aboutsummaryrefslogtreecommitdiff
path: root/kernel/rcupreempt.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcupreempt.c')
-rw-r--r--kernel/rcupreempt.c1539
1 files changed, 0 insertions, 1539 deletions
diff --git a/kernel/rcupreempt.c b/kernel/rcupreempt.c
deleted file mode 100644
index beb0e659adc..00000000000
--- a/kernel/rcupreempt.c
+++ /dev/null
@@ -1,1539 +0,0 @@
-/*
- * Read-Copy Update mechanism for mutual exclusion, realtime implementation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
- * Copyright IBM Corporation, 2006
- *
- * Authors: Paul E. McKenney <paulmck@us.ibm.com>
- * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
- * for pushing me away from locks and towards counters, and
- * to Suparna Bhattacharya for pushing me completely away
- * from atomic instructions on the read side.
- *
- * - Added handling of Dynamic Ticks
- * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
- * - Steven Rostedt <srostedt@redhat.com>
- *
- * Papers: http://www.rdrop.com/users/paulmck/RCU
- *
- * Design Document: http://lwn.net/Articles/253651/
- *
- * For detailed explanation of Read-Copy Update mechanism see -
- * Documentation/RCU/ *.txt
- *
- */
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/spinlock.h>
-#include <linux/smp.h>
-#include <linux/rcupdate.h>
-#include <linux/interrupt.h>
-#include <linux/sched.h>
-#include <asm/atomic.h>
-#include <linux/bitops.h>
-#include <linux/module.h>
-#include <linux/kthread.h>
-#include <linux/completion.h>
-#include <linux/moduleparam.h>
-#include <linux/percpu.h>
-#include <linux/notifier.h>
-#include <linux/cpu.h>
-#include <linux/random.h>
-#include <linux/delay.h>
-#include <linux/cpumask.h>
-#include <linux/rcupreempt_trace.h>
-#include <asm/byteorder.h>
-
-/*
- * PREEMPT_RCU data structures.
- */
-
-/*
- * GP_STAGES specifies the number of times the state machine has
- * to go through the all the rcu_try_flip_states (see below)
- * in a single Grace Period.
- *
- * GP in GP_STAGES stands for Grace Period ;)
- */
-#define GP_STAGES 2
-struct rcu_data {
- spinlock_t lock; /* Protect rcu_data fields. */
- long completed; /* Number of last completed batch. */
- int waitlistcount;
- struct rcu_head *nextlist;
- struct rcu_head **nexttail;
- struct rcu_head *waitlist[GP_STAGES];
- struct rcu_head **waittail[GP_STAGES];
- struct rcu_head *donelist; /* from waitlist & waitschedlist */
- struct rcu_head **donetail;
- long rcu_flipctr[2];
- struct rcu_head *nextschedlist;
- struct rcu_head **nextschedtail;
- struct rcu_head *waitschedlist;
- struct rcu_head **waitschedtail;
- int rcu_sched_sleeping;
-#ifdef CONFIG_RCU_TRACE
- struct rcupreempt_trace trace;
-#endif /* #ifdef CONFIG_RCU_TRACE */
-};
-
-/*
- * States for rcu_try_flip() and friends.
- */
-
-enum rcu_try_flip_states {
-
- /*
- * Stay here if nothing is happening. Flip the counter if somthing
- * starts happening. Denoted by "I"
- */
- rcu_try_flip_idle_state,
-
- /*
- * Wait here for all CPUs to notice that the counter has flipped. This
- * prevents the old set of counters from ever being incremented once
- * we leave this state, which in turn is necessary because we cannot
- * test any individual counter for zero -- we can only check the sum.
- * Denoted by "A".
- */
- rcu_try_flip_waitack_state,
-
- /*
- * Wait here for the sum of the old per-CPU counters to reach zero.
- * Denoted by "Z".
- */
- rcu_try_flip_waitzero_state,
-
- /*
- * Wait here for each of the other CPUs to execute a memory barrier.
