aboutsummaryrefslogtreecommitdiff
path: root/kernel/rcu/tree.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcu/tree.c')
-rw-r--r--kernel/rcu/tree.c3403
1 files changed, 3403 insertions, 0 deletions
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
new file mode 100644
index 00000000000..8a2c81e86dd
--- /dev/null
+++ b/kernel/rcu/tree.c
@@ -0,0 +1,3403 @@
+/*
+ * Read-Copy Update mechanism for mutual exclusion
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright IBM Corporation, 2008
+ *
+ * Authors: Dipankar Sarma <dipankar@in.ibm.com>
+ * Manfred Spraul <manfred@colorfullife.com>
+ * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
+ *
+ * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
+ * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
+ *
+ * For detailed explanation of Read-Copy Update mechanism see -
+ * Documentation/RCU
+ */
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/smp.h>
+#include <linux/rcupdate.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+#include <linux/nmi.h>
+#include <linux/atomic.h>
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/completion.h>
+#include <linux/moduleparam.h>
+#include <linux/module.h>
+#include <linux/percpu.h>
+#include <linux/notifier.h>
+#include <linux/cpu.h>
+#include <linux/mutex.h>
+#include <linux/time.h>
+#include <linux/kernel_stat.h>
+#include <linux/wait.h>
+#include <linux/kthread.h>
+#include <linux/prefetch.h>
+#include <linux/delay.h>
+#include <linux/stop_machine.h>
+#include <linux/random.h>
+#include <linux/ftrace_event.h>
+#include <linux/suspend.h>
+
+#include "tree.h"
+#include <trace/events/rcu.h>
+
+#include "rcu.h"
+
+MODULE_ALIAS("rcutree");
+#ifdef MODULE_PARAM_PREFIX
+#undef MODULE_PARAM_PREFIX
+#endif
+#define MODULE_PARAM_PREFIX "rcutree."
+
+/* Data structures. */
+
+static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
+static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
+
+/*
+ * In order to export the rcu_state name to the tracing tools, it
+ * needs to be added in the __tracepoint_string section.
+ * This requires defining a separate variable tp_<sname>_varname
+ * that points to the string being used, and this will allow
+ * the tracing userspace tools to be able to decipher the string
+ * address to the matching string.
+ */
+#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
+static char sname##_varname[] = #sname; \
+static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
+struct rcu_state sname##_state = { \
+ .level = { &sname##_state.node[0] }, \
+ .call = cr, \
+ .fqs_state = RCU_GP_IDLE, \
+ .gpnum = 0UL - 300UL, \
+ .completed = 0UL - 300UL, \
+ .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
+ .orphan_nxttail = &sname##_state.orphan_nxtlist, \
+ .orphan_donetail = &sname##_state.orphan_donelist, \
+ .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
+ .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
+ .name = sname##_varname, \
+ .abbr = sabbr, \
+}; \
+DEFINE_PER_CPU(struct rcu_data, sname##_data)
+
+RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
+RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
+
+static struct rcu_state *rcu_state;
+LIST_HEAD(rcu_struct_flavors);
+
+/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
+static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
+module_param(rcu_fanout_leaf, int, 0444);
+int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
+static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
+ NUM_RCU_LVL_0,
+ NUM_RCU_LVL_1,
+ NUM_RCU_LVL_2,
+ NUM_RCU_LVL_3,
+ NUM_RCU_LVL_4,
+};
+int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
+
+/*
+ * The rcu_scheduler_active variable transitions from zero to one just
+ * before the first task is spawned. So when this variable is zero, RCU
+ * can assume that there is but one task, allowing RCU to (for example)
+ * optimize synchronize_sched() to a simple barrier(). When this variable
+ * is one, RCU must actually do all the hard work required to detect real
+ * grace periods. This variable is also used to suppress boot-time false
+ * positives from lockdep-RCU error checking.
+ */
+int rcu_scheduler_active __read_mostly;
+EXPORT_SYMBOL_GPL(rcu_scheduler_active);
+
+/*
+ * The rcu_scheduler_fully_active variable transitions from zero to one
+ * during the early_initcall() processing, which is after the scheduler
+ * is capable of creating new tasks. So RCU processing (for example,
+ * creating tasks for RCU priority boosting) must be delayed until after
+ * rcu_scheduler_fully_active transitions from zero to one. We also
+ * currently delay invocation of any RCU callbacks until after this point.
