load)) { + u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0); + subtract_blocked_load_contrib(cfs_rq, removed_load); + } + + if (decays) { + cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, + decays); + atomic64_add(decays, &cfs_rq->decay_counter); + cfs_rq->last_decay = now; + } + + __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); + update_cfs_shares(cfs_rq); +} + +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) +{ + __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable); + __update_tg_runnable_avg(&rq->avg, &rq->cfs); +} + +/* Add the load generated by se into cfs_rq's child load-average */ +static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, + struct sched_entity *se, + int wakeup) +{ + /* + * We track migrations using entity decay_count <= 0, on a wake-up + * migration we use a negative decay count to track the remote decays + * accumulated while sleeping. + */ + if (unlikely(se->avg.decay_count <= 0)) { + se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task; + if (se->avg.decay_count) { + /* + * In a wake-up migration we have to approximate the + * time sleeping. This is because we can't synchronize + * clock_task between the two cpus, and it is not + * guaranteed to be read-safe. Instead, we can + * approximate this using our carried decays, which are + * explicitly atomically readable. + */ + se->avg.last_runnable_update -= (-se->avg.decay_count) + << 20; + update_entity_load_avg(se, 0); + /* Indicate that we're now synchronized and on-rq */ + se->avg.decay_count = 0; + } + wakeup = 0; + } else { + __synchronize_entity_decay(se); + } + + /* migrated tasks did not contribute to our blocked load */ + if (wakeup) { + subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); + update_entity_load_avg(se, 0); + } + + cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; + /* we force update consideration on load-balancer moves */ + update_cfs_rq_blocked_load(cfs_rq, !wakeup); +} + +/* + * Remove se's load from this cfs_rq child load-average, if the entity is + * transitioning to a blocked state we track its projected decay using + * blocked_load_avg. + */ +static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, + struct sched_entity *se, + int sleep) +{ + update_entity_load_avg(se, 1); + /* we force update consideration on load-balancer moves */ + update_cfs_rq_blocked_load(cfs_rq, !sleep); + + cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; + if (sleep) { + cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; + se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); + } /* migrations, e.g. sleep=0 leave decay_count == 0 */ +} +#else +static inline void update_entity_load_avg(struct sched_entity *se, + int update_cfs_rq) {} +static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} +static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, + struct sched_entity *se, + int wakeup) {} +static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, + struct sched_entity *se, + int sleep) {} +static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, + int force_update) {} +#endif static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) { @@ -1096,9 +1475,8 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); - update_cfs_load(cfs_rq, 0); account_entity_enqueue(cfs_rq, se); - update_cfs_shares(cfs_rq); + enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); if (flags & ENQUEUE_WAKEUP) { place_entity(cfs_rq, se, 0); @@ -1190,9 +1568,8 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) if (se != cfs_rq->curr) __dequeue_entity(cfs_rq, se); - se->on_rq = 0; - update_cfs_load(cfs_rq, 0); account_entity_dequeue(cfs_rq, se); + dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); /* * Normalize the entity after updating the min_vruntime because the @@ -1206,7 +1583,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) return_cfs_rq_runtime(cfs_rq); update_min_vruntime(cfs_rq); - update_cfs_shares(cfs_rq); + se->on_rq = 0; } /* @@ -1340,6 +1717,8 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) update_stats_wait_start(cfs_rq, prev); /* Put 'current' back into the tree. */ __enqueue_entity(cfs_rq, prev); + /* in !on_rq case, update occurred at dequeue */ + update_entity_load_avg(prev, 1); } cfs_rq->curr = NULL; } @@ -1353,9 +1732,10 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) update_curr(cfs_rq); /* - * Update share accounting for long-running entities. + |