- * This is necessary to ensure that these other CPUs really have
- * completed executing their RCU read-side critical sections, despite
- * their CPUs wildly reordering memory. Denoted by "M".
- */
- rcu_try_flip_waitmb_state,
-};
-
-/*
- * States for rcu_ctrlblk.rcu_sched_sleep.
- */
-
-enum rcu_sched_sleep_states {
- rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
- rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
- rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
-};
-
-struct rcu_ctrlblk {
- spinlock_t fliplock; /* Protect state-machine transitions. */
- long completed; /* Number of last completed batch. */
- enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
- the rcu state machine */
- spinlock_t schedlock; /* Protect rcu_sched sleep state. */
- enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
- wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
-};
-
-struct rcu_dyntick_sched {
- int dynticks;
- int dynticks_snap;
- int sched_qs;
- int sched_qs_snap;
- int sched_dynticks_snap;
-};
-
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
- .dynticks = 1,
-};
-
-void rcu_qsctr_inc(int cpu)
-{
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- rdssp->sched_qs++;
-}
-
-#ifdef CONFIG_NO_HZ
-
-void rcu_enter_nohz(void)
-{
- static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
-
- smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
- __get_cpu_var(rcu_dyntick_sched).dynticks++;
- WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs);
-}
-
-void rcu_exit_nohz(void)
-{
- static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
-
- __get_cpu_var(rcu_dyntick_sched).dynticks++;
- smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
- WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1),
- &rs);
-}
-
-#endif /* CONFIG_NO_HZ */
-
-
-static DEFINE_PER_CPU(struct rcu_data, rcu_data);
-
-static struct rcu_ctrlblk rcu_ctrlblk = {
- .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
- .completed = 0,
- .rcu_try_flip_state = rcu_try_flip_idle_state,
- .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
- .sched_sleep = rcu_sched_not_sleeping,
- .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
-};
-
-static struct task_struct *rcu_sched_grace_period_task;
-
-#ifdef CONFIG_RCU_TRACE
-static char *rcu_try_flip_state_names[] =
- { "idle", "waitack", "waitzero", "waitmb" };
-#endif /* #ifdef CONFIG_RCU_TRACE */
-
-static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly
- = CPU_BITS_NONE;
-
-/*
- * Enum and per-CPU flag to determine when each CPU has seen
- * the most recent counter flip.
- */
-
-enum rcu_flip_flag_values {
- rcu_flip_seen, /* Steady/initial state, last flip seen. */
- /* Only GP detector can update. */
- rcu_flipped /* Flip just completed, need confirmation. */
- /* Only corresponding CPU can update. */
-};
-static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
- = rcu_flip_seen;
-
-/*
- * Enum and per-CPU flag to determine when each CPU has executed the
- * needed memory barrier to fence in memory references from its last RCU
- * read-side critical section in the just-completed grace period.
- */
-
-enum rcu_mb_flag_values {
- rcu_mb_done, /* Steady/initial state, no mb()s required. */
- /* Only GP detector can update. */
- rcu_mb_needed /* Flip just completed, need an mb(). */
- /* Only corresponding CPU can update. */
-};
-static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
- = rcu_mb_done;
-
-/*
- * RCU_DATA_ME: find the current CPU's rcu_data structure.
- * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
- */
-#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
-#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
-
-/*
- * Helper macro for tracing when the appropriate rcu_data is not
- * cached in a local variable, but where the CPU number is so cached.
- */
-#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
-
-/*
- * Helper macro for tracing when the appropriate rcu_data is not
- * cached in a local variable.
- */
-#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
-
-/*
- * Helper macro for tracing when the appropriate rcu_data is pointed
- * to by a local variable.
- */
-#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
-
-#define RCU_SCHED_BATCH_TIME (HZ / 50)
-
-/*
- * Return the number of RCU batches processed thus far. Useful
- * for debug and statistics.