+ *
+ * It might later prove better for people registering RCU callbacks during
+ * early boot to take responsibility for these callbacks, but one step at
+ * a time.
+ */
+static int rcu_scheduler_fully_active __read_mostly;
+
+#ifdef CONFIG_RCU_BOOST
+
+/*
+ * Control variables for per-CPU and per-rcu_node kthreads. These
+ * handle all flavors of RCU.
+ */
+static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
+DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
+DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
+DEFINE_PER_CPU(char, rcu_cpu_has_work);
+
+#endif /* #ifdef CONFIG_RCU_BOOST */
+
+static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
+static void invoke_rcu_core(void);
+static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
+
+/*
+ * Track the rcutorture test sequence number and the update version
+ * number within a given test. The rcutorture_testseq is incremented
+ * on every rcutorture module load and unload, so has an odd value
+ * when a test is running. The rcutorture_vernum is set to zero
+ * when rcutorture starts and is incremented on each rcutorture update.
+ * These variables enable correlating rcutorture output with the
+ * RCU tracing information.
+ */
+unsigned long rcutorture_testseq;
+unsigned long rcutorture_vernum;
+
+/*
+ * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
+ * permit this function to be invoked without holding the root rcu_node
+ * structure's ->lock, but of course results can be subject to change.
+ */
+static int rcu_gp_in_progress(struct rcu_state *rsp)
+{
+ return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
+}
+
+/*
+ * Note a quiescent state. Because we do not need to know
+ * how many quiescent states passed, just if there was at least
+ * one since the start of the grace period, this just sets a flag.
+ * The caller must have disabled preemption.
+ */
+void rcu_sched_qs(int cpu)
+{
+ struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
+
+ if (rdp->passed_quiesce == 0)
+ trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
+ rdp->passed_quiesce = 1;
+}
+
+void rcu_bh_qs(int cpu)
+{
+ struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
+
+ if (rdp->passed_quiesce == 0)
+ trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
+ rdp->passed_quiesce = 1;
+}
+
+/*
+ * Note a context switch. This is a quiescent state for RCU-sched,
+ * and requires special handling for preemptible RCU.
+ * The caller must have disabled preemption.
+ */
+void rcu_note_context_switch(int cpu)
+{
+ trace_rcu_utilization(TPS("Start context switch"));
+ rcu_sched_qs(cpu);
+ rcu_preempt_note_context_switch(cpu);
+ trace_rcu_utilization(TPS("End context switch"));
+}
+EXPORT_SYMBOL_GPL(rcu_note_context_switch);
+
+static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
+ .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
+ .dynticks = ATOMIC_INIT(1),
+#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
+ .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
+ .dynticks_idle = ATOMIC_INIT(1),
+#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+};
+
+static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
+static long qhimark = 10000; /* If this many pending, ignore blimit. */
+static long qlowmark = 100; /* Once only this many pending, use blimit. */
+
+module_param(blimit, long, 0444);
+module_param(qhimark, long, 0444);
+module_param(qlowmark, long, 0444);
+
+static ulong jiffies_till_first_fqs = ULONG_MAX;
+static ulong jiffies_till_next_fqs = ULONG_MAX;
+
+module_param(jiffies_till_first_fqs, ulong, 0644);
+module_param(jiffies_till_next_fqs, ulong, 0644);
+
+static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
+ struct rcu_data *rdp);
+static void force_qs_rnp(struct rcu_state *rsp,
+ int (*f)(struct rcu_data *rsp, bool *isidle,
+ unsigned long *maxj),
+ bool *isidle, unsigned long *maxj);
+static void force_quiescent_state(struct rcu_state *rsp);
+static int rcu_pending(int cpu);
+
+/*
+ * Return the number of RCU-sched batches processed thus far for debug & stats.
+ */
+long rcu_batches_completed_sched(void)
+{
+ return rcu_sched_state.completed;
+}
+EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
+
+/*
+ * Return the number of RCU BH batches processed thus far for debug & stats.
+ */
+long rcu_batches_completed_bh(void)
+{
+ return rcu_bh_state.completed;
+}
+EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
+
+/*
+ * Force a quiescent state for RCU BH.
