aboutsummaryrefslogtreecommitdiff
path: root/include/asm-arm/cacheflush.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/asm-arm/cacheflush.h')
-rw-r--r--include/asm-arm/cacheflush.h387
1 files changed, 387 insertions, 0 deletions
diff --git a/include/asm-arm/cacheflush.h b/include/asm-arm/cacheflush.h
new file mode 100644
index 00000000000..09ffeed507c
--- /dev/null
+++ b/include/asm-arm/cacheflush.h
@@ -0,0 +1,387 @@
+/*
+ * linux/include/asm-arm/cacheflush.h
+ *
+ * Copyright (C) 1999-2002 Russell King
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef _ASMARM_CACHEFLUSH_H
+#define _ASMARM_CACHEFLUSH_H
+
+#include <linux/config.h>
+#include <linux/sched.h>
+#include <linux/mm.h>
+
+#include <asm/mman.h>
+#include <asm/glue.h>
+
+/*
+ * Cache Model
+ * ===========
+ */
+#undef _CACHE
+#undef MULTI_CACHE
+
+#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
+# ifdef _CACHE
+# define MULTI_CACHE 1
+# else
+# define _CACHE v3
+# endif
+#endif
+
+#if defined(CONFIG_CPU_ARM720T)
+# ifdef _CACHE
+# define MULTI_CACHE 1
+# else
+# define _CACHE v4
+# endif
+#endif
+
+#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
+ defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
+# define MULTI_CACHE 1
+#endif
+
+#if defined(CONFIG_CPU_ARM926T)
+# ifdef _CACHE
+# define MULTI_CACHE 1
+# else
+# define _CACHE arm926
+# endif
+#endif
+
+#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
+# ifdef _CACHE
+# define MULTI_CACHE 1
+# else
+# define _CACHE v4wb
+# endif
+#endif
+
+#if defined(CONFIG_CPU_XSCALE)
+# ifdef _CACHE
+# define MULTI_CACHE 1
+# else
+# define _CACHE xscale
+# endif
+#endif
+
+#if defined(CONFIG_CPU_V6)
+//# ifdef _CACHE
+# define MULTI_CACHE 1
+//# else
+//# define _CACHE v6
+//# endif
+#endif
+
+#if !defined(_CACHE) && !defined(MULTI_CACHE)
+#error Unknown cache maintainence model
+#endif
+
+/*
+ * This flag is used to indicate that the page pointed to by a pte
+ * is dirty and requires cleaning before returning it to the user.
+ */
+#define PG_dcache_dirty PG_arch_1
+
+/*
+ * MM Cache Management
+ * ===================
+ *
+ * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
+ * implement these methods.
+ *
+ * Start addresses are inclusive and end addresses are exclusive;
+ * start addresses should be rounded down, end addresses up.
+ *
+ * See Documentation/cachetlb.txt for more information.
+ * Please note that the implementation of these, and the required
+ * effects are cache-type (VIVT/VIPT/PIPT) specific.
+ *
+ * flush_cache_kern_all()
+ *
+ * Unconditionally clean and invalidate the entire cache.
+ *
+ * flush_cache_user_mm(mm)
+ *
+ * Clean and invalidate all user space cache entries
+ * before a change of page tables.
+ *
+ * flush_cache_user_range(start, end, flags)
+ *
+ * Clean and invalidate a range of cache entries in the
+ * specified address space before a change of page tables.
+ * - start - user start address (inclusive, page aligned)
+ * - end - user end address (exclusive, page aligned)
+ * - flags - vma->vm_flags field
+ *
+ * coherent_kern_range(start, end)
+ *
+ * Ensure coherency between the Icache and the Dcache in the
+ * region described by start, end. If you have non-snooping
+ * Harvard caches, you need to implement this function.
+ * - start - virtual start address
+ * - end - virtual end address
+ *
+ * DMA Cache Coherency
+ * ===================
+ *
+ * dma_inv_range(start, end)
+ *
+ * Invalidate (discard) the specified virtual address range.
+ * May not write back any entries. If 'start' or 'end'
+ * are not cache line aligned, those lines must be written
+ * back.
+ * - start - virtual start address
+ * - end - virtual end address
+ *
+ * dma_clean_range(start, end)
+ *
+ * Clean (write back) the specified virtual address range.
+ * - start - virtual start address
+ * - end - virtual end address
+ *
+ * dma_flush_range(start, end)
+ *
+ * Clean and invalidate the specified virtual address range.
+ * - start - virtual start address
+ * - end - virtual end address
+ */
+
+struct cpu_cache_fns {
+ void (*flush_kern_all)(void);
+ void (*flush_user_all)(void);
+ void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
+
+ void (*coherent_kern_range)(unsigned long, unsigned long);
+ void (*coherent_user_range)(unsigned long, unsigned long);
+ void (*flush_kern_dcache_page)(void *);
+
+ void (*dma_inv_range)(unsigned long, unsigned long);
+ void (*dma_clean_range)(unsigned long, unsigned long);
+ void (*dma_flush_range)(unsigned long, unsigned long);
+};
+
+/*
+ * Select the calling method
+ */
+#ifdef MULTI_CACHE
+
+extern struct cpu_cache_fns cpu_cache;
+
+#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
+#define __cpuc_flush_user_all cpu_cache.flush_user_all
+#define __cpuc_flush_user_range cpu_cache.flush_user_range
+#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
+#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
+#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
+
+/*
+ * These are private to the dma-mapping API. Do not use directly.