- */
-long rcu_batches_completed(void)
-{
- return rcu_ctrlblk.completed;
-}
-EXPORT_SYMBOL_GPL(rcu_batches_completed);
-
-void __rcu_read_lock(void)
-{
- int idx;
- struct task_struct *t = current;
- int nesting;
-
- nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
- if (nesting != 0) {
-
- /* An earlier rcu_read_lock() covers us, just count it. */
-
- t->rcu_read_lock_nesting = nesting + 1;
-
- } else {
- unsigned long flags;
-
- /*
- * We disable interrupts for the following reasons:
- * - If we get scheduling clock interrupt here, and we
- * end up acking the counter flip, it's like a promise
- * that we will never increment the old counter again.
- * Thus we will break that promise if that
- * scheduling clock interrupt happens between the time
- * we pick the .completed field and the time that we
- * increment our counter.
- *
- * - We don't want to be preempted out here.
- *
- * NMIs can still occur, of course, and might themselves
- * contain rcu_read_lock().
- */
-
- local_irq_save(flags);
-
- /*
- * Outermost nesting of rcu_read_lock(), so increment
- * the current counter for the current CPU. Use volatile
- * casts to prevent the compiler from reordering.
- */
-
- idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
- ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
-
- /*
- * Now that the per-CPU counter has been incremented, we
- * are protected from races with rcu_read_lock() invoked
- * from NMI handlers on this CPU. We can therefore safely
- * increment the nesting counter, relieving further NMIs
- * of the need to increment the per-CPU counter.
- */
-
- ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
-
- /*
- * Now that we have preventing any NMIs from storing
- * to the ->rcu_flipctr_idx, we can safely use it to
- * remember which counter to decrement in the matching
- * rcu_read_unlock().
- */
-
- ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
- local_irq_restore(flags);
- }
-}
-EXPORT_SYMBOL_GPL(__rcu_read_lock);
-
-void __rcu_read_unlock(void)
-{
- int idx;
- struct task_struct *t = current;
- int nesting;
-
- nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
- if (nesting > 1) {
-
- /*
- * We are still protected by the enclosing rcu_read_lock(),
- * so simply decrement the counter.
- */
-
- t->rcu_read_lock_nesting = nesting - 1;
-
- } else {
- unsigned long flags;
-
- /*
- * Disable local interrupts to prevent the grace-period
- * detection state machine from seeing us half-done.
- * NMIs can still occur, of course, and might themselves
- * contain rcu_read_lock() and rcu_read_unlock().
- */
-
- local_irq_save(flags);
-
- /*
- * Outermost nesting of rcu_read_unlock(), so we must
- * decrement the current counter for the current CPU.
- * This must be done carefully, because NMIs can
- * occur at any point in this code, and any rcu_read_lock()
- * and rcu_read_unlock() pairs in the NMI handlers
- * must interact non-destructively with this code.
- * Lots of volatile casts, and -very- careful ordering.
- *
- * Changes to this code, including this one, must be
- * inspected, validated, and tested extremely carefully!!!
- */
-
- /*
- * First, pick up the index.
- */
-
- idx = ACCESS_ONCE(t->rcu_flipctr_idx);
-
- /*
- * Now that we have fetched the counter index, it is
- * safe to decrement the per-task RCU nesting counter.
- * After this, any interrupts or NMIs will increment and
- * decrement the per-CPU counters.
- */
- ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
-
- /*
- * It is now safe to decrement this task's nesting count.
- * NMIs that occur after this statement will route their
- * rcu_read_lock() calls through this "else" clause, and
- * will thus start incrementing the per-CPU counter on
- * their own. They will also clobber ->rcu_flipctr_idx,
- * but that is OK, since we have already fetched it.
- */
-
- ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
- local_irq_restore(flags);
- }
-}
-EXPORT_SYMBOL_GPL(__rcu_read_unlock);
-
-/*
- * If a global counter flip has occurred since the last time that we
- * advanced callbacks, advance them. Hardware interrupts must be
- * disabled when calling this function.