+ */
+void rcu_bh_force_quiescent_state(void)
+{
+ force_quiescent_state(&rcu_bh_state);
+}
+EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
+
+/*
+ * Record the number of times rcutorture tests have been initiated and
+ * terminated. This information allows the debugfs tracing stats to be
+ * correlated to the rcutorture messages, even when the rcutorture module
+ * is being repeatedly loaded and unloaded. In other words, we cannot
+ * store this state in rcutorture itself.
+ */
+void rcutorture_record_test_transition(void)
+{
+ rcutorture_testseq++;
+ rcutorture_vernum = 0;
+}
+EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
+
+/*
+ * Record the number of writer passes through the current rcutorture test.
+ * This is also used to correlate debugfs tracing stats with the rcutorture
+ * messages.
+ */
+void rcutorture_record_progress(unsigned long vernum)
+{
+ rcutorture_vernum++;
+}
+EXPORT_SYMBOL_GPL(rcutorture_record_progress);
+
+/*
+ * Force a quiescent state for RCU-sched.
+ */
+void rcu_sched_force_quiescent_state(void)
+{
+ force_quiescent_state(&rcu_sched_state);
+}
+EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
+
+/*
+ * Does the CPU have callbacks ready to be invoked?
+ */
+static int
+cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
+{
+ return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
+ rdp->nxttail[RCU_DONE_TAIL] != NULL;
+}
+
+/*
+ * Does the current CPU require a not-yet-started grace period?
+ * The caller must have disabled interrupts to prevent races with
+ * normal callback registry.
+ */
+static int
+cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
+{
+ int i;
+
+ if (rcu_gp_in_progress(rsp))
+ return 0; /* No, a grace period is already in progress. */
+ if (rcu_nocb_needs_gp(rsp))
+ return 1; /* Yes, a no-CBs CPU needs one. */
+ if (!rdp->nxttail[RCU_NEXT_TAIL])
+ return 0; /* No, this is a no-CBs (or offline) CPU. */
+ if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
+ return 1; /* Yes, this CPU has newly registered callbacks. */
+ for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
+ if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
+ ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
+ rdp->nxtcompleted[i]))
+ return 1; /* Yes, CBs for future grace period. */
+ return 0; /* No grace period needed. */
+}
+
+/*
+ * Return the root node of the specified rcu_state structure.
+ */
+static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
+{
+ return &rsp->node[0];
+}
+
+/*
+ * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
+ *
+ * If the new value of the ->dynticks_nesting counter now is zero,
+ * we really have entered idle, and must do the appropriate accounting.
+ * The caller must have disabled interrupts.
+ */
+static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
+ bool user)
+{
+ trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
+ if (!user && !is_idle_task(current)) {
+ struct task_struct *idle __maybe_unused =
+ idle_task(smp_processor_id());
+
+ trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
+ ftrace_dump(DUMP_ORIG);
+ WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
+ current->pid, current->comm,
+ idle->pid, idle->comm); /* must be idle task! */
+ }
+ rcu_prepare_for_idle(smp_processor_id());
+ /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
+ smp_mb__before_atomic_inc(); /* See above. */
+ atomic_inc(&rdtp->dynticks);
+ smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
+ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
+
+ /*
+ * It is illegal to enter an extended quiescent state while
+ * in an RCU read-side critical section.
+ */
+ rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
+ "Illegal idle entry in RCU read-side critical section.");
+ rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
+ "Illegal idle entry in RCU-bh read-side critical section.");
+ rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
+ "Illegal idle entry in RCU-sched read-side critical section.");
+}
+
+/*
+ * Enter an RCU extended quiescent state, which can be either the
+ * idle loop or adaptive-tickless usermode execution.
+ */
+static void rcu_eqs_enter(bool user)
+{
+ long long oldval;
+ struct rcu_dynticks *rdtp;
+
+ rdtp = this_cpu_ptr(&rcu_dynticks);
+ oldval = rdtp->dynticks_nesting;
+ WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
+ if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
+ rdtp->dynticks_nesting = 0;
+ else
+ rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
+ rcu_eqs_enter_common(rdtp, oldval, user);
+}
+
+/**
+ * rcu_idle_enter - inform RCU that current CPU is entering idle
+ *
+ * Enter idle mode, in other words, -leave- the mode in which RCU
+ * read-side critical sections can occur. (Though RCU read-side
+ * critical sections can occur in irq handlers in idle, a possibility
+ * handled by irq_enter() and irq_exit().)