+ * Their sole purpose is to ensure that data held in the cache
+ * is visible to DMA, or data written by DMA to system memory is
+ * visible to the CPU.
+ */
+#define dmac_inv_range cpu_cache.dma_inv_range
+#define dmac_clean_range cpu_cache.dma_clean_range
+#define dmac_flush_range cpu_cache.dma_flush_range
+
+#else
+
+#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
+#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
+#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
+#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
+#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
+#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
+
+extern void __cpuc_flush_kern_all(void);
+extern void __cpuc_flush_user_all(void);
+extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
+extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
+extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
+extern void __cpuc_flush_dcache_page(void *);
+
+/*
+ * These are private to the dma-mapping API. Do not use directly.
+ * Their sole purpose is to ensure that data held in the cache
+ * is visible to DMA, or data written by DMA to system memory is
+ * visible to the CPU.
+ */
+#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
+#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
+#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
+
+extern void dmac_inv_range(unsigned long, unsigned long);
+extern void dmac_clean_range(unsigned long, unsigned long);
+extern void dmac_flush_range(unsigned long, unsigned long);
+
+#endif
+
+/*
+ * flush_cache_vmap() is used when creating mappings (eg, via vmap,
+ * vmalloc, ioremap etc) in kernel space for pages. Since the
+ * direct-mappings of these pages may contain cached data, we need
+ * to do a full cache flush to ensure that writebacks don't corrupt
+ * data placed into these pages via the new mappings.
+ */
+#define flush_cache_vmap(start, end) flush_cache_all()
+#define flush_cache_vunmap(start, end) flush_cache_all()
+
+/*
+ * Copy user data from/to a page which is mapped into a different
+ * processes address space. Really, we want to allow our "user
+ * space" model to handle this.
+ */
+#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
+ do { \
+ flush_cache_page(vma, vaddr, page_to_pfn(page));\
+ memcpy(dst, src, len); \
+ flush_dcache_page(page); \
+ } while (0)
+
+#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
+ do { \
+ flush_cache_page(vma, vaddr, page_to_pfn(page));\
+ memcpy(dst, src, len); \
+ } while (0)
+
+/*
+ * Convert calls to our calling convention.
+ */
+#define flush_cache_all() __cpuc_flush_kern_all()
+
+static inline void flush_cache_mm(struct mm_struct *mm)
+{
+ if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
+ __cpuc_flush_user_all();
+}
+
+static inline void
+flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
+{
+ if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
+ __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
+ vma->vm_flags);
+}
+
+static inline void
+flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
+{
+ if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
+ unsigned long addr = user_addr & PAGE_MASK;
+ __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
+ }
+}
+
+/*
+ * flush_cache_user_range is used when we want to ensure that the
+ * Harvard caches are synchronised for the user space address range.
+ * This is used for the ARM private sys_cacheflush system call.
+ */
+#define flush_cache_user_range(vma,start,end) \
+ __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
+
+/*
+ * Perform necessary cache operations to ensure that data previously
+ * stored within this range of addresses can be executed by the CPU.
+ */
+#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
+
+/*
+ * Perform necessary cache operations to ensure that the TLB will
+ * see data written in the specified area.
+ */
+#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
+
+/*
+ * flush_dcache_page is used when the kernel has written to the page
+ * cache page at virtual address page->virtual.
+ *
+ * If this page isn't mapped (ie, page_mapping == NULL), or it might
+ * have userspace mappings, then we _must_ always clean + invalidate
+ * the dcache entries associated with the kernel mapping.
+ *
+ * Otherwise we can defer the operation, and clean the cache when we are
+ * about to change to user space. This is the same method as used on SPARC64.
+ * See update_mmu_cache for the user space part.
+ */
+extern void flush_dcache_page(struct page *);
+
+#define flush_dcache_mmap_lock(mapping) \
+ write_lock_irq(&(mapping)->tree_lock)
+#define flush_dcache_mmap_unlock(mapping) \
+ write_unlock_irq(&(mapping)->tree_lock)
+
+#define flush_icache_user_range(vma,page,addr,len) \
+ flush_dcache_page(page)
+
+/*
+ * We don't appear to need to do anything here. In fact, if we did, we'd
+ * duplicate cache flushing elsewhere performed by flush_dcache_page().
+ */
+#define flush_icache_page(vma,page) do { } while (0)
+
+#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
+#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
+#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
+#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
+#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
+
+#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
+
+#define cache_is_vivt() 1
+#define cache_is_vipt() 0
+#define cache_is_vipt_nonaliasing() 0
+#define cache_is_vipt_aliasing() 0
+
+#elif defined(CONFIG_CPU_CACHE_VIPT)
+
+#define cache_is_vivt() 0
+#define cache_is_vipt() 1
+#define cache_is_vipt_nonaliasing() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ __cacheid_vipt_nonaliasing(__val); \
+ })
+
+#define cache_is_vipt_aliasing() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ __cacheid_vipt_aliasing(__val); \
+ })
+
+#else
+
+#define cache_is_vivt() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
+ })
+
+#define cache_is_vipt() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ __cacheid_present(__val) && __cacheid_vipt(__val); \
+ })
+
+#define cache_is_vipt_nonaliasing() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ __cacheid_present(__val) && \
+ __cacheid_vipt_nonaliasing(__val); \
+ })
+
+#define cache_is_vipt_aliasing() \
+ ({ \
+ unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
+ __cacheid_present(__val) && \
+ __cacheid_vipt_aliasing(__val); \
+ })
+
+#endif
+
+#endif