- */
-static void __rcu_advance_callbacks(struct rcu_data *rdp)
-{
- int cpu;
- int i;
- int wlc = 0;
-
- if (rdp->completed != rcu_ctrlblk.completed) {
- if (rdp->waitlist[GP_STAGES - 1] != NULL) {
- *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
- rdp->donetail = rdp->waittail[GP_STAGES - 1];
- RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
- }
- for (i = GP_STAGES - 2; i >= 0; i--) {
- if (rdp->waitlist[i] != NULL) {
- rdp->waitlist[i + 1] = rdp->waitlist[i];
- rdp->waittail[i + 1] = rdp->waittail[i];
- wlc++;
- } else {
- rdp->waitlist[i + 1] = NULL;
- rdp->waittail[i + 1] =
- &rdp->waitlist[i + 1];
- }
- }
- if (rdp->nextlist != NULL) {
- rdp->waitlist[0] = rdp->nextlist;
- rdp->waittail[0] = rdp->nexttail;
- wlc++;
- rdp->nextlist = NULL;
- rdp->nexttail = &rdp->nextlist;
- RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
- } else {
- rdp->waitlist[0] = NULL;
- rdp->waittail[0] = &rdp->waitlist[0];
- }
- rdp->waitlistcount = wlc;
- rdp->completed = rcu_ctrlblk.completed;
- }
-
- /*
- * Check to see if this CPU needs to report that it has seen
- * the most recent counter flip, thereby declaring that all
- * subsequent rcu_read_lock() invocations will respect this flip.
- */
-
- cpu = raw_smp_processor_id();
- if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
- smp_mb(); /* Subsequent counter accesses must see new value */
- per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
- smp_mb(); /* Subsequent RCU read-side critical sections */
- /* seen -after- acknowledgement. */
- }
-}
-
-#ifdef CONFIG_NO_HZ
-static DEFINE_PER_CPU(int, rcu_update_flag);
-
-/**
- * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
- *
- * If the CPU was idle with dynamic ticks active, this updates the
- * rcu_dyntick_sched.dynticks to let the RCU handling know that the
- * CPU is active.
- */
-void rcu_irq_enter(void)
-{
- int cpu = smp_processor_id();
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- if (per_cpu(rcu_update_flag, cpu))
- per_cpu(rcu_update_flag, cpu)++;
-
- /*
- * Only update if we are coming from a stopped ticks mode
- * (rcu_dyntick_sched.dynticks is even).
- */
- if (!in_interrupt() &&
- (rdssp->dynticks & 0x1) == 0) {
- /*
- * The following might seem like we could have a race
- * with NMI/SMIs. But this really isn't a problem.
- * Here we do a read/modify/write, and the race happens
- * when an NMI/SMI comes in after the read and before
- * the write. But NMI/SMIs will increment this counter
- * twice before returning, so the zero bit will not
- * be corrupted by the NMI/SMI which is the most important
- * part.
- *
- * The only thing is that we would bring back the counter
- * to a postion that it was in during the NMI/SMI.
- * But the zero bit would be set, so the rest of the
- * counter would again be ignored.
- *
- * On return from the IRQ, the counter may have the zero
- * bit be 0 and the counter the same as the return from
- * the NMI/SMI. If the state machine was so unlucky to
- * see that, it still doesn't matter, since all
- * RCU read-side critical sections on this CPU would
- * have already completed.
- */
- rdssp->dynticks++;
- /*
- * The following memory barrier ensures that any
- * rcu_read_lock() primitives in the irq handler
- * are seen by other CPUs to follow the above
- * increment to rcu_dyntick_sched.dynticks. This is
- * required in order for other CPUs to correctly
- * determine when it is safe to advance the RCU
- * grace-period state machine.
- */
- smp_mb(); /* see above block comment. */
- /*
- * Since we can't determine the dynamic tick mode from
- * the rcu_dyntick_sched.dynticks after this routine,
- * we use a second flag to acknowledge that we came
- * from an idle state with ticks stopped.
- */
- per_cpu(rcu_update_flag, cpu)++;
- /*
- * If we take an NMI/SMI now, they will also increment
- * the rcu_update_flag, and will not update the
- * rcu_dyntick_sched.dynticks on exit. That is for
- * this IRQ to do.