+ *
+ * We crowbar the ->dynticks_nesting field to zero to allow for
+ * the possibility of usermode upcalls having messed up our count
+ * of interrupt nesting level during the prior busy period.
+ */
+void rcu_idle_enter(void)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ rcu_eqs_enter(false);
+ rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
+ local_irq_restore(flags);
+}
+EXPORT_SYMBOL_GPL(rcu_idle_enter);
+
+#ifdef CONFIG_RCU_USER_QS
+/**
+ * rcu_user_enter - inform RCU that we are resuming userspace.
+ *
+ * Enter RCU idle mode right before resuming userspace. No use of RCU
+ * is permitted between this call and rcu_user_exit(). This way the
+ * CPU doesn't need to maintain the tick for RCU maintenance purposes
+ * when the CPU runs in userspace.
+ */
+void rcu_user_enter(void)
+{
+ rcu_eqs_enter(1);
+}
+#endif /* CONFIG_RCU_USER_QS */
+
+/**
+ * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
+ *
+ * Exit from an interrupt handler, which might possibly result in entering
+ * idle mode, in other words, leaving the mode in which read-side critical
+ * sections can occur.
+ *
+ * This code assumes that the idle loop never does anything that might
+ * result in unbalanced calls to irq_enter() and irq_exit(). If your
+ * architecture violates this assumption, RCU will give you what you
+ * deserve, good and hard. But very infrequently and irreproducibly.
+ *
+ * Use things like work queues to work around this limitation.
+ *
+ * You have been warned.
+ */
+void rcu_irq_exit(void)
+{
+ unsigned long flags;
+ long long oldval;
+ struct rcu_dynticks *rdtp;
+
+ local_irq_save(flags);
+ rdtp = this_cpu_ptr(&rcu_dynticks);
+ oldval = rdtp->dynticks_nesting;
+ rdtp->dynticks_nesting--;
+ WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
+ if (rdtp->dynticks_nesting)
+ trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
+ else
+ rcu_eqs_enter_common(rdtp, oldval, true);
+ rcu_sysidle_enter(rdtp, 1);
+ local_irq_restore(flags);
+}
+
+/*
+ * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
+ *
+ * If the new value of the ->dynticks_nesting counter was previously zero,
+ * we really have exited idle, and must do the appropriate accounting.
+ * The caller must have disabled interrupts.
+ */
+static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
+ int user)
+{
+ smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
+ atomic_inc(&rdtp->dynticks);
+ /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
+ smp_mb__after_atomic_inc(); /* See above. */
+ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
+ rcu_cleanup_after_idle(smp_processor_id());
+ trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
+ if (!user && !is_idle_task(current)) {
+ struct task_struct *idle __maybe_unused =
+ idle_task(smp_processor_id());
+
+ trace_rcu_dyntick(TPS("Error on exit: not idle task"),
+ oldval, rdtp->dynticks_nesting);
+ ftrace_dump(DUMP_ORIG);
+ WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
+ current->pid, current->comm,
+ idle->pid, idle->comm); /* must be idle task! */
+ }
+}
+
+/*
+ * Exit an RCU extended quiescent state, which can be either the
+ * idle loop or adaptive-tickless usermode execution.
+ */
+static void rcu_eqs_exit(bool user)
+{
+ struct rcu_dynticks *rdtp;
+ long long oldval;
+
+ rdtp = this_cpu_ptr(&rcu_dynticks);
+ oldval = rdtp->dynticks_nesting;
+ WARN_ON_ONCE(oldval < 0);
+ if (oldval & DYNTICK_TASK_NEST_MASK)
+ rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
+ else
+ rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
+ rcu_eqs_exit_common(rdtp, oldval, user);
+}
+
+/**
+ * rcu_idle_exit - inform RCU that current CPU is leaving idle
+ *
+ * Exit idle mode, in other words, -enter- the mode in which RCU
+ * read-side critical sections can occur.
+ *
+ * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
+ * allow for the possibility of usermode upcalls messing up our count
+ * of interrupt nesting level during the busy period that is just
+ * now starting.