- */
- }
-}
-
-/**
- * rcu_irq_exit - Called from exiting Hard irq context.
- *
- * If the CPU was idle with dynamic ticks active, update the
- * rcu_dyntick_sched.dynticks to put let the RCU handling be
- * aware that the CPU is going back to idle with no ticks.
- */
-void rcu_irq_exit(void)
-{
- int cpu = smp_processor_id();
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- /*
- * rcu_update_flag is set if we interrupted the CPU
- * when it was idle with ticks stopped.
- * Once this occurs, we keep track of interrupt nesting
- * because a NMI/SMI could also come in, and we still
- * only want the IRQ that started the increment of the
- * rcu_dyntick_sched.dynticks to be the one that modifies
- * it on exit.
- */
- if (per_cpu(rcu_update_flag, cpu)) {
- if (--per_cpu(rcu_update_flag, cpu))
- return;
-
- /* This must match the interrupt nesting */
- WARN_ON(in_interrupt());
-
- /*
- * If an NMI/SMI happens now we are still
- * protected by the rcu_dyntick_sched.dynticks being odd.
- */
-
- /*
- * The following memory barrier ensures that any
- * rcu_read_unlock() primitives in the irq handler
- * are seen by other CPUs to preceed the following
- * increment to rcu_dyntick_sched.dynticks. This
- * is required in order for other CPUs to determine
- * when it is safe to advance the RCU grace-period
- * state machine.
- */
- smp_mb(); /* see above block comment. */
- rdssp->dynticks++;
- WARN_ON(rdssp->dynticks & 0x1);
- }
-}
-
-void rcu_nmi_enter(void)
-{
- rcu_irq_enter();
-}
-
-void rcu_nmi_exit(void)
-{
- rcu_irq_exit();
-}
-
-static void dyntick_save_progress_counter(int cpu)
-{
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- rdssp->dynticks_snap = rdssp->dynticks;
-}
-
-static inline int
-rcu_try_flip_waitack_needed(int cpu)
-{
- long curr;
- long snap;
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- curr = rdssp->dynticks;
- snap = rdssp->dynticks_snap;
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
-
- /*
- * If the CPU remained in dynticks mode for the entire time
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
- * then it cannot be in the middle of an rcu_read_lock(), so
- * the next rcu_read_lock() it executes must use the new value
- * of the counter. So we can safely pretend that this CPU
- * already acknowledged the counter.
- */
-
- if ((curr == snap) && ((curr & 0x1) == 0))
- return 0;
-
- /*
- * If the CPU passed through or entered a dynticks idle phase with
- * no active irq handlers, then, as above, we can safely pretend
- * that this CPU already acknowledged the counter.
- */
-
- if ((curr - snap) > 2 || (curr & 0x1) == 0)
- return 0;
-
- /* We need this CPU to explicitly acknowledge the counter flip. */
-
- return 1;
-}
-
-static inline int
-rcu_try_flip_waitmb_needed(int cpu)
-{
- long curr;
- long snap;
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- curr = rdssp->dynticks;
- snap = rdssp->dynticks_snap;
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
-
- /*
- * If the CPU remained in dynticks mode for the entire time
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
- * then it cannot have executed an RCU read-side critical section
- * during that time, so there is no need for it to execute a
- * memory barrier.
- */
-
- if ((curr == snap) && ((curr & 0x1) == 0))
- return 0;
-
- /*
- * If the CPU either entered or exited an outermost interrupt,
- * SMI, NMI, or whatever handler, then we know that it executed
- * a memory barrier when doing so. So we don't need another one.
- */
- if (curr != snap)
- return 0;
-
- /* We need the CPU to execute a memory barrier. */
-
- return 1;
-}
-
-static void dyntick_save_progress_counter_sched(int cpu)
-{
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- rdssp->sched_dynticks_snap = rdssp->dynticks;
-}
-
-static int rcu_qsctr_inc_needed_dyntick(int cpu)
-{
- long curr;
- long snap;
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- curr = rdssp->dynticks;
- snap = rdssp->sched_dynticks_snap;
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
-
- /*
- * If the CPU remained in dynticks mode for the entire time
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
- * then it cannot be in the middle of an rcu_read_lock(), so
- * the next rcu_read_lock() it executes must use the new value
- * of the counter. Therefore, this CPU has been in a quiescent
- * state the entire time, and we don't need to wait for it.
- */
-
- if ((curr == snap) && ((curr & 0x1) == 0))
- return 0;
-
- /*
- * If the CPU passed through or entered a dynticks idle phase with
- * no active irq handlers, then, as above, this CPU has already
- * passed through a quiescent state.
- */
-
- if ((curr - snap) > 2 || (snap & 0x1) == 0)
- return 0;
-
- /* We need this CPU to go through a quiescent state. */
-
- return 1;
-}
-
-#else /* !CONFIG_NO_HZ */
-
-# define dyntick_save_progress_counter(cpu) do { } while (0)
-# define rcu_try_flip_waitack_needed(cpu) (1)
-# define rcu_try_flip_waitmb_needed(cpu) (1)
-
-# define dyntick_save_progress_counter_sched(cpu) do { } while (0)
-# define rcu_qsctr_inc_needed_dyntick(cpu) (1)
-
-#endif /* CONFIG_NO_HZ */
-
-static void save_qsctr_sched(int cpu)
-{
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- rdssp->sched_qs_snap = rdssp->sched_qs;
-}
-
-static inline int rcu_qsctr_inc_needed(int cpu)
-{
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
-
- /*
- * If there has been a quiescent state, no more need to wait
- * on this CPU.
- */
-
- if (rdssp->sched_qs != rdssp->sched_qs_snap) {
- smp_mb(); /* force ordering with cpu entering schedule(). */
- return 0;
- }
-
- /* We need this CPU to go through a quiescent state. */
-
- return 1;
-}
-
-/*
- * Get here when RCU is idle. Decide whether we need to
- * move out of idle state, and return non-zero if so.
- * "Straightforward" approach for the moment, might later
- * use callback-list lengths, grace-period duration, or
- * some such to determine when to exit idle state.
- * Might also need a pre-idle test that does not acquire
- * the lock, but let's get the simple case working first...
- */
-
-static int
-rcu_try_flip_idle(void)
-{
- int cpu;
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
- if (!rcu_pending(smp_processor_id())) {
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
- return 0;
- }
-
- /*
- * Do the flip.
- */
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
- rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
-
- /*
- * Need a memory barrier so that other CPUs see the new
- * counter value before they see the subsequent change of all
- * the rcu_flip_flag instances to rcu_flipped.
- */
-
- smp_mb(); /* see above block comment. */
-
- /* Now ask each CPU for acknowledgement of the flip. */
-
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
- per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
- dyntick_save_progress_counter(cpu);
- }
-
- return 1;
-}
-
-/*
- * Wait for CPUs to acknowledge the flip.
- */
-
-static int
-rcu_try_flip_waitack(void)
-{
- int cpu;
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
- if (rcu_try_flip_waitack_needed(cpu) &&
- per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
- return 0;
- }
-
- /*
- * Make sure our checks above don't bleed into subsequent
- * waiting for the sum of the counters to reach zero.
- */
-
- smp_mb(); /* see above block comment. */
- RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
- return 1;
-}
-
-/*
- * Wait for collective ``last'' counter to reach zero,
- * then tell all CPUs to do an end-of-grace-period memory barrier.
- */
-
-static int
-rcu_try_flip_waitzero(void)
-{
- int cpu;
- int lastidx = !(rcu_ctrlblk.completed & 0x1);
- int sum = 0;
-
- /* Check to see if the sum of the "last" counters is zero. */
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
- sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
- if (sum != 0) {
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
- return 0;
- }
-
- /*
- * This ensures that the other CPUs see the call for
- * memory barriers -after- the sum to zero has been
- * detected here
- */
- smp_mb(); /* ^^^^^^^^^^^^ */
-
- /* Call for a memory barrier from each CPU. */
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
- per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
- dyntick_save_progress_counter(cpu);
- }
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
- return 1;
-}
-
-/*
- * Wait for all CPUs to do their end-of-grace-period memory barrier.