+ */
+void rcu_idle_exit(void)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ rcu_eqs_exit(false);
+ rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
+ local_irq_restore(flags);
+}
+EXPORT_SYMBOL_GPL(rcu_idle_exit);
+
+#ifdef CONFIG_RCU_USER_QS
+/**
+ * rcu_user_exit - inform RCU that we are exiting userspace.
+ *
+ * Exit RCU idle mode while entering the kernel because it can
+ * run a RCU read side critical section anytime.
+ */
+void rcu_user_exit(void)
+{
+ rcu_eqs_exit(1);
+}
+#endif /* CONFIG_RCU_USER_QS */
+
+/**
+ * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
+ *
+ * Enter an interrupt handler, which might possibly result in exiting
+ * idle mode, in other words, entering the mode in which read-side critical
+ * sections can occur.
+ *
+ * Note that the Linux kernel is fully capable of entering an interrupt
+ * handler that it never exits, for example when doing upcalls to
+ * user mode! This code assumes that the idle loop never does upcalls to
+ * user mode. If your architecture does do upcalls from the idle loop (or
+ * does anything else that results in unbalanced calls to the irq_enter()
+ * and irq_exit() functions), RCU will give you what you deserve, good
+ * and hard. But very infrequently and irreproducibly.
+ *
+ * Use things like work queues to work around this limitation.
+ *
+ * You have been warned.
+ */
+void rcu_irq_enter(void)
+{
+ unsigned long flags;
+ struct rcu_dynticks *rdtp;
+ long long oldval;
+
+ local_irq_save(flags);
+ rdtp = this_cpu_ptr(&rcu_dynticks);
+ oldval = rdtp->dynticks_nesting;
+ rdtp->dynticks_nesting++;
+ WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
+ if (oldval)
+ trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
+ else
+ rcu_eqs_exit_common(rdtp, oldval, true);
+ rcu_sysidle_exit(rdtp, 1);
+ local_irq_restore(flags);
+}
+
+/**
+ * rcu_nmi_enter - inform RCU of entry to NMI context
+ *
+ * If the CPU was idle with dynamic ticks active, and there is no
+ * irq handler running, this updates rdtp->dynticks_nmi to let the
+ * RCU grace-period handling know that the CPU is active.
+ */
+void rcu_nmi_enter(void)
+{
+ struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+
+ if (rdtp->dynticks_nmi_nesting == 0 &&
+ (atomic_read(&rdtp->dynticks) & 0x1))
+ return;
+ rdtp->dynticks_nmi_nesting++;
+ smp_mb__before_atomic_inc(); /* Force delay from prior write. */
+ atomic_inc(&rdtp->dynticks);
+ /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
+ smp_mb__after_atomic_inc(); /* See above. */
+ WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
+}
+
+/**
+ * rcu_nmi_exit - inform RCU of exit from NMI context
+ *
+ * If the CPU was idle with dynamic ticks active, and there is no
+ * irq handler running, this updates rdtp->dynticks_nmi to let the
+ * RCU grace-period handling know that the CPU is no longer active.
+ */
+void rcu_nmi_exit(void)
+{
+ struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
+
+ if (rdtp->dynticks_nmi_nesting == 0 ||
+ --rdtp->dynticks_nmi_nesting != 0)
+ return;
+ /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
+ smp_mb__before_atomic_inc(); /* See above. */
+ atomic_inc(&rdtp->dynticks);
+ smp_mb__after_atomic_inc(); /* Force delay to next write. */
+ WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
+}
+
+/**
+ * __rcu_is_watching - are RCU read-side critical sections safe?
+ *
+ * Return true if RCU is watching the running CPU, which means that
+ * this CPU can safely enter RCU read-side critical sections. Unlike
+ * rcu_is_watching(), the caller of __rcu_is_watching() must have at
+ * least disabled preemption.
+ */
+bool __rcu_is_watching(void)
+{
+ return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
+}
+
+/**
+ * rcu_is_watching - see if RCU thinks that the current CPU is idle
+ *
+ * If the current CPU is in its idle loop and is neither in an interrupt
+ * or NMI handler, return true.
+ */
+bool rcu_is_watching(void)
+{
+ int ret;
+
+ preempt_disable();
+ ret = __rcu_is_watching();
+ preempt_enable();
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rcu_is_watching);
+
+#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
+
+/*
+ * Is the current CPU online? Disable preemption to avoid false positives
+ * that could otherwise happen due to the current CPU number being sampled,
+ * this task being preempted, its old CPU being taken offline, resuming
+ * on some other CPU, then determining that its old CPU is now offline.
+ * It is OK to use RCU on an offline processor during initial boot, hence
+ * the check for rcu_scheduler_fully_active. Note also that it is OK
+ * for a CPU coming online to use RCU for one jiffy prior to marking itself
+ * online in the cpu_online_mask. Similarly, it is OK for a CPU going
+ * offline to continue to use RCU for one jiffy after marking itself
+ * offline in the cpu_online_mask. This leniency is necessary given the
+ * non-atomic nature of the online and offline processing, for example,
+ * the fact that a CPU enters the scheduler after completing the CPU_DYING
+ * notifiers.
+ *
+ * This is also why RCU internally marks CPUs online during the
+ * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
+ *
+ * Disable checking if in an NMI handler because we cannot safely report
+ * errors from NMI handlers anyway.
+ */
+bool rcu_lockdep_current_cpu_online(void)
+{
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+ bool ret;
+
+ if (in_nmi())
+ return 1;
+ preempt_disable();
+ rdp = this_cpu_ptr(&rcu_sched_data);
+ rnp = rdp->mynode;
+ ret = (rdp->grpmask & rnp->qsmaskinit) ||
+ !rcu_scheduler_fully_active;
+ preempt_enable();
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
+
+#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
+
+/**
+ * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
+ *
+ * If the current CPU is idle or running at a first-level (not nested)
+ * interrupt from idle, return true. The caller must have at least
+ * disabled preemption.
+ */
+static int rcu_is_cpu_rrupt_from_idle(void)
+{
+ return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
+}
+
+/*
+ * Snapshot the specified CPU's dynticks counter so that we can later
+ * credit them with an implicit quiescent state. Return 1 if this CPU
+ * is in dynticks idle mode, which is an extended quiescent state.
+ */
+static int dyntick_save_progress_counter(struct rcu_data *rdp,
+ bool *isidle, unsigned long *maxj)
+{
+ rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
+ rcu_sysidle_check_cpu(rdp, isidle, maxj);
+ return (rdp->dynticks_snap & 0x1) == 0;
+}
+
+/*
+ * Return true if the specified CPU has passed through a quiescent
+ * state by virtue of being in or having passed through an dynticks
+ * idle state since the last call to dyntick_save_progress_counter()
+ * for this same CPU, or by virtue of having been offline.
+ */
+static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
+ bool *isidle, unsigned long *maxj)
+{
+ unsigned int curr;
+ unsigned int snap;
+
+ curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
+ snap = (unsigned int)rdp->dynticks_snap;
+
+ /*
+ * If the CPU passed through or entered a dynticks idle phase with
+ * no active irq/NMI handlers, then we can safely pretend that the CPU
+ * already acknowledged the request to pass through a quiescent
+ * state. Either way, that CPU cannot possibly be in an RCU
+ * read-side critical section that started before the beginning
+ * of the current RCU grace period.
+ */
+ if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
+ trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
+ rdp->dynticks_fqs++;
+ return 1;
+ }
+
+ /*
+ * Check for the CPU being offline, but only if the grace period
+ * is old enough. We don't need to worry about the CPU changing
+ * state: If we see it offline even once, it has been through a
+ * quiescent state.
+ *
+ * The reason for insisting that the grace period be at least
+ * one jiffy old is that CPUs that are not quite online and that
+ * have just gone offline can still execute RCU read-side critical
+ * sections.
+ */
+ if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
+ return 0; /* Grace period is not old enough. */
+ barrier();
+ if (cpu_is_offline(rdp->cpu)) {
+ trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
+ rdp->offline_fqs++;
+ return 1;
+ }
+
+ /*
+ * There is a possibility that a CPU in adaptive-ticks state
+ * might run in the kernel with the scheduling-clock tick disabled
+ * for an extended time period. Invoke rcu_kick_nohz_cpu() to
+ * force the CPU to restart the scheduling-clock tick in this
+ * CPU is in this state.