- * Return 0 once all CPUs have done so.
- */
-
-static int
-rcu_try_flip_waitmb(void)
-{
- int cpu;
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
- if (rcu_try_flip_waitmb_needed(cpu) &&
- per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
- RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
- return 0;
- }
-
- smp_mb(); /* Ensure that the above checks precede any following flip. */
- RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
- return 1;
-}
-
-/*
- * Attempt a single flip of the counters. Remember, a single flip does
- * -not- constitute a grace period. Instead, the interval between
- * at least GP_STAGES consecutive flips is a grace period.
- *
- * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
- * on a large SMP, they might want to use a hierarchical organization of
- * the per-CPU-counter pairs.
- */
-static void rcu_try_flip(void)
-{
- unsigned long flags;
-
- RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
- if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
- RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
- return;
- }
-
- /*
- * Take the next transition(s) through the RCU grace-period
- * flip-counter state machine.
- */
-
- switch (rcu_ctrlblk.rcu_try_flip_state) {
- case rcu_try_flip_idle_state:
- if (rcu_try_flip_idle())
- rcu_ctrlblk.rcu_try_flip_state =
- rcu_try_flip_waitack_state;
- break;
- case rcu_try_flip_waitack_state:
- if (rcu_try_flip_waitack())
- rcu_ctrlblk.rcu_try_flip_state =
- rcu_try_flip_waitzero_state;
- break;
- case rcu_try_flip_waitzero_state:
- if (rcu_try_flip_waitzero())
- rcu_ctrlblk.rcu_try_flip_state =
- rcu_try_flip_waitmb_state;
- break;
- case rcu_try_flip_waitmb_state:
- if (rcu_try_flip_waitmb())
- rcu_ctrlblk.rcu_try_flip_state =
- rcu_try_flip_idle_state;
- }
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
-}
-
-/*
- * Check to see if this CPU needs to do a memory barrier in order to
- * ensure that any prior RCU read-side critical sections have committed
- * their counter manipulations and critical-section memory references
- * before declaring the grace period to be completed.
- */
-static void rcu_check_mb(int cpu)
-{
- if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
- smp_mb(); /* Ensure RCU read-side accesses are visible. */
- per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
- }
-}
-
-void rcu_check_callbacks(int cpu, int user)
-{
- unsigned long flags;
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
-
- /*
- * If this CPU took its interrupt from user mode or from the
- * idle loop, and this is not a nested interrupt, then
- * this CPU has to have exited all prior preept-disable
- * sections of code. So increment the counter to note this.
- *
- * The memory barrier is needed to handle the case where
- * writes from a preempt-disable section of code get reordered
- * into schedule() by this CPU's write buffer. So the memory
- * barrier makes sure that the rcu_qsctr_inc() is seen by other
- * CPUs to happen after any such write.
- */
-
- if (user ||
- (idle_cpu(cpu) && !in_softirq() &&
- hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
- smp_mb(); /* Guard against aggressive schedule(). */
- rcu_qsctr_inc(cpu);
- }
-
- rcu_check_mb(cpu);
- if (rcu_ctrlblk.completed == rdp->completed)
- rcu_try_flip();
- spin_lock_irqsave(&rdp->lock, flags);
- RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
- __rcu_advance_callbacks(rdp);
- if (rdp->donelist == NULL) {
- spin_unlock_irqrestore(&rdp->lock, flags);
- } else {
- spin_unlock_irqrestore(&rdp->lock, flags);
- raise_softirq(RCU_SOFTIRQ);
- }
-}
-
-/*
- * Needed by dynticks, to make sure all RCU processing has finished
- * when we go idle:
- */
-void rcu_advance_callbacks(int cpu, int user)
-{
- unsigned long flags;
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
-
- if (rcu_ctrlblk.completed == rdp->completed) {
- rcu_try_flip();
- if (rcu_ctrlblk.completed == rdp->completed)
- return;
- }
- spin_lock_irqsave(&rdp->lock, flags);
- RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
- __rcu_advance_callbacks(rdp);
- spin_unlock_irqrestore(&rdp->lock, flags);
-}
-
-#ifdef CONFIG_HOTPLUG_CPU
-#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
- *dsttail = srclist; \
- if (srclist != NULL) { \
- dsttail = srctail; \
- srclist = NULL; \
- srctail = &srclist;\
- } \
- } while (0)
-
-void rcu_offline_cpu(int cpu)
-{
- int i;
- struct rcu_head *list = NULL;
- unsigned long flags;
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
- struct rcu_head *schedlist = NULL;
- struct rcu_head **schedtail = &schedlist;
- struct rcu_head **tail = &list;
-
- /*
- * Remove all callbacks from the newly dead CPU, retaining order.
- * Otherwise rcu_barrier() will fail
- */
-
- spin_lock_irqsave(&rdp->lock, flags);
- rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
- for (i = GP_STAGES - 1; i >= 0; i--)
- rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
- list, tail);
- rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
- rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
- schedlist, schedtail);
- rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
- schedlist, schedtail);
- rdp->rcu_sched_sleeping = 0;
- spin_unlock_irqrestore(&rdp->lock, flags);
- rdp->waitlistcount = 0;
-
- /* Disengage the newly dead CPU from the grace-period computation. */
-
- spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
- rcu_check_mb(cpu);
- if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
- smp_mb(); /* Subsequent counter accesses must see new value */
- per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
- smp_mb(); /* Subsequent RCU read-side critical sections */
- /* seen -after- acknowledgement. */
- }
-
- RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
- RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
-
- RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
- RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
-
- cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map));
-
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
-
- /*
- * Place the removed callbacks on the current CPU's queue.
- * Make them all start a new grace period: simple approach,
- * in theory could starve a given set of callbacks, but
- * you would need to be doing some serious CPU hotplugging
- * to make this happen. If this becomes a problem, adding
- * a synchronize_rcu() to the hotplug path would be a simple
- * fix.
- */
-
- local_irq_save(flags); /* disable preempt till we know what lock. */
- rdp = RCU_DATA_ME();
- spin_lock(&rdp->lock);
- *rdp->nexttail = list;
- if (list)
- rdp->nexttail = tail;
- *rdp->nextschedtail = schedlist;
- if (schedlist)
- rdp->nextschedtail = schedtail;
- spin_unlock_irqrestore(&rdp->lock, flags);
-}
-
-#else /* #ifdef CONFIG_HOTPLUG_CPU */
-
-void rcu_offline_cpu(int cpu)
-{
-}
-
-#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
-
-void __cpuinit rcu_online_cpu(int cpu)
-{
- unsigned long flags;
- struct rcu_data *rdp;
-
- spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
- cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map));
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
-
- /*
- * The rcu_sched grace-period processing might have bypassed
- * this CPU, given that it was not in the rcu_cpu_online_map
- * when the grace-period scan started. This means that the
- * grace-period task might sleep. So make sure that if this
- * should happen, the first callback posted to this CPU will
- * wake up the grace-period task if need be.
- */
-
- rdp = RCU_DATA_CPU(cpu);
- spin_lock_irqsave(&rdp->lock, flags);
- rdp->rcu_sched_sleeping = 1;
- spin_unlock_irqrestore(&rdp->lock, flags);
-}
-
-static void rcu_process_callbacks(struct softirq_action *unused)
-{
- unsigned long flags;
- struct rcu_head *next, *list;
- struct rcu_data *rdp;
-
- local_irq_save(flags);
- rdp = RCU_DATA_ME();
- spin_lock(&rdp->lock);
- list = rdp->donelist;
- if (list == NULL) {
- spin_unlock_irqrestore(&rdp->lock, flags);
- return;
- }
- rdp->donelist = NULL;
- rdp->donetail = &rdp->donelist;
- RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
- spin_unlock_irqrestore(&rdp->lock, flags);