+ */
+ rcu_kick_nohz_cpu(rdp->cpu);
+
+ return 0;
+}
+
+static void record_gp_stall_check_time(struct rcu_state *rsp)
+{
+ unsigned long j = ACCESS_ONCE(jiffies);
+
+ rsp->gp_start = j;
+ smp_wmb(); /* Record start time before stall time. */
+ rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
+}
+
+/*
+ * Dump stacks of all tasks running on stalled CPUs. This is a fallback
+ * for architectures that do not implement trigger_all_cpu_backtrace().
+ * The NMI-triggered stack traces are more accurate because they are
+ * printed by the target CPU.
+ */
+static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
+{
+ int cpu;
+ unsigned long flags;
+ struct rcu_node *rnp;
+
+ rcu_for_each_leaf_node(rsp, rnp) {
+ raw_spin_lock_irqsave(&rnp->lock, flags);
+ if (rnp->qsmask != 0) {
+ for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
+ if (rnp->qsmask & (1UL << cpu))
+ dump_cpu_task(rnp->grplo + cpu);
+ }
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+ }
+}
+
+static void print_other_cpu_stall(struct rcu_state *rsp)
+{
+ int cpu;
+ long delta;
+ unsigned long flags;
+ int ndetected = 0;
+ struct rcu_node *rnp = rcu_get_root(rsp);
+ long totqlen = 0;
+
+ /* Only let one CPU complain about others per time interval. */
+
+ raw_spin_lock_irqsave(&rnp->lock, flags);
+ delta = jiffies - rsp->jiffies_stall;
+ if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+ return;
+ }
+ rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+
+ /*
+ * OK, time to rat on our buddy...
+ * See Documentation/RCU/stallwarn.txt for info on how to debug
+ * RCU CPU stall warnings.
+ */
+ pr_err("INFO: %s detected stalls on CPUs/tasks:",
+ rsp->name);
+ print_cpu_stall_info_begin();
+ rcu_for_each_leaf_node(rsp, rnp) {
+ raw_spin_lock_irqsave(&rnp->lock, flags);
+ ndetected += rcu_print_task_stall(rnp);
+ if (rnp->qsmask != 0) {
+ for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
+ if (rnp->qsmask & (1UL << cpu)) {
+ print_cpu_stall_info(rsp,
+ rnp->grplo + cpu);
+ ndetected++;
+ }
+ }
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+ }
+
+ /*
+ * Now rat on any tasks that got kicked up to the root rcu_node
+ * due to CPU offlining.
+ */
+ rnp = rcu_get_root(rsp);
+ raw_spin_lock_irqsave(&rnp->lock, flags);
+ ndetected += rcu_print_task_stall(rnp);
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+
+ print_cpu_stall_info_end();
+ for_each_possible_cpu(cpu)
+ totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
+ pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
+ smp_processor_id(), (long)(jiffies - rsp->gp_start),
+ rsp->gpnum, rsp->completed, totqlen);
+ if (ndetected == 0)
+ pr_err("INFO: Stall ended before state dump start\n");
+ else if (!trigger_all_cpu_backtrace())
+ rcu_dump_cpu_stacks(rsp);
+
+ /* Complain about tasks blocking the grace period. */
+
+ rcu_print_detail_task_stall(rsp);
+
+ force_quiescent_state(rsp); /* Kick them all. */
+}
+
+static void print_cpu_stall(struct rcu_state *rsp)
+{
+ int cpu;
+ unsigned long flags;
+ struct rcu_node *rnp = rcu_get_root(rsp);
+ long totqlen = 0;
+
+ /*
+ * OK, time to rat on ourselves...
+ * See Documentation/RCU/stallwarn.txt for info on how to debug
+ * RCU CPU stall warnings.
+ */
+ pr_err("INFO: %s self-detected stall on CPU", rsp->name);
+ print_cpu_stall_info_begin();
+ print_cpu_stall_info(rsp, smp_processor_id());
+ print_cpu_stall_info_end();
+ for_each_possible_cpu(cpu)
+ totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
+ pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
+ jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
+ if (!trigger_all_cpu_backtrace())
+ dump_stack();
+
+ raw_spin_lock_irqsave(&rnp->lock, flags);
+ if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
+ rsp->jiffies_stall = jiffies +
+ 3 * rcu_jiffies_till_stall_check() + 3;
+ raw_spin_unlock_irqrestore(&rnp->lock, flags);
+
+ set_need_resched(); /* kick ourselves to get things going. */
+}
+
+static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
+{
+ unsigned long completed;
+ unsigned long gpnum;
+ unsigned long gps;
+ unsigned long j;
+ unsigned long js;
+ struct rcu_node *rnp;
+
+ if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
+ return;
+ j = ACCESS_ONCE(jiffies);
+
+ /*
+ * Lots of memory barriers to reject false positives.
+ *
+ * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
+ * then rsp->gp_start, and finally rsp->completed. These values
+ * are updated in the opposite order with memory barriers (or
+ * equivalent) during grace-period initialization and cleanup.
+ * Now, a false positive can occur if we get an new value of
+ * rsp->gp_start and a old value of rsp->jiffies_stall. But given
+ * the memory barriers, the only way that this can happen is if one
+ * grace period ends and another starts between these two fetches.
+ * Detect this by comparing rsp->completed with the previous fetch
+ * from rsp->gpnum.
+ *
+ * Given this check, comparisons of jiffies, rsp->jiffies_stall,
+ * and rsp->gp_start suffice to forestall false positives.
+ */
+ gpnum = ACCESS_ONCE(rsp->gpnum);
+ smp_rmb(); /* Pick up ->gpnum first... */
+ js = ACCESS_ONCE(rsp->jiffies_stall);
+ smp_rmb(); /* ...then ->jiffies_stall before the rest... */
+ gps = ACCESS_ONCE(rsp->gp_start);
+ smp_rmb(); /* ...and finally ->gp_start before ->completed. */
+ completed = ACCESS_ONCE(rsp->completed);
+ if (ULONG_CMP_GE(completed, gpnum) ||
+ ULONG_CMP_LT(j, js) ||
+ ULONG_CMP_GE(gps, js))
+ return; /* No stall or GP completed since entering function. */
+ rnp = rdp->mynode;
+ if (rcu_gp_in_progress(rsp) &&
+ (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
+
+ /* We haven't checked in, so go dump stack. */
+ print_cpu_stall(rsp);
+
+ } else if (rcu_gp_in_progress(rsp) &&
+ ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
+
+ /* They had a few time units to dump stack, so complain. */
+ print_other_cpu_stall(rsp);
+ }
+}
+
+/**
+ * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
+ *
+ * Set the stall-warning timeout way off into the future, thus preventing
+ * any RCU CPU stall-warning messages from appearing in the current set of
+ * RCU grace periods.
+ *
+ * The caller must disable hard irqs.
+ */
+void rcu_cpu_stall_reset(void)
+{
+ struct rcu_state *rsp;
+
+ for_each_rcu_flavor(rsp)
+ rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
+}
+
+/*
+ * Initialize the specified rcu_data structure's callback list to empty.
+ */
+static void init_callback_list(struct rcu_data *rdp)
+{
+ int i;
+
+ if (init_nocb_callback_list(rdp))
+ return;
+ rdp->nxtlist = NULL;
+ for (i = 0; i < RCU_NEXT_SIZE; i++)
+ rdp->nxttail[i] = &rdp->nxtlist;
+}
+
+/*
+ * Determine the value that ->completed will have at the end of the
+ * next subsequent grace period. This is used to tag callbacks so that
+ * a CPU can invoke callbacks in a timely fashion even if that CPU has
+ * been dyntick-idle for an extended period with callbacks under the
+ * influence of RCU_FAST_NO_HZ.
+ *
+ * The caller must hold rnp->lock with interrupts disabled.
+ */
+static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
+ struct rcu_node *rnp)
+{
+ /*
+ * If RCU is idle, we just wait for the next grace period.
+ * But we can only be sure that RCU is idle if we are looking
+ * at the root rcu_node structure -- otherwise, a new grace
+ * period might have started, but just not yet gotten around
+ * to initializing the current non-root rcu_node structure.
+ */
+ if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
+ return rnp->completed + 1;
+
+ /*
+ * Otherwise, wait for a possible partial grace period and
+ * then the subsequent full grace period.
+ */
+ return rnp->completed + 2;